
HAL Id: hal-00550707
https://hal.science/hal-00550707

Submitted on 29 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning a Representation of a Believable Virtual
Character’s Environment with an Imitation Algorithm

Fabien Tencé, Cédric Buche, Pierre de Loor, Olivier Marc Marc

To cite this version:
Fabien Tencé, Cédric Buche, Pierre de Loor, Olivier Marc Marc. Learning a Representation of a
Believable Virtual Character’s Environment with an Imitation Algorithm. GAMEON-ARABIA’10,
Dec 2010, Egypt. pp.141-145. �hal-00550707�

https://hal.science/hal-00550707
https://hal.archives-ouvertes.fr

LEARNING A REPRESENTATION OF A BELIEVABLE VIRTUAL

CHARACTER’S ENVIRONMENT WITH AN IMITATION ALGORITHM

Fabien Tencé∗,∗∗, Cédric Buche∗, Pierre De Loor∗ and Olivier Marc∗∗
∗ UEB – ENIB – LISyC

∗∗ Virtualys
Brest – France

{tence,buche,deloor}@enib.fr, olivier.marc@virtualys.com

KEYWORDS

Autonomy, believability, behaviours, imitation learning,
topology.

ABSTRACT

In video games, virtual characters’ decision systems of-
ten use a simplified representation of the world. To in-
crease both their autonomy and believability we want
those characters to be able to learn this representation
from human players. We propose to use a model called
growing neural gas to learn by imitation the topology
of the environment. The implementation of the model,
the modifications and the parameters we used are de-
tailed. Then, the quality of the learned representations
and their evolution during the learning are studied us-
ing different measures. Improvements for the growing
neural gas to give more information to the character’s
model are given in the conclusion.

INTRODUCTION

One of the major goals of video games is to make
the user feel like he/she really is in the game environ-
ment. To achieve this, it is possible to use complex
devices to increase immersion like surround sound sys-
tems and stereoscopic screens. Another way is to make
rich environments to increase presence. The latter can
be done by, among other things, having characters with
believable behaviours (Bates 1994). To generate those
behaviours, models from artificial intelligence are used
in the game industry. For those models to perceive the
environment, game designers have to create a simpli-
fied representation of the environment, which is often
defined a priori.

Defining by hand every new environment’s represen-
tation is a time-consuming work. We propose that our
characters will be able to learn those representations,
for them to be autonomous. This learning will be un-
supervised and online: the character will learn while it
plays without the judgement of a human. To be able
to achieve the best believability, we want the computer-
controlled characters to do like human-controlled char-

acters. Indeed, there are no better example of what
a believable behaviour is than a human behaviour it-
self. It is this kind of learning, by example (Del Bimbo
A., Vicario E. 1995) or by imitation (Gorman and
Humphrys 2007; Bauckhage et al. 2007) we want to use
to learn a representation of the environment.

This article first presents the growing neural gas

model which is used to learn the representation of the
environment. Then the characteristics and qualities
of the learned representations are assessed by different
measures. To conclude, some enhancements are pro-
posed for the growing neural gas to give more informa-
tion to the character’s model.

LEARNING A REPRESENTATION OF THE

ENVIRONMENT

Models which control virtual characters use different
types of representation to find paths to go from one
point to another. Classic approaches use a graph: nodes
represent accessible places and edges represent paths be-
tween each place. Actual solutions tend to use a mesh,
with different degrees of complexity, to represent the
zones where the character can go. The problem with
the latter solutions is that they use algorithms to find
the optimal path between two points and not the most
believable path. With graphs, it is possible to have more
control on the paths used by the character.

Instead of designing graphs a priori, we want them to
be learned by imitation of a human player. This work
as been done in (Thurau et al. 2004) where nodes and a
potential field are learned from humans playing a video
game. The character is then using this representation
to move in the game environment, following the field
defined at each node. To learn the position of the nodes,
Thurau use an algorithm called Growing Neural Gas
(GNG).

The GNG (Fritzke 1995) is a graph model which is
capable of incremental learning. Each node has a po-
sition (x,y,z) in the environment and has a cumulated
error which measures how well the node represents its

surroundings. Each edge links two nodes and has an age
which gives the time since it was last activated. This al-
gorithm needs to be omniscient, because the position of
the imitated player, the demonstrator, is to be known
at any time.

The principle of the GNG is to modify its graph,
adding or removing nodes and edges and changing the
nodes’ position for each given demonstrator’s position.
The algorithm does the following: for each input the
closest and the second closest nodes are picked. An edge
is created between those nodes and the closest node’s
error is increased. Then the closest node and its neigh-
bours are attracted toward the input. The ages of the
closest node’s edges are increased by 1 and too old edges
are deleted. Each λ input a node is inserted between the
node with the maximum error and its neighbours hav-
ing the maximum error. At the end of an iteration, each
node’s error is decreased by a small amount.

The version we use is a bit modified to give better
results for our needs as shown by figure 1. Instead
of inserting a new node each λ input, a node is in-
serted when a node’s error is superior to a parameter
MAX ERROR. As each node’s error is reduced by
a small amount ERROR DECAY for each input, the
modified GNG algorithm does not need a stopping cri-
terion. Indeed, if there are many nodes which represent
well the environment, the error added for the input will
be small and for a set of inputs, the total added error
will be distributed among several nodes. The decay of
the error will avoid new nodes to be added to the GNG
resulting in a stable state. However if the player which
serves as a example goes to a place in the environment
he has never gone before, the added error will be enough
to counter the decay of the error, resulting in new nodes
to be created.

This algorithm has 5 parameters which influence the
density of nodes, the quality of the representation, the
adaptivity and the time to reach a stable state:

• The attraction applied to first toward (x, y, z)
• The attraction applied to first’s neighbours toward
(x, y, z)
• The nodes’ error decay, ERROR DECAY

• The nodes’ maximum error, MAX ERROR

• The edges’ maximum age, MAX AGE

Nodes can be used as a representation for the char-
acter’s decision system. However, edges only represent
proximity and not paths between nodes: nodes can be
close but there may be a obstacle between them, so edges
cannot be used by the model.

nodes ← {}
edges ← {}
while demonstrator plays do
(x,y,z) ← demonstrator’s position
if |nodes| = 0 or 1 then

nodes ← nodes ∪ {(x,y,z,error=0)}
end if

if |nodes| = 2 then

edges ← {(nodes,age=0)}
end if

first ← closest((x,y,z),nodes)
second ← secondClosest((x,y,z),nodes)
edge ← edges ∪ {{first,second},age=0)}

first.error+=||(x,y,z)-first||
Attract first toward (x,y,z)
∀ edge ∈ first’s edges, edge.age++
Delete edges older than MAX AGE
Attract neighbours(first) toward (x,y,z)
∀ node ∈ nodes, node.error-=ERROR DECAY

if first.error > MAX ERROR then

maxErrNei ← maxErrorNeighbour(first)
newNode ← between(first,maxErrNei)
first.error/=2, maxErrNei.error/=2
newError ← first.error+maxErrNei.error
nodes ← nodes ∪ {(newNode,newError)}

end if

end while

Figure 1: Algorithm used to learn the topology of the
environment represented by a growing neural gas.

EVALUATION

We used the game Unreal Tournament 2004 because
it features quite complex environments. Human players
can also control avatars in the game so the GNG can
learn for them. We have to choose the parameters in
a empirical way because we cannot find them analyt-
ically nor use an optimization algorithm. Indeed, our
goal is believability and it can be only measured with
human judges. This kind of evaluation is not suitable
for optimization. The best parameters we found are:

• Attraction force applied to first is 0.03 times the
vector (x, y, z)− first

• Attraction force applied to first’s neighbours is
0.0006 times the vector (x, y, z)− second

• Nodes’ error decay is 10
• Nodes’ maximum error is 20000
• Edges’ maximum age is 75

To compare with other environments, the position in
Unreal Tournament is given in Unreal units (1 meter is
roughly equal to 50 Unreal units) and all the parameters
are based on a demonstrator’s position in Unreal units.

With those parameters we trained 2 GNG on 2 differ-
ent maps. The first one is a simple map, called Training
Day. It is small and flat which is interesting to visualize
the data in 2 dimensions. The second one, called Mixer,
is much bigger and complex with stairs, elevators and
slopes which is interesting to see if the GNG behave well
in 3 dimensions. The results is given in figure 2 for the
simple map and in figure 3 for the complex map.

-2500

-2000

-1500

-1000

-500

0

500

1000 1500 2000 2500 3000

p
o
s
it
io

n
 (

y
)

GNG nodes
GNG edges

position (x)

Figure 2: Result of a growing neural gas learned from a
player for a simple map, top view.

0

1000

2000

3000

4000 -1000
0

1000
2000

3000

-600
-400
-200

0
200

GNG edges

x

y

GNG nodes

z

Figure 3: Result of a growing neural gas learned from a
player for a complex map.

To study the quality of the learned topology, we first
choose to compare the GNG’s nodes with the navigation
point placed manually by the map creators. Of course,
we do not want the GNG to fit exactly those points but
it gives a first evaluation of the learned representation.
In our case, we have those navigation points but our goal
is that they are not longer necessary for a character to
move in a new environment. Figure 4 shows both the
navigation points and the GNG’s nodes. As we can see,
the two representations look alike which indicates that
the model is very effective in learning the shape of the
map. However, there are zones where the GNG’s nodes

are more concentrated than the navigation points and
other where they are less concentrated. We cannot tell
now if it is a good behaviour or not as we should evaluate
an agent using this representation to see if it navigate
well. Even in the less concentrated zones, the nodes are
always close enough to be seen from one to another, so
it should not be a problem.

-2500

-2000

-1500

-1000

-500

0

500

1000 1500 2000 2500 3000

GNG Nodes
Navigation points

p
o
s
it

io
n
 (

y
)

position (x)

Figure 4: Comparison of nodes learned by the growing
neural gas with the navigation points placed manually
by the game developers.

As the attraction applied to the nodes for each input
is constant, the GNG is not converging to a fixed state.
This is a wanted behaviour, allowing the GNG to adapt
to a variation in the use of the map: if the demonstrator
suddenly uses a part of the map which he/she has not
explored yet, the GNG will be able to learn this new
part even if the GNG has been learning for a long time.
We do want, however, the GNG to learn quickly the
topology and to keep a good representation of the world
over time.

To study the time evolution of the GNG’s character-
istics, we introduce a distance measure: the sum of the
distance between each navigation point and its closest
node. We also study the evolution of the number of
nodes because we do not want the GNG to grow indefi-
nitely. Figure 5 shows this two measures for the simple
and the complex maps. For the simple map, the GNG
reached its maximum number of node and minimum er-
ror in approximatively 5 minutes of real-time simulation.
For the complex map, it takes more time, about 25 min-
utes, but results at 12 minutes are quite good. Those
results show that it is possible to have an character that
learns during the play.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

C
u
m

u
la

te
d
 d

is
ta

n
c
e
 t

o
 n

a
v
ig

a
ti
o
n
 p

o
in

ts

time (s)

N
u
m

b
e
r

o
f

n
o
d
e
s

Distance to navigation points (simple map)
Number of nodes (simple map)

Distance to navigation points (complex map)
Number of nodes (complex map)

Figure 5: Time evolution of the cumulated distance
to navigation points defined manually and the growing
neural gas’ nodes and the growing neural gas’ number
of nodes.

The GNG can handle inputs from multiple demon-
strators. Figure 6 shows the distance and number of
node for a GNG trained on 1 demonstrator and for a
GNG trained on 4 demonstrators. The learning with 4
demonstrators is, as expected, faster: about 3 minutes
for the distance to stabilize instead of 5 minutes for 1
demonstrator. It is interesting to note that the learn-
ing is not 4 times faster but the gain is still important.
Learning with multiple demonstrators seems to give a
GNG with less variation during the learning. The gain
have however a small drawback: the number of nodes is
a little superior for multiple demonstrators. It may be
due to the fact that demonstrators are scattered in the
environment instead of a unique demonstrator following
a path.

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000
0

5

10

15

20

25

C
u
m
u
la
te
d
 d
is
ta
n
c
e
 t
o
 n
a
v
ig
a
ti
o
n
 p
o
in
ts Distance to navigation points (1 professor)

Number of nodes (1 professor)
Distance to navigation points (4 professors)

Number of nodes (4 professors)

N
u
m
b
e
r
o
f
n
o
d
e
s

time (s)

Figure 6: Time evolution of the cumulated distance
to navigation points defined manually and the growing
neural gas’ nodes and the growing neural gas’ number
of nodes.

It is interesting to compare two learned GNG on the
same demonstrator in the same environment and con-
ditions but for 2 different simulations. The goal is to
see if the two representations fit. Figure 7 shows that
the resulting GNG are a bit different. The first GNG
has 24 nodes and has a cumulated distance to naviga-
tion points of approximatively 3300 Unreal units. The
second GNG has 25 nodes and has a cumulated distance
of approximatively 3150 Unreal units. This proves that
the GNG does not converge toward a unique solution
but those solutions are quite similar in shape, number
of nodes and distance to navigation points.

-2500

-2000

-1500

-1000

-500

0

500

1000 1500 2000 2500 3000

p
o

s
it
io

n
 (

y
)

position (x)

Second learning
First learning

Figure 7: Comparison of two growing neural gas which
learned on the same environment, after a very long train-
ing time (more than 10 hours).

The last evaluation assesses the impact of the fre-
quency at which the demonstrator’s position is given to
the GNG. For the previous experiments, the frequency
was set to 10Hz. Figure 8 shows the differences for 1,
10 and 100 Hz. Results indicate that 1Hz give compa-
rable results to 10Hz but it takes much longer to give a
good representation. At 100Hz, the GNG reaches a sta-
ble state as fast as at 10Hz but the resulting GNG has
much more nodes resulting in a lower error. Using a high
frequency is therefore not useful because the number of
nodes can be increased changing the MAX ERROR

and ERROR DECAY parameters without using com-
puting power.

IMPROVEMENTS

The main drawback of the GNG is that the only in-
formation extracted is the position of the nodes. The
biggest difference between the GNG we implemented
and navigation graphs coded manually is that the latter

Frequency Time Number of nodes Error
1Hz 1h30 22 3800 UU
10Hz 5min 24 3300 UU
100Hz 5min 39 2300 UU

Figure 8: Comparison of growing neural gas’ character-
istics learned at different frequencies on a simple map
(Training Day). Time, number or nodes and error are
given when the growing neural gas reach a stable state.
UU stands for Unreal units.

give also information on the accessibility of a node from
another. Edges in a GNG gives only an information on
proximity but there can be a obstacle between two nodes
joined by an edge. An idea could be to store the previ-
ously activated node and create an edge to the current
activated node. Like the GNG edges we should make
the edge age and disappear if they are too old. Whether
those edges should replace the GNG edges could be an
interesting experiment to set up.

To share more information with the behaviour model,
we can learn which kind of action is done when the char-
acter is near a node. The character, knowing its nearest
node, can choose the best action to do. This process
is quite similar to the process of tagging: designers of-
ten annotate navigation points with information such as
“jump spot” or “covering”.

Another interesting information to learn is if the
demonstrator walk exactly at the node’s position or if
there is a big variation in the distance to the node. The
nodes’ error give a bit of information about this vari-
ation, however with the error decay, this information
is lost over time. The learning is problematic because
each winner node moves so it does not represent the
same area. It could be possible to update the influence
radius of winner and its neighbours according to their
current radius and the distance to the example. The
exact formula is yet to be found.

CONCLUSION

Virtual environments, like for example video games,
need believable characters for users to feel in the en-
vironment. To improve the characters’ behaviour, we
decided to use a growing neural gas to learn by imita-
tion the topology of the environment. We believe that
it will make the agent use the environment in a more
human-like fashion. It also removes the burden from
the maps designers of placing manually the navigation
graph.

Our first evaluations tend to show that the growing
neural gas gives a good representation of the environ-
ment. The learning is fast, with one demonstrator it

takes up to 25 minutes to learn a representation of the
whole environment. As it is possible to learn with sev-
eral demonstrators, learning can be done very quickly.
The character can thus adapt quickly to changes in the
use of the environment and evolve while playing. Al-
though different runs gives different results, the repre-
sentations are very similar.

With this ability to learn the environment, the agent
can be placed in any simulation without a priori knowl-
edge and still be able to move by imitating human users.
As the learning is quite fast, users could perceive the
evolution in the way the agent acts and thus believing
it can be human. The growing neural gas gives auton-
omy and believability to the model.

The next step is to put more information in the grow-
ing neural gas, learning which node is accessible from
each node and finding the best action at each node. To
see if this work really gives results we will have to test
the difference in the behaviour between an agent using
the navigation points and an agent using the growing
neural gas.

REFERENCES

Bates J 1994 The Role of Emotion in Believable Agents
Communications of the ACM 37(7), 122–125.

Bauckhage C, Gorman B, Thurau C and Humphrys
M 2007 Learning Human Behavior from Analyzing
Activities in Virtual Environments MMI-Interaktiv

12, 3–17.

Del Bimbo A., Vicario E. 1995 Specification by-Example

of Virtual Agents Behavior IEEE Transactions on
Visualization and Computer Graphics, Vol. 1, n. 4.

Fritzke B 1995 A growing neural gas network learns
topologies in ‘Advances in Neural Information Pro-
cessing Systems 7’ MIT Press pp. 625–632.

Gorman B and Humphrys M 2007 Imitative learning of
combat behaviours in first-person computer games
in ‘Proceedings of CGAMES 2007, the 11th Inter-
national Conference on Computer Games: AI, An-
imation, Mobile, Educational & Serious Games’.

Thurau C, Bauckhage C and Sagerer G 2004 Learn-
ing human-like movement behavior for computer
games in ‘Proceedings of the 8th International Con-
ference on the Simulation of Adaptive Behavior
(SAB’04)’.

