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In this paper, we propose a Nonlinear Dickey-Fuller (NDF) test for unit root against LSTAR (1) model with time as the transition variable. The asymptotic distribution of the test is analytically derived while the small sample distributions are investigated by Monte Carlo experiment. The results have shown that there is a serious size distortion for the NDF test under GARCH errors which lead to an over-rejection of the unit root null hypothesis. Wavelet technique has been used to improve the size property and an empirical example is used to compare our test with the traditional Dickey-Fuller test.

I. Introduction

Empirical studies show that many economic variables display nonlinear features where the economic behaviors change when certain variables lie in different regions.

To capture such features, several nonlinear models have been introduced. Among them, STAR models allow nonlinear structures between the data regimes to be described with a smooth regime transition function. They are of particular interest in 2 macroeconomics which always contains mass of economic agents, where even if the decisions are made discretely, the aggregated behaviors will show smooth regime changes (see [START_REF] Teräsvirta | Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models[END_REF]. However, before applying nonlinear models such as STAR models, testing linearity against nonlinearity is essential, and unit root tests against nonlinear model need further cautious consideration. In STAR models, [START_REF] Eklund | Testing the Unit Root Hypothesis against the Logistic Smooth Transition Autoregressive Model[END_REF] proposed unit root tests against LSTAR with transition variables being the lagged dependent variables. Later, He and Sandberg (2006) proposed the nonlinear Dickey-Fuller ρ and t test statistics with time as the transition variable. In this paper we will first derive Nonlinear Dickey-Fuller F test of unit root against LSTAR models with time as the transition variable.

We next investigate the size property of the Nonlinear Dickey-Fuller F test when the error in the DGP shows conditional heteroskedasticity as a GARCH(1,1) model. As ARCH/GARCH models are always employed to model the conditional variance without paying enough attention to the specification of the conditional mean, and that the misspecification may lead to further inconsistent estimates, specification tests including unit root test under ARCH/GARCH error has attracted much attention. Peter and Veloce (1988), [START_REF] Kim | Unit Root Tests with Conditional Heteroskedasticity[END_REF], [START_REF] Cook | The Robustness of Modified Unit Root Tests in the Presence of GARCH[END_REF] showed that Dickey-Fuller test is generally not robust in the near integrated situation in GARCH error, especially when the GARCH process exhibits a high degree of volatility. Therefore, to improve the test property, numerous studies pay attention to deriving unit root test based on Maximum Likelihood Estimation (MLE), which jointly estimates the parameters of unit root model and the GARCH error model. (see Seo,1999;[START_REF] Ling | Limiting Distributions of Maximum Likelihood Estimators for Unstable Autoregressive Moving-Average Time Series with General Autoregressive Heteroscedastic Errors[END_REF].

However, the MLE is not a perfect solution to the GARCH error problem. We apply the wavelet method, which has been widely used after its theoretic foundation in 1980s (see [START_REF] Grossmann | Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shap[END_REF][START_REF] Grossmann | Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shap[END_REF][START_REF] Mallat | A Theory for Multiresolution Signal Decomposition: the Waveletrepresentation[END_REF]. In economics, [START_REF] Schleicher | An Introduction to Wavelets for Economists[END_REF] mentioned that since economic behaviors take place at different frequencies, the wavelet method can catch landscape characteristics in addition to the microscopic detail in economic areas. In this paper, we use the wavelet method to count off the finest local behavior of the series in the form of conditional heteroskedasticity in GARCH errors, whose information is caught by the highest scale in wavelet coefficients. The same logic can be found in [START_REF] Schleicher | An Introduction to Wavelets for Economists[END_REF], who pointed out that lower scales hold most of the energy of the unit root process and that non-lasting disturbances are captured by the higher scale coefficients. This logic is also reflected in [START_REF] Fan | Unit Root and Cointegration Tests with Wavelets[END_REF], who stated that the spectrum of a unit root process is infinite at frequency 0. 
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Here the transition variable is defined as time t , which implies that the equilibrium regimes switch as the time evolves. Parameter γ determines the speed of transition from one extreme regime to another at time c : the larger the γ is, the steeper the transition function will be. Meanwhile, set c fixed, as γ → ∞ , the function turns into a step function of t and the model becomes a two regimes threshold autoregressive model (TAR). When setting t and c fixed, the situation when 0 γ → leads the resulting model to be linear. Therefore, the linear hypothesis is equivalent to the hypothesis: 0 γ = . Our goal is to test the null hypothesis of a random walk without drift against the nonlinear LSTAR (1) model.

The null hypothesis can be expressed as the following parameter restrictions:
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Since γ =0 will lead to an identification problem under the null hypotheses (see [START_REF] Teräsvirta | Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models[END_REF], we follow the approach used by Luukkonen, Saikkonen and As the first-order expansion will lead to low power if the transition takes place only in the drift, we show also the third-order Taylor expansion which is more robust:
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Substituting equations ( 2) and (3) into equations (1), we obtain the following auxiliary regressions:
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The unit root test in the nonlinear time series model is a joint test of both unit root and linearity. The corresponding auxiliary null hypotheses are:
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Following the above auxiliary regressions and null hypothesis, we now derive the unit root test statistics and investigate their distribution properties. Here we assume that the error terms in equations (1) are independent identically distributed ( . . . i i d ). In the distribution form, the ( )

. W represents a standard Brownian motion on [0, 1]. Assumption 1: Let { } t u is . . . i i d with 2 ( ) 0, ( ) , t t u E u Var u σ = = and 4 ( ) t E u < ∞ .
Theorem2: Assume that the following models
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Where the parameters are defined as follows: 
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Where:
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To find out the finite-sample distributions of the test, we generate data from the model Table 2 shows that for small sample 50, the power depends mainly on the proportions of the nonlinear parts; the higher the nonlinear part, the better power is. With sample size increases to 250 and 500, the power of the test reaches 1.

We now show an empirical example to compare our Nonlinear Dickey-Fuller F test to the traditional Dickey-Fuller F test. For the unemployment rates in 10 OECD counties 1 from 1955 to 1999 and by using the Dickey-Fuller F test, the unit root reject none of them, while using the Nonlinear F test, the unit root was rejected in 3 series:

Germany, Japan, France. We use the data from France for more detailed procedure.

1 Austria, Denmark, Finland, France, Germany, Japan, Netherland, Norway, Sweden, Belgium 
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The estimation of c is 20.6567, which shows data that the break occurs around year 1975. The economical explanation for this break may related to the OPEC energy price rising in 1975 when the oil price raised 10% , which brought a huge shock to the economic field, including the job market. Therefore there are two different states of the unemployment rates: before and after the oil price change. Moreover, the sum of residual squares for LSTAR model is 9.53, which is the lowest of the three models.

IV. Size property under GARCH (1, 1) error

We turn here to the question of how the size property will be affected when GARCH errors appear. The GARCH (1, 1) is the most frequently used due to its simplicity and robustness. Thus we only concentrate the test property when the error of the DGP exhibits GARCH (1, 1). The unit root process with GARCH (1,1) error is as follows: 
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For the unit root based on the LSE in the linear case, [START_REF] Cook | The Robustness of Modified Unit Root Tests in the Presence of GARCH[END_REF] observed that size distortions of GARCH error are mainly caused by the volatility parameter α . Hence, our experiment design will include both the cases where α β ≥ and α β < in the following situations: medium and high GARCH effect: α β + =0.75; α β + =0.95. To judge the reasonability of the size property at 5% nominal size, an unbiased estimated should lay between the approximate 95% confidence intervals of the actual size 5%.

With replication number equal to 10000, the approximate 95% confidence interval for the estimated size is: 0.05(1 0.05) 0.05 1.96 (0.0457, 0.0543) 10000 Table 3 shows that when α β + = 0.75, there exists obvious size distortion which is more serious as α increases and less serious in larger samples. This can be interpreted as follows: when GARCH effect is not high, the size distortion is mainly due to the volatility parameterα and it will be milder when the sample size grows. For the situation of high GARCH effect where α β + = 0.95, the size is over biased as well and we will present it later together with the wavelet improved size in Table 6.
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V. Wavelet improvement of size distortion under GARCH error

In this section we use the wavelet method to solve the problem of over-rejection under GARCH error. We can see that as the sample size increase, the critical values will approach the one we obtain from Table 1, which also implies that the distribution will not be influenced asymptotically. The size of the test using the wavelet scale coefficient is still unbiased under ~. . .(0,1) u n i d .We are more interested to see the size property of the wavelet improved test when the original DGP suffered from GARCH (1, 1) error, when α β + = 0.75 and 0.95, see Table 5 below. Table 6 shows over-rejection problem of the size is obviously improved, especially when the sample size is small, and where the wavelet improved size is almost unbiased and lies between the 95% confidence interval. However, when the sample size increases, there is still some size distortion, which may due to the aggregate influence of the GARCH effect in large sample sizes for the near integrated GARCH error when α β + =0.95.

When comparing

VI. Conclusions

In this paper we first propose a nonlinear Dickey-Fuller Technically speaking, the Nonlinear Dickey-Fuller F test is not very innovative as it is mainly an addition of the nonlinear Dickey-Fuller ρ and t test proposed by He and Sandberg (2006). The main point of this paper is to show that our test suffered from serious size distortion under medium and high GARCH (1, 1) error. To resolve the problem, we use wavelet method as the wavelet scale coefficient can maintain the unit root information while count the GARCH effort off. We show that by using the wavelet method, the asymptotic distribution is not influenced, while the over-rejection problem in small sample size is improved. 

∫

  Based on Theorem 1, under the null hypothesis 0 : m m m H R r ψ = , we have the Nonlinear Dickey-Fuller F test statistic as follows:

F

  test against LSTAR (1) model with time as the transition variable. The asymptotic distribution of the Nonlinear Dickey-Fuller F test statistic is derived while distributions of finite samples Monte Carlo simulations. The size of the test statistics is unbiased and the power shows good property in larger samples. We also use an empirical example to compare the nonlinear Dickey-Fuller F with traditional Dickey-Fuller F test.

Test procedure, The Nonlinear Dickey-Fuller F test

  

	Section V presents the wavelet size improvement of the small samples and the
	asymptotical distribution. Concluding remarks can be found in the final section. All
	proofs of theorems in this paper are omitted to save place, but available from the
	authors up on request.
	II. Model, In STAR models, the LSTAR model can catch the asymmetric feature of a process in F two extreme states: when the economic contractions are always more violent, and o r when expansions are more stationary and persistent. This paper only considers the
	nonlinear LSTAR models with the following structure: P e 10 11 1 20 21 1 ( ) ( , , ) t t t t y y y F t c u π π π π γ --
	e r
	R
	e
	to the total energy of the time series. Here our Nonlinear Dickey-Fuller F test statistic is in a time domain where we use the scaling coefficient directly in the test statistics; v i e
	in this way, the asymptotic distribution of the test statistics will not be influenced under the wavelet environment. We use Maximal Overlap Discrete Wavelet w
	Transform (MODWT) as it has no restriction on the sample size and LA (8) wavelet filter as it has better band pass character. For more information about the MODWT O n l methods and LA filter, we refer to Vidakovic (1998), Percival and Walden (2000), and to Gençay Selcuk and Whicher (2001b). y
	The paper is organized as follows. Section II presents the LSTAR model, the
	procedure for testing unit root against the LSTAR alternatives, the asymptotic
	properties and the finite sample distribution of the test statistics. Section III
	investigates the size and power property of the test, and offers an empirical example.
	Section IV shows the size distortion of the test statistics under GARCH (1, 1) error.

They proposed a unit root test on the perspective of the frequency domain as the test is the ratio of the energy of the low frequency scale

III. Size and power property of the test, Empirical Example We

  To avoid high parameter dimension which shows in thirdorder Taylor expansion, we only report the critical value table with Taylor expansion of Order 1, and we also only use this case in the following part of the paper. again use the Monte Carlo method to investigate the size and power properties of our test statistics. We ignore the size table as it is unbiased due to that we use same Monte Carlo experiment when simulating the critical value table. Thus we only examine the power property of the test. As we are more interested in the variation of the dynamic parameters, we set the drift parameter stable with 10

										π =0, 20 π =1. We also
	set the transition speed parameter γ =1, and the transition time c = / 2 T . Thus the F o r changing parameters are only dynamical parameters 11 , π 21 π . We also impose the
	P Lagrange stability condition 11 π π +	21	∈	(0,1)	with 11 π π +	21	=	0.9	to ensure the stable
	e trajectories (Tong (1990)). To observe the power changes with the nonlinear dynamics
	e r π , we set: 11 impact measured by 21 (0.1, 0.3, 0.4, 0.5, 0.6), π ∈	π	21	∈	(0.8, 0.6, 0.5, 0.4, 0.3)	.
					Table 2. Power property for the test
				T	11 π =0.6 21 π =0.3	11 π =0.5 R 11 π =0.4 e 21 π =0.4 21 π =0.5	11 π =0.3 21 π =0.6	11 π =0.1 21 π =0.8
				50 100 0.7024 0.1925 250 0.9400	0.3869 0.9329 1		0.6056 v 0.8108 0.9925 0.9995 i e 1 1	0.9820 1 1
	t y y t	1	t u	500 1	1		1	w 1 1
										O n l
										y
	Table 1. Critical values for the Nonlinear D-F F test
	T		99%		97.5%	95%		90%	10%	5%	2.5%	1%
	50		1.1282	1.3710	1.6378		2.0181	6.7710	7.7315	8.6741	9.7927
	100		1.2205	1.4894	1.7665		2.1512	7.0376	8.1185	9.2100	10.4860
	250		1.2500	1.5324	1.8055		2.1816	7.2652	8.4135	9.4990	10.7145
	500		1.2850	1.5682	1.8660		2.2380	7.2687	8.3699	9.3918	10.6378

-= + where ~. . .(0,1) t u n i d with desired sample sizes. The number of Monte Carlo replication is 20000.
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									10			
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									Rate			
									6			
									4			
									2			
		F o r Figure 1. France's unemployment rate, 1955-1999 1960 1970 1980 1990 2000 Yea r F o r
						P P			
								e e			
									e r e r		
	process is:	t y	=	0.2274 0.9971 +	R 1 t t y u -+ with sum of residue squares 15.04 and R
										e e		
										v i e v i e
										w w
	O n l y =0.2369. At the 20% critical O n l value, we reject the null hypothesis. Next we apply our Nonlinear test from the break at 1976 and we obtain the Chow F statistic: Chow F y
	auxiliary model	t y	0.5518 0.0595 0.0834 t = -+ +	t y	1 -	-	0.06 ty t	1 -	+	u	t	.With sum of
	residue squares 11.58 and NL F statistic 9.3687, after comparing it to 7.7315 in Table 1,
	the null hypothesis of a unit root is rejected at the 5% level. Then we are building a
	LSTAR model by Nonlinear Least Square (NLS) regression with t from 2 to 45
	(correspond to the year from 1956 to 1999):		
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In Figure

1

, we can see that the time series shows an obvious data break around 1975, and the whole series is divided into two data periods with a smooth region changes.

Thus we suppose that a STAR model should be a good choice. For linear Dickey-Fuller F , we first fit the data with an order one autoregressive model and the AR(1) F statistic 2.7538, after we compare it to the critical value 4.86 in Table

B

.7 in Hamilton, J.D. (1994), the unit root is not rejected at the 5% level. However, from the graph we can see that for the unemployment rate data, the series are initially at an equilibrium state but after around 1975 there shows another state, and the whole series shows a nonlinear structure. Therefore, the Dickey-Fuller F test may be not valid with its linearity assumption. Chow test is used to test the series linearity against a single

Table 3 .

 3 The size table of the test under the medium GARCH error is now: Size property for the test under GARCH (1, 1) error,α β

						+ =0.75
		α =0.3	α =0.35	α =0.4	α =0.45	α =0.5
	T	β =0.45	β =0.4	β =0.35	β =0.3	β =0.25
	50	0.0897	0.0951	0.1074	0.1088	0.1102
	100	0.0849	0.0891	0.0962	0.1038	0.1032
	250	0.0734	0.0746	0.088	0.0935	0.0994
	r o F 500 0.0752	0.0769	0.0756	0.0853	0.0885
		P			
		e			
			e r			
			R		
			e		
				v i e	
					w	
					O n l
						y

  The process is simple: first we generate a new table of critical values where the DGP is the first level boundary wavelet scale coefficients get by Maximal

	the scaling filter satisfying:	∑	l	g	l	=	1,	∑	l	g	2 l	=	1/ 2,	∑	l	l l g g +	2*	n	=	0
	Assumption 2: { } t w is a linear process which can be defined as follows:
	t w	=	ψ	( ) L u t	=	0 ∞ j = ∑ ψ	j t j u -	, (1) 0 ψ ≠	, and	0 ∞ j = ∑	j ψ	j	< ∞	.
	Theorem 2: Under Assumptions 1 and 2, the asymptotical distributions of the
	Nonlinear Dickey-Fuller F test statistics will not be influenced when we use wavelet F o r scale coefficients 1 mod 0 L t l t l T l V g y --= = ∑ instead of original series t y with 1 t t t y y u -= + ,
	P u fulfills Assumption 1. where t										
								e								
								e r		
															R
																		e
																		v i e
																					w
	Overlap Discrete Wavelet Transform (MODWT). Next, we apply the test using these scale coefficients instead of the original series. The logic behind this method is that, O n l after wavelet decomposition, the wavelet's high frequency coefficients which contain short time volatility information brought by GARCH (1, 1) error are counted off. y
	Those scale coefficients contain all the non stationary information when the original
	time series follows a unit root process, while the scale coefficients are still stationary
	when the original time series is stationary. Thus when conducting the unit root test,
	we use the scale coefficients	t V	1 0 -= L l = ∑	l t l g y -	mod	T	instead of the original data, while l g is

For small sample, Monte Carlo experiment gives following critical value table:

Table 4 .

 4 Critical values for the wavelet improved Nonlinear D-F F test

	T	99%	97.5%	95%	90%	10%	5%	2.5%	1%
	50	0.1699	0.2600	0.3797	0.5626	3.9150	4.7469	5.5354	6.6924
	100	0.2607	0.4087	0.5792	0.8282	4.5163	5.3862	6.2805	7.2699
	250	0.6007	0.8122	1.0262	1.3412	5.4247	6.3390	7.2056	8.3035
	500	0.9216	1.1318	1.3484	1.6354	5.8999	6.8178	7.7707	8.9749

Table 5 .

 5 Table 5 to Table 3, where no wavelet method is applied, we see that although there are only a few unbiased size in Table 5, the over-rejection problem get improved in each grid. Size property for the test in wavelet under GARCH (1, 1) ,α β

						+ =0.75
		α =0.3	α =0.35	α =0.4	α =0.45	α =0.5
	T	β =0.45	β =0.4	β =0.35	β =0.3	β =0.25
	50	0.0597	0.0625	0.0681	0.0628	0.0670
	100	0.0710	0.0638	0.0691	0.0726	0.0700
	250	0.0644	0.0690	0.0711	0.0720	0.0700
	500 F 0.0669 For the case when, α β + =0.95, the wavelet improved size property and the original size 0.0691 0.0674 0.0740 0.0737 o r which is in () are as follows:
		P			
			e			
			e r			
			R		
			e		
				v i e	
					w	
					O n l
						y

Table 6 .

 6 Size property for the test under GARCH (1, 1) error, α β

	+ =0.95
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