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Dynamic control of Coding in Delay Tolerant Networks

Eitan Altman Francesco De Pellegrini Lucile Sassatelli
INRIA, CREATE-NET, via Alla Cascata 56 c, RLE, MIT
06902 Sophia-Antipolis Cedex, France 38100 Trento, ltaly Cambridge, MA 02139, USA
eitan.altman@sophia.inria.fr francesco.depellegrini@create-net.org  Email: lucisass@mit.edu

Abstract—We study replication mechanisms that include Reed- only, i.e., time instants when a pair of not connected nodks f
Solomon type codes as well as network coding in order to imps@  within reciprocal radio range. Time between contacts ofgai
the probability of successful delivery within a given time Imit.  of nodes are exponentially distributed with given interetireg
We propose an analytical approach to compute these and study jntensity \ [3]. A file containsk frames. The source of the file
the effect of coding on the performance of the network while receives the frames at some timgs< t, < ... < t. t; are

opfllﬂél(n_?_em;a_mggg ?gte%%\;eﬁlne{v?lgwg Optimal Scheduling, called t_hearrival times The transmitted file is relevant dqring
Coding, Network Codes some timer. By that we mean that all frames should arrive at
the destination by time, +7. We do not assume any feedback
|. INTRODUCTION that allows the source or other mobiles to know whether the

DTNs exploit random contacts between mobile nodes Fle has made it successfully to the destination within time
P P at time ¢ the source encounters a mobile which does not

allow end-to-end communication between points that do nﬁt o . o -
L ; . . have any frame, it gives it framewith probability «;(t). We

have end-to-end connectivity at any given instant. This IS cume thats — 1 wherew — (). There is an obvious

obtained at the cost of replications of data and hence of;]grnef’;l . - u =35 ui(t). R

and memory resources. To transfer successfully a file, &@nstraint that;(t) = 0 for ¢ < ¢;. Let X(t) and X(t) be

frames of which it is composed are needed at the destinatigife  dimensional vectors whose components &ét) and

The memory of a DTN node is assumed to be limited to th/?i(t). Here, X;(t) stand for the fraction of the mobile nodes
size of a single frame. We study adding coding in order

. . . ?xcluding the destination) that have at tima copy of frame
improve the storage efficiency. We consider Reed-Solomon . PN

type codes as well as network coding. The basic questions br@nd Xi(t) the expectation of(;(t).

then: (i) transmission policy: When the source is in contactDynamics of the expectationLet X (t) = Y_1* | X;(t). The
with a relay node, should it transmit a frame to the relayy? (ilynamics ofX; is given by

scheduling: If yes, which frame should a source transfer?

Each time the source meats a relay node, it chooses a frame

i for transmission with probability:’. In a simple scenario, Summing overi, we obtain X () = u(1 — X(t)) whose
the source has initially all the frame antlare fixed in time. It gg|ytion is

was shown in [1] that the transmission policy has a threshold .

structure: use all opportunities to spread frame till someet X(t) =1+ (z—1)e MouMdr  x(0) =2 2
o and then stop (this is similar to the “spray and wait” poli%herez
[2]). Due to convexity arguments it turns out that the optim
u® does not depend ai[1]. In this paper we assume a genera
arrival process of_frames: they nee_d not becom_e available Xl-(t) — w2 — 1)67)\]; w(r)dr 3)
for transmission simultaneously at time zero as in [1]. We

further considedynamicscheduling: the probabilities’ may Unless otherwise stated, we shall assume througheu.
change in time. We define various performance measures &fiformance measures and optimization.

solve various related optimization problems. Surprigintie Denote byD(7) the probability of a successful delivery of all
transmission does not follow anymore a threshold policy (i frames by timer. Define the random variabl®(7|9x) as

contrast with [1]). We extend these results to include alghe successful delivery probability conditioned &n where

codlng_, and TQ‘hOW that all performance measures IMPrOX€ is the natural filtration of the proce§é [4]. We have
when increasing the amount of redundancy. We then study

the optimal transmission under network coding.

Xi(t) = wi(t)A(1 - X (1) @)

is the total initial number of frames at the system at
me ¢t = 0. Thus, X, (t) is given by the solution of

K

H(l - exp(—)\Z))

i=1

E[Dk(r|Fx)] = E (4)

Il. THE MODEL

Consider a network that contain§ + 1 mobile nodes. ~ N ) .
Two nodes are able to communicate when they come withif{1€ré Zi = Jo Xi(s)ds. We shall consider the asymptotics

reciprocal radio range and communications are bidireationaSV becomes large yet keeping the total ratef contacts a
We assume that the duration of such contacts is sufficient@@nstant (which means that the contact rate between any two
exchange all frames: this let us consider nooeeting times individuals is given byx = A\/N). Using strong laws of large




numbers, we gelimy_. Z-(N) = E[Z] a.s. Observe that This gives

since eq. (4) is bounded, using the Dominated Convergence /7 —1 4+ Mo + e M2 B
Theorem, we obtain / Xy (t)dt = 2 + (1 — tg)(1 — e~ 2)

- 0 /T Xo(t)dt = e (M1 — tg) — 1 + e NTt2))
Py(r) = lim E[Dg(r|Fx,N)] = [[(1 - exp(-AE[Zi])) , CAMarE AT T €

N —o0 -
=t We compute the value ofr for which fOTXl(t)dt =

Definition 2.1: u is awork conservingpolicy if whenever .- . .
the source meets a node then it forwards it a frame, unless IfleX2 (t)dt. We denote by., the solution. We obtain (almost

energy constraint has already been attained. instantaneous with Maple 95)
We shall study the following optimization problems: 1 exp(€)
« P1.Find u that maximizes the probability of successful ~ teq = 5 |LambertW | ————————— | +¢
. e A 1 —2exp(—At2)
delivery till time 7.
o P2.Findu that minimizes the expected delivery time over —1 4 2e M2 4 2)\tge M2

and wheref :=

the work conserving policies.
Definition 2.2: u is uniformly optimalfor problem P1 if it Then we have the following

is optimal for prob_lem P1 for alt > 0. Theorem 3.3:()) Assume thatr < t.,. Then there is
Energy Constraints. Denote by&(t) the energy consumed K . licy that lize€ X1 (i —
by the whole network for transmitting and receiving a il @0 WOrk conserving policy tha equalizefy X (t)di =

during the time interva0, ¢]. It is proportional taX (£)— X (0)  Jo X2(t)dt. Thus there is no optimal work conserving optimal
since we assume that the file is transmitted only to mobilé P1. (i) Assume that = ¢.,. Consider the policyu’ that
that do not have the file, and thus the number of transmissiarensmits always frame 1 duringe [t1,t2), then transmits
of the file during[0, ¢] plus the number of mobiles that had it allways frame 2 during time € [to,7). Then this work
time zero equals to the number of mobiles that have it. Ao, lconserving policy achievey X, (t)dt = [, Xo(t)dt and is
€ > 0 be the energy spent to forward a frame during a contagf 5 optimal for P1. (jii) Assume now > f.,. Consider
(notice that it includes also the energy spent to receivdiline the work conserving policyr* that agrees Witl’qll/ (defined
at the receiver side). We thus hatter) = =(X(t) — X(0)).- i part i) till time te, and from that time onwards uses
In the following we will denoter as the maximum number of . -
copies that can be released due to energy constraint. up = uz = 0.5. Then again/; Xi(t)dt = [y Xa(t)dt and
Introduce the constrained probler@®1 and CP2 that are u" IS thus optimal for P1.
obtained from problems P1 and P2 by restricting to policies
for which the energy consumption till time is bounded by
some positive constant.

1 — 2e— Atz

<
Note that the same policy* is optimal for P1 for all
horizons long enough, i.e., whenevep t., asu* equalizes

1. OPTIMAL SCHEDULING Jo Xu(t)dt = [ Xo(t)dt for all values ofr > t.,, because
. . _ . u1 = ug = 0.5. Moreover, we have
Theorem 3.1:(An optimal equalizing solution) Fix 7 > 0. Theorem 3.4:The work conserving policy:* described at
Assume that there exists some poliri:)satisfyingZf{:1 ui = (i) in Thm. 3.3 is uniformly optimal for problem P2.
1 for all # and Jo Xi(t)dt is the same for ali's. Thenu is A Constructing an optimal work conserving policy
optimal for P1. We propose an algorithm that has the property that it gener-

Not always it will be possible to equalize the above mtegralates a policyu which is optimal not just for the given horizon

A policy u which is optimal among the work conservative. , v aiso for any horizon shorter than Yet optimality here

policies W.i” pe (_)btained by making them as equal as IOOSSik&eonly claimed with respect to work conserving policies.
in the majorization sense. Definitions:

(ZTheorZem) 3&;25; ?f(;,“%]a'_zrizsgshirZ?otrr‘]‘;"; ('”i) T« Zi(t) = [} ay(r)dr. We call Z(t) the cumulative
Lo K J s\hH) = contact intensity (CCI) of clasg.

P.(r,u). inten: . .
(Majorization and Schur-Concavity are defined in [5].) o I(t; A) := minjea(Z;,Z; > 0). This is the minimum
non zero CCI ovey in a setA at timet.

Example: The caseK = 2. Consider the case df = 2. Let

the system be empty at time 0, i.e.,= 0, and lett; = 0. o Let J(t, A) be the subset of elements df that achieve
Consider the policy that transmits always frame 1 dutirg the mlmmuml(t, A). '
[t1,t5], and from timet, onwards it transmits only frame 2. ¢ LetS(i, A) :=sup(t:i ¢ J(t, A)). _
Then » Definee; to be the policy that sends at tinteframe of
X(t) 0<t<ty type i with probability 1 and does not send frames of
Xi(t) = { X(ts) to<t<r other types.

o Recall thatt; < t; < ... < tx are the arrival times

where X () = 1 — exp(—A\t). Also, of frames1,..., K. Consider the Algorithm A in Table I.
Algorithm A seeks to equalize the less populated frames at
X = © 0<t<ty
PUTUXO) - X(ty) =e M —e M (<t <7 LLambertW below is known as the inverse function fafiw) = w exp(w)



TABLE |
ALGORITHM A

A3.2 Usep; = ﬁﬂ%:j er from time s(i, ;) till
8(’i7j - 1) = mln(S(]v {17 2., Z})7t2+1) If j=1
then end.

A3.3 If s(4,j — 1) < ti+1 then takej = min(j : j €
J(t,{1,...,4})) and go to step [A3.2].

each pointin time: it first increases the CCI of the latesvad

frame, trying to increase it to the minimum CCI which wa

attained over all the frames existing before the last oneesir

(step A3.2). If the minimum is reached (at some thresho
s), then it next increases the fraction of all frames curgentl

having minimum CCI, seeking now to equalize towards t

second smallest CClI, sharing equally the forwarding prob
bility among all such frames. The process is repeated umil t
next frame arrives: hence, the same procedure is applied o

the novel interval. Notice that, by construction, the aiton
will naturally achieve equalization of the CCls for large
enough. Moreover, it holds the following:

Theorem 3.5: [6] Fix somer. Letu* be the policy obtained
by Algorithm A when substituting there = co. Then
(i) u* is uniformly optimal for P2.
(ii) If in addition [ X'(t)dt are the same for afls, thenu*
is optimal for P1.

IV. BEYOND WORK CONSERVING POLICIES

We next show the limitation of work-conserving policies. t
The case K=2.We consider the example of Section IIl but “

with 7 < t.,. Consider the policyi(s) where0 = t1 < s <t
which transmits type-1 frames durifg, s), does not transmit

~ 0,3
=
Al Usep; = e; attimet € [t1,t2). Aoz
A2 Use pr = ez from time ¢z till s(1,2) = 0.1
min(S(2,{1,2}),t3). If s(1,2) < t3 then switch to
pt = 2(e1 + e2) till time t3. 0 o1 oz o0s o4
A3 Definetyx 1 = 7. Repeat the following foi = 3, ..., K: S
A3.1 Setj =i. Sets(i,j) = t; Fig. 1.  Success probability underFig. 2.  The evolution ofX ()

non work conserving policya(s) as a as a function oft under the best
function of s for A = 1,3,8,15; top work conserving policy for\ =
curve corresponds to largest value ofl,3,8,15. The curves are ordered
\; second top corresponds to secondccording toA with the top curve
largest\ etc. (this order changes onlycorresponding to the largestetc.
at s very close to 0.5).

§1ndt2 and compute the probability of successful delivery for

= 1,3,8 and 15. The corresponding optimal policie&s)
fye given by the thresholds= 0.242,0.242,0.265, 0.425. The
probability of successful delivery under the thresholdqes

(s) are depicted in Figure 1 as a functionsoivhich is varied
etween0 andts.

In all these examples, there is no optimal policy among

se that are work conserving. A work conserving policy
turns out to be optimal for alh < 0.9925.

Note that under any work conserving polig% Xo(t)dt <
7(1—X(t2)) (whereX (¢2) is the same for all work conserving
policies). Now, as\ increases to infinity,X (t2) and hence
Xi(t2) increase to one. Thug, X(t) tends to zero. We
conclude that the success delivery probability tends to,zer
uniformly under any work conserving policy.

Recall that Theorem 3.3 provided the globally optimal
policies fort., < 7 for K = 2. The next Theorem completes
the derivation of optimal policies fofl = 2 by considering
> T

Theorem 4.1: [6] For K = 2 with t., > 7, there is an
optimal non work-conserving threshold poliay*(s) whose

anything durings, t;) and then transmits type 2 frames aftegcture is given in the beginning of this subsection. The

to. It then holds

&@—{

where X (t) = 1 — exp(—At). Also,

X(t)
X(s)

0<t<s
s<t<rT

Xo(t)=q X(t—(t2—s)) - X(s) =
e~ S _ o= A(t—(t2—s)) o <t<rT
This gives

pa 1 —As
| xa = =5 e

0

T —As
/ Xo(t)dt = e . AT — ts) — 1+ e A1)
0

optimal threshold is given by = + log (1 —e—A(T—tz)). Any

other policy that differs from the above on a set of positive
measure is not optimal.

A. Time changes and policy improvement

Lemma 4.1:Let p < 1 be some positive constant. For
any multi-policy u = {ui(t),...,u,(t)} satisfying u
Sor ui(t) < p for all ¢, define the policyv = {vq,...,v,}
wherev; = wu;(t/p)/p or equivalently,u; = pv;(tp), i =
1,...,n. Define by X; the state trajectories under, and let
X, be the state trajectories under Then X (t) = X (tp).
The controlv in the Lemma above is said to be accelerated
version ofu from time zero with an accelerating factor bfp.

Example 4.1:Using the above dynamics, we can illustratén acceleratiorv of u from a given timet’ is defined similarly
the improvement that non work conserving policies can bringsv;(t) = w;(¢) for t < ¢ andv;(t) = w;(t' + (¢t —¢')/p)/p

We tookT = 1, t; = 0, to = 0.8. We vary s between0

otherwise, for ali =1, ..., n.



TABLE Il . : .
ALGORITHM B Algorithm A can be used to generate the optimal policy

components;(t), i =1,..., K.

General policies Any policy u that is not of the form as
described by (i)-(ii) in Theorem 4.2 can be strictly imprdve
by using Lemma 4.2. Thus the structure of the optimal pdlicie
is the same, except that (iii) of Theorem 4.2 need not to hold.

Bl Usep: = uter attimet € [t1,t2).
B2 Usep: = uten from timets. till min(S(2, {1, 2}), t3). If
5(2,{1,2}) < ts then switch top; = 3 (e1 + e)us il

time ts3.
B3 Definetx 1 = 7. Repeat the following foi = 3, ..., K: VI. ADDING FIXED AMOUNT OF REDUNDANCY
B3.1 Setj =i. Sets(i,j) = t; We now consider adding forward error correction: we &Hd
B3.2 Usep: = %ﬂ > k—j erue from time s(i, 7) il redundant frames and consider the new file that now contains
s(i,j—1) := min(S(j, {1,2,...,1}), tip1). f j =1 K + H frames. Under an erasure coding model, we assume
then end. that receivingK frames out of the/l + H sent ones permits

B3.3 If s(i,7 — 1) < ti4+1 then takej = min(j : j €

J( (1. ..})) and go to step [B3.2] successful decoding of the entire file at the receiver.

Let S, , be a binomially distributed r.v. with parameters
andp, i.e., P(S,, =m) = B(p,n,m) := (")pm(l —p)rm

We now introduce the following policy improvement pro-The probability of successful delivery of the file by tines
cedure. thus

Definition 4.1: Consider some policya. and letu := K+H
>0, u;(t). Assume that < p over some0 < p < 1 for Py(r,K,H) = Y B(Dy(7),K + H,j),
all t in some intervalS = [a,b] and that [, u(t)dt > 0 for =K
somec > b. Let w be the policy obtained from by where D;(1) = 1 — exp(—A f; X;(s)ds) is the probability
(i) accelerating it at time by a factor of 1, that framei is successfully received by the deadline.

(ii) from time d := a + p(b — a) till ime ¢ — (1 —p)(b —a), e assume below that the source has fraraeailable at time
usew(t) = u(t +b—d). Then usew(t) = 0 till time c. t; wherei = 1,..., K + H. In particular,#; may correspond
Let X (¢) be the state process underand letX (¢) be the to the arrival time of the original frames= 1, ..., K at the
state process under. Then source. For the redundant frames,may correspond either

Lemma 4.2:Consider the above policy improvement©f to (i) the time at which the redundant frames are created by
by w. Then (a)X;(t) > X;(t) for all 0 <t < ¢, (b) X;(c) = the source, or to (i) the moments at which they arrive at the

X,(c) for all 4, (c) [ X (t)dt < [ X;(t)dt. source in the case that the coding is done at a previous stage.
¢ ¢ Main Result
B. Optimal policies fork > 2. Let Z; = [, Xi(v)dv, wherei =1,2,..., K + H.
Theorem 4.2:Let K > 2. Then an optimal policy exists ~Theorem 6.1:(i) Assume that there exists some poliay
with the following structure: such thaty 7 y,(t) = 1 for all t, and such tha¥; is the

« (i) There are thresholdsy; € [ti,ti41], @ = 1,..,K. Sameforalli =1,.., K+ H underu. Thenu is optimal for

During the intervalgs;, t;11) no frames are transmitted.P__Z- ) ] ) )
« (i) Algorithm B to decide what frame is transmitted afii) Algorithm A, with K+ 1 replacingK’, produces a policy
the remaining times. which is optimal for P2.

« (iii) After time ¢ it is optimal to always transmit a frame. Remark 6.1:If the source is the one that creates the redun-
An optimal policyu satisfiesu(t) = 1 for all ¢t > t (it dant framgs, then we assume that it creat(_es them after
may differ from that only up to a set of measure Zero)_However, it could use less than all th€ or|g|na! frames

to create some of the redundant frames and in that case,
V. THE CONSTRAINED PROBLEM redundant frames can be available earlier. E.g., shortidy &f
it could create the xor of frame 1 and 2. We did not consider

Let u be any policy that achieves the constraiit) = < his coding policy and such option will be explored in the

as defined in Section Il. We make the following observatiorlalonowing sections

The constraint involves onlyX (¢). It thus depends on the In the same way, the other results that we had for the case
individual X;(¢)'s only through their sum; the sumX (), of no redundancy can be obtained here as well (those for P1,
in turn, depends on the policies’s only through their sum cp1 ang cp2).
U= Zfil ;.

Work conserving policies. Any policy which is not a VII. RATELESS CODES
threshold one can be strictly improved as descrjped in Lemmape want to quantify the gains brought by rateless coding
4.2. Consider the case of work conserving policies. Then th& our problem. In the reminder, information frames are the

optimgl policy is of a}threshold type [7h = 1 till some time  r frames received at the source @at < to < --- < tx.
s and is then zeros is the solution ofX (s) = = + z, i.e. The encoding frames (also called coded frames) are linear
1 | l—z—=z combinations of some information frames, and will be créate
TN\ T ) according to the chosen coding scheme.



TABLE Il
ALGORITHM C

andPl_,k_,l = HlT;lo (1 — qk%)’ Dk_’i(T) = exp(—Ak)Ai—!;“, and
1
4+ —

1
AU AU

Let us briefly compare the successful delivery probabditie
for the different coding scheme€oding with rateless codes
after tx allows to need an equalization of th& only for
i1 =1,...,K — 1, i.e., for the information frames but not

As in the previous section, we assume that redundant frani@é the coded frames, unlike the scheme with fixed amount
are created only aftery, i.e., when all information frames are©f redundancy. Coding beforgx avoids the need for any
available. The case when coding is started before recealingPolicy u for each frame in order to equalize ttig. This is
information frames is postponed to the next sectibar a due to the fact that, when transmitting a sm_gle coded frame,
discussion on the different rateless codes for both cakes, f€twork coding allows to propagate an equivalent amount of
reader is refered to [6]. In this section we provide the asialy information of each information frame, thereby circumvegt
of the optimal control with random linear network coding.[8]th® coupon collector problem that would emerge with single
Note that, in our case, the coding is performed only by tH&Petition of frar_nes. Algorithm A addresses this problem by
source since the relay nodes cannot store more than one.fra#dving to equalize thez;. Hence, even though all the frames
For each generated encoding frame, the coefficients arechodver E(k;) do not reach the destination, it is sufficient to
uniformly at random for each information frame, in the finitéeceive more frames over(k;), j > i, to recover the file.
field of orderg, F,. The decoding of thél' information frames IX. CONCLUSIONS

is possible at the destination if and only if the matrix maéle o In this paper we addressed the problem of optimal trans-

the headers of rgc_gwed framTes has raﬁ.k mission policies in two hops DTN networks under memory
Recall the definitionz; = fq Xi(v)dv, i=1,.... K =1 54 energy constraints. We tackled the fundamental scimedul
Theorem 7.1:Let us consider the above rateless codingroplem that arises when several frames that compose tre sam
scheme for coding aftefr. _ file are available at the source at different time instante T
() Assume that there exists some poliay such that yropjem is then how to optimally schedule and control the
S E M wi(t) = 1 for all ¢, and such thatZ; is the same for forwarding of such frames in order to maximize the delivery
all i =1,..., K — 1 underu. Thenu is optimal for P2. (ii) probability of the entire file to the destination. We solvadt
Algorithm C produces a policy which is optimal for P2. problem both for work conserving and non work conserving
policies, deriving in particular the structure of the geater
optimal forwarding control that applies at the source node.
med Furthermore, we extended the theory to the case of fixed
rate systematic erasure codes and network coding. Our model
includes both the case when coding is performed after all the
mes are available at the source, and also the importast ca
ff network coding, that allows for dynamic runtime coding of
rames as soon as they become available at the source.

Ag =X [exp(—)\utK) (T —tg — exp(—Aur)

Cl to C3 Alto A3
C4 Fromt = tx tot = 7, use all transmission opportunities
to send a random linear combination of information framgs,

with coefficients picked uniformly at random ify.

VIIl. RATELESS CODES FOR CODING BEFOREx

We now consider the case where after receiving fra
before receiving frame + 1 at the source, we allow to code
over the available information frames and to send resulti
encoding frames between andt;, ;. We present how to use
network codes in such a setting. The objective is the sufides
delivery of the entire file (the< information frames) by time

72. Information frames are not sent anymore, only encoding
frames are sent instead. At each transmission opportuarity, (1
encoding frame is generated and sent with probability.
Theorem 8.1:(i) Given any forwarding policyu(t), it is 2]
optimal, for maximizingPs(7), to send coded frames resulting
from random linear combinations of all the information freen
available at the time of the transmission opportunity.
(i) For a constant policy. > 0, the probability of successful
delivery of the entire file is lower-bounded by

Prn=Y Y Y

(3]

k; J ]

Z Hf(li,ki) ;

7=0 k1 >--->/€j lo=K—k lJ:K_Zi;S l; 1=0 [6]
th £ k) P, 1Dy (1), ifl<k [
wi = _ .
Y P ki (1 — an:lo Dk,m(r)) , ifl=k
[8]

2We do not have constraints on making available at the déistima part
of the K frames in case the entire file cannot be delivered.
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