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The snare drum is one of the more complex musical instruments from a modeling and synthesis
perspective—it includes elements modeled as 0D (the drum stick), 1D (the snares), 2D (a pair of mem-
branes) and 3D (the cavity and perhaps the surrounding space), as well as connection conditions, including
the distributed collision between the set of snares and the snare head.
In this article, some preliminary modeling results will be presented, employing time-domain finite differ-
ence schemes for the membranes and snare set, and various different levels of modeling for the adjacent
acoustic space, including a full 3D model involving absorbing boundary conditions.
Simulation results and sound examples will be presented, and computational complexity wil be discussed.

1 Introduction

Simulation based on physical models of musical instru-
ments, both for investigation in musical acoustics, and in
sound synthesis applications, has developed enormously
in recent years; some of the more interesting new di-
rections have involved the simulation of complex struc-
tures, with multiple interacting components, normally
distributed. Among the structures examined, from the
point of view of musical acoustics, have been the kettle-
drum [9], and, in synthesis, the piano, including models
of the interaction between the strings and the sound-
board and sympathetic vibration [14], and, the subject
under study here, drums which employ two membranes
as well as a snare mechanism [8]. Great recent increases
in computational power have made it possible to gener-
ate synthetic sound in real time, or something approach-
ing real time.

Modal approaches are often used when when the be-
haviour of the object under study is very nearly lin-
ear; when nonlinearities are present, such an approach
quickly becomes unwieldy; time domain methods, while
moderately more expensive computationally, become an
attractive option. Such is the case for the snare drum,
composed of a cavity, enclosed by two membranes, one
of which is in distributed partial contact with a set of
snares. Though the literature on the snare drum is
sparse, a good experimental account may be found in
[10], and synthesis techniques are discussed in [8]. On
the other hand, time domain methods present their own
special problems—and the numerical issues are many,
especially with regard to adequate sound rendering for
synthesis.

In this short paper, some preliminary simulation re-
sults based on a coupled membrane model of a snare
drum are presented. In Section 2, a basic model is pre-
sented (with indications as to how it may be extended
to include more realistic features), and in Section 3, a
system of finite difference schemes for the various com-
ponents is presented, accompanied by a brief discussion

of computational complexity. Numerical results appear
in Section 4.

2 Model Description

In this study, the snare drum is assumed to be a cylin-
der, of radius R metres, and of depth L metres. The
entire problem is embedded within a 3D computational
domain D of the form of a parallelipiped, with D =
{(x, y, z) ∈ R

3| − Lxy/2 ≤ x, y ≤ Lxy/2,−Lz/2 ≤ z ≤
Lz/2}. The six outer faces of the region will be denoted,
collectively, as ∂Douter.

The shell of the drum, defined over the region
∂Dshell = {(x, y, z) ∈ R

3|x2 + y2 = R2,−L/2 ≤
z ≤ L/2}, is assumed to be perfectly rigid. Flexible
membranes terminate the cylinder over regions ∂Dv =
{(x, y, z) ∈ R

3|x2 + y2 ≤ R2, z = L/2} (for the batter
head) and ∂Dw = {(x, y, z) ∈ R

3|x2 + y2 ≤ R2, z =
−L/2} (for the snare head). See Figure 1.

Figure 1: Drum geometry and computational space.



2.1 Acoustic Space, and Boundary Con-

ditions

The acoustic space, defined over the region D, includ-
ing both the interior of the drum cavity and outside, is
assumed described by the linear 3D wave equation,

Ψtt = c2Δ(3)Ψ (1)

Here, c is the wave speed in air, Δ(3) is the 3D Laplacian,
defined, in Cartesian coordinates, by

Δ(3) =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2)

and subscripts t indicate partial time differentiation.
The quantity Ψ(x, y, z, t) is a velocity potential, which
may be related to pressure p and velocity u by

p = ρΨt u = −∇Ψ (3)

where ρ is air density. Working with the velocity poten-
tial, instead of a similar equation in the pressure itself
makes for a much simplified stability/boundary condi-
tion analysis in the numerical setting, much as in the
1D case—see [4] for details.

At the boundary with the rigid shell, at ∂Dshell, both
inside the drum cavity and outside, a Neumann (rigid)
condition is employed:

Ψn = 0

where the subscript n indicates a spatial derivative of Ψ
normal to ∂Dshell.

Over the boundary region ∂Douter, an absorbing
boundary condition of the form of one given in the ar-
ticle by Engquist and Majda [6], extended to 3D, such
as

Ψt − cΨn = 0

Ψtt − cΨnt − c2

2
(Ψs1s1 + Ψs2s2) = 0

where n indicates a derivative in a direction normal to
the boundary, and where s1 and s2 are orthogonal co-
ordinates tangential to the boundary.

Such conditions offer a simple alternative to more
involved PML type conditions [2, 1], which require a 3D
boundary region to be appended to the computational
domain; to what order one must take such conditions to
attenuate numerical reflections to perceptually minimal
levels in audio applications remains an open question.

2.2 Membranes

The two membranes are assumed defined, by some ex-
tension of the 2D wave equation of the form

ρM,vHvtt = TvΔ
(2)v + . . . + f (+)

v + f (−)
v + fe (4a)

ρM,wHwtt = TwΔ(2)w + . . . + f (+)
w + f (−)

w + fs(4b)

corresponding to the upper and lower membranes, re-
spectively, over the regions ∂Du and ∂Dw, respectively.
Here v = v(x, y, t) and w = w(x, y, t) are the transverse
displacements of the membranes, Δ(2) is the 2D Lapla-
cian, defined, in Cartesian coordinates, by

Δ(2) =
∂2

∂x2
+

∂2

∂y2
(5)

ρM,v and ρM,w are the mass densities of the upper and
lower membranes, and H is the membrane thickness.
The terms f (+) and f (−) represent pressures on the up-
per and lower faces of the membranes, due to interaction
with the surrounding acoustic space, and will be related
to Ψ shortly, in Section 2.5. The term fe(on the batter
head of the drum) is an excitation term, due to mallet
interaction. The full form of this term will be given in
Section 2.3. Similarly, fs represents the forces exerted
on the bottom membrane by the snares, to be described
in Section 2.4.

The two instances of . . . represent other terms which
may be added to give a much more realistic membrane
model. These include a stiffness term, loss terms, and,
possibly, a term yielding nonlinear behaviour along the
lines of the model developed initially by Berger [3]. Due
to space considerations, these will not be presented ex-
plicitly here—see [8] for more details.

The membranes are assumed to be rigidly termi-
nated, i.e., v = w = 0 over x2 + y2 = R2.

2.3 Striking Model

The striking model employed here is a crude model of a
drumstick in freefall, and is similar to other such models
of hammer or mallet interaction which appear in the
literature [5, 9]. The excitation term fe may be modelled
as fe = −δ(2)(x−xi, y−yi)fstick, where δ(2)(x−xi, y−yi)
is a 2D Dirac delta function centered at x = xi, y =
yi (which could be generalized to a region of non-zero
area), and where the stick force fstick will be given by

fstick = Kh

(
[v(xi, yi)−m(t)]+

)αh d2m

dt2
= fstick − g

(6)
where here, m = m(t) is the vertical position of the stick
relative to the upper membrane at location (xi, yi), and
where Kh is a stiffness constant, αh is a nonlinearity ex-
ponent, and g = 9.8 m/s2. The superscript + indicates
“the positive part of.” Such a model should, eventually,
be extended to include an applied force from the player.

2.4 Snare Model

In a typical snare drum, there are approximately 12 to
15 individual snares, which are fairly loosely tensioned
wires (helical) which are pressed agains the bottom face
of the snare head (whose transverse displacement here
is w). For simplicity, an individual snare (one among
M) will be modelled here as an ideal string:

ρsAsr
(i)
tt = Tsr

(i)

η(i)η(i) + f (i) (7)

where r(i) is the transeverse displacement of the ith
snare, i = 1, . . . , M (assumed normal to the lower
membrane region ∂Dw), and where ρs, As and Ts are
the mass density, effective cross-sectional area, and ap-
plied tension in the snares (assumed uniform over all
snares). The coordinate η is some affine combination
η(i) = a(i)x + b(i)y + c(i), defining a linear region over
∂Dw.

The force f (i) on the ith snare is modelled as a dis-
tributed collision with the lower membrane, in a manner



similar to the hammer:

f (i) = −Ks

(
[r(i) − w(η(i))]+

)αs

where again, Ks is a stiffness constant, αs is a nonlin-
earity exponent. The total force fs exerted on the lower
membrane will be

fs =

M∑
i=1

δ(η(i) − a(i)x + b(i)y + c(i))f (i)

2.5 Connection Conditions

More subtle conditions are required in order to relate the
acoustic field to to the membrane displacements over the
regions ∂Dv and ∂Dw. These may be given as:

f (+)
v,w = −ρΨ

(+)
t

∣∣∣
∂Dv,w

f (−)
v,w = ρΨ

(−)
t

∣∣∣
∂Dv,w

(8)

vt, wt = −Ψ(+)
z

∣∣∣
∂Dv,w

= −Ψ(−)
z

∣∣∣
∂Dv,w

(9)

where Ψ(+) and Ψ(−) indicate the values taken by Ψ
on the upper and lower sides of the membranes, respec-
tively.

3 Finite Difference Schemes

There is not space available here for a full introduction
to finite difference schemes—see [11, 4] for a complete
presentation. A cursory description of some basic oper-
ations follows.

In an audio synthesis setting (as opposed, perhaps,
to investigations in pure musical acoustics), it is useful
to choose a sample rate f0 a priori, implying a time step
k = 1/f0. This time step will be used uniformly over
all components. The choice of a uniform time step is by
no means a necessary one, but leads to great simplifi-
cations in terms of implementation. A grid function fn

·

represents an approximation to some function f(. . . , t)
at times t = nk. The symbol · refers to other spatial
grid indices. The simplest approximation to a second
time derivative is:

δttf· =
1

k2

(
fn+1
·

− 2fn
·

+ fn−1
·

) ≈ ftt(. . . , t) (10)

This approximation is second order accurate, and will
lead (in conjunction with spatial discretization) to a cer-
tain amount of numerical dispersion [4].

The systems (1), for 3D acoustics, (4) for the mem-
branes, and (7) for the snares are all variants of the wave
equation, and as such, are easily approached using very
simple schemes of the FDTD variety [13, 12]. The key
operator to be discretized is the d dimensional Laplacian
Δ(d). First assume that all spatial coordinates are dis-
cretized, according to a Cartesian grid, using a spacing

h. The simplest approximations to the Laplacian are

δΔ(1),hfn
l =

1

h2

(
fn

l+1 − 2fn
l + fn

l−1

)
δΔ(2),hfn

l,m =
1

h2

(
fn

l+1,m + fn
l−1,m+

fn
l,m+1 + fn

l,m−1 − 4fn
l,m

)
δΔ(3),hfn

l,m,p =
1

h2

(
fn

l+1,m,p + fn
l−1,m,p + fn

l,m+1,p+

fn
l,m−1,p + fn

l,m,p+1 +

fn
l,m,p−1 − 6fn

l,m,p

)

Here, the indeces l, m and p refer to grid locations with
coordinates x = lh, y = mh, z = ph.

3.1 Explicit Schemes

Simple explicit schemes corresponding to the various
systems are then:

δttΨ = c2δΔ(3),hΨ (11)

ρM,vAδttv = TvδΔ(2),hv
v + f (+)

v + f (−)
v + fe (12a)

ρM,wAδttw = TwδΔ(2),hw
w + f (+)

w + f (−)
w + fs(12b)

ρsAsδttr
(i) = TsδΔ(2),hs

r(i) + f (i) (13)

The grid spacings, h for the 3D system, hv and hw

for the upper and lower membranes, and hs for the
snares are distinct here; for these explicit schemes, nec-
essary stability conditions may be derived either from
frequency domain analysis [11], or energy methods [4].
These are:

h ≥
√

3ck (14a)

hv ≥
√

2Tv

ρM,vH
k hw ≥

√
2Tw

ρM,wH
k (14b)

hs ≥
√

Ts

ρsAs
k (14c)

In fact, if the spacings are not chosen very close to these
bounds, severe numerical dispersion (and bandlimiting)
will result, so for synthesis purposes, it is useful to keep
these quantities separate, even though such a choice will
entail extra complications when the various components
necessarily interact. When other terms intervene (typ-
ically involving stiffness, in the case of membranes or
snares, or frequency dependent loss), such conditions
must be altered slightly [4], but will always take the
form of a lower bound on the grid spacing, at least when
an explicit scheme is used.

3.2 Grid Boundaries and Interpolation

The difficulties in the above framework, employing reg-
ular Cartesian grids are two-fold. First, compared with
methods using unstructured grids (such as, e.g., finite
element or finite volume methods), special boundary dif-
ference schemes must be developed at curved boundaries



(such as at the edges of the membranes, or at the faces
of the drum cylinder) [7]. More general difficulties, es-
pecially lie in the distributed connection conditions be-
tween the membranes and the acoustic space, and be-
tween the snares and the lower membrane. Though the
treatment of an individual component becomes simpler
when a uniform grid is used, the distinct grid spacings
require some form of interpolation—see Figure 2. A
simple choice is of some form of linear or bilinear inter-
polation, relating vaues on one grid to those of nearest
neighbours on the other. For more on interpolation be-
tween grids, see [4].

w

r
Ψ(+)

Ψ(−)

interpolation interpolationv,w

Figure 2: Grid interpolation: Left, between 3D
acoustic spaces and membranes, and right, between

snares and membrane.

3.3 Computational Complexity

Computational cost is dominated by the solution of the
3D wave equation over the domain D. If scheme (11) is
used, with a time step k, and with grid spacing h chosen
as close to the stability condition (14a) as possible (in
order to minimize numerical dispersion and maximize
output bandwidth, as discussed above), then the total
memory requirement will be, for a two-step scheme,

Memory Requirement : 2
L2

xyLz

33/2c3k3

and the total operation count (additions + multiplica-
tions/second) will be

Operation Count :
10L2

xyLz

33/2c3k4

For a typical region including a snare drum, such
as Lxy = Lz = 0.5, and operating at the sample rate
fs = 44.1 kHz, the total memory requirement will be
approximately 8×106 floating point numbers, and the
operation count will be approximately 1011 flops. This
is large, but not enormous—one should expect to be able
to perform such calculations in something approaching
real time in the next few years, perhaps using gen-
eral purpose graphics processing units (GPGPUs), or
by exploting parallelism and multi-core architectures.
Computational cost can obviously be greatly reduced
through operation at a lower sample rate, or by reduc-
ing the size of the computational region D—signifying
perhaps the need for more accuracy in the reflectionless
boundary layer.

4 Numerical Results

As a simple demonstration of the algorithm proposed
here, snapshots of the time evolution of the two coupled

membranes, where the upper membrane is subjected to
a short impulsive excitation, is shown in Figure 3; a
cross-section of the radiated pressure field is shown in
Figure 4. In the last panel of this figure, the effect of
the absorbing boundary conditions is clearly visible.

t=0.0005 s t=0.001 s

t=0.002 s

t=0.0025 s t=0.003 s

t=0.0015 s

Figure 3: Snapshots of the time evolution of a coupled
membrane system, at times as indicated. The upper
and lower membranes have wave speeds of 95.2 m/s
and 75.9 m/s, respectively, and are of radius 0.15 m.

The cavity between them is of depth 0.3 m. The
scheme described in Section 3 is used, at a sample rate

of 16 kHz.

4.1 Membrane Mode Accuracy and Nu-

merical Mode Splitting

At an audio sample rate, such as 44.1 kHz, mode accu-
racy using a regular FD scheme is very good; see Fig-
ure 5, illustrating the case of an isolated membrane, for
which numerical mode frequencies differ from exact val-
ues by no more than 4 Hz over the band (0 3000)Hz.

One interesting defect of an FD approach, on a reg-
ular Cartesian grid applied to a circular problem is that
of numerical mode splitting; because the grid does not
possess rotational symmetry, degenerate modes may be
split, as shown at right in Figure 5—the degree of split-
ting increases with frequency, and may be audible as
a low frequency beating. One could remedy this with
recourse to a polar grid, but at the cost of greatly in-
creased numerical dispersion (and far inferior mode ac-
curacy). On the other hand, given the high degree of
inharmonicity of the spectrum of membrane, such ef-
fects are not nearly as important, perceptually, as they
would be in the case of structures exhibiting a highly
harmonic spectrum.



Figure 4: Snapshots of a vertical cross-section of the
pressure distribution surrounding a coupled

membrane/cavity system, at times as indicated. A
high sample rate of 80 kHz is used, for increased

spatial resolution.
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Figure 5: Frequency response for a finite difference
membrane with wave speed 95.65 m/s, and radius 0.15
m, at 44.1 kHz. Left: Response for a single membrane,
in black, and exact modal frequencies, in grey. Right:

a numerically split mode near 1240 Hz.

4.2 Coupled Membranes, and Modal

Frequencies

The subject of modal frequency shifts due to air cou-
pling between membranes has been touched upon in [10],
specifically with reference to a two-mass piston model of
the air within the cavity. Here, however, the cavity is
modelled in its entirety, and one may observe modal fre-
quency shifts in all modal frequencies, and not merely
those which possess axisymmetry. See Figure 6.

4.3 Snare Interaction

The interaction of the snares with the lower membrane
is enormously complex—see Figure 7, illustrating the
initial deformation of the membrane due to the snares,

100 150 200 250 300 350 400 450 500

−60

−40

−20

0

f (Hz)

Figure 6: Output spectrum, read from a point on the
lower membrane, to an impulsive excitation on the
upper membrane, for different mass densities of the

membranes (of wave speeds as indicated in the caption
to Figure 3). Modal frequencies of the upper/lower

membranes are indicated in red and green, respectively.
Frequency response curves, drawn from displacement

at the bottom membrane, are indicated with for
relative mass densities of 1 (dark), 2, 3 and 1000 (light
grey), with nominal densities of 0.33 kg/m2 and 0.26

kg/m2 for the upper and lower membranes respectively.

followed, eventually, by a nearly randomized motion of
the snares. As expected, this leads to a noise-like quality
in sound output, as illustrated in Figure 8.

t=0.004 s

t=0.002 s

t=0.02 s

t=0 s

Figure 7: Snapshots of interaction of twelve snares
with lower membrane, for a strike applied to the upper
membrane, at times as indicated. The sample rate is

16 kHz, and the membrane is of parameters as
described in the figures above. The wave speed in the

snares is set to 30 m/s.

5 Concluding Remarks

As mentioned in the introduction, this has been a
preliminary numerical study of the coupled mem-
brane/snare interaction, embedded in a 3D computa-
tional domain. The intention here has been merely to
show that such a simulation of a complex system is in-
deed possible, to exhibit certain features of such a sys-
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Figure 8: Spectrum of sound output for a coupled
membrane system with the snares disengaged (top)
and engaged (bottom). System parameters are as in

the previous examples.

tem, and to show that such a simulation does not incur
an unreasonable computational cost. A necessary step
is calibration and validation via experimental measure-
ment. Some of the system parameters, and in particular
the geometrical and material properties of the various
components are easily determined, but others, such as
membrane and snare tension are more difficult to deter-
mine, especially in a highly coupled setting. Such work
is currently under way at Edinburgh.

Certain features have not been explicitly modelled
here—these include effects of stiffness in the membrane
and snares, and more importantly, vibration of the drum
shell itself, which, though it does not radiate significant
energy, is nonetheless capable of storing energy, and may
affect the over-all dynamics of the snare drum (partic-
ularly with regard to global solution decay). Nonlinear
behaviour of the membranes themselves, though it will
unquestionably lead to pitch glides when the snare is dis-
engaged, may probably be ignored in the case when the
snares are indeed in contact with the membrane. An-
other question, of more general relevance to 3D model-
ing of musical instruments, is of the order of the absorb-
ing boundary condition to be applied at the outer faces
of the computational domain necessary such that nu-
merical reflections are inaudible—this is a subtle ques-
tion, because although numerical reflections are typi-
cally large at angles of incidence far from the normal,
such reflections tend to remain in the region near the
boundaries, and may not contaminate the solution as
much as might be expected.
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