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March 23, 2010

Abstract: Several authors have proposed to combine movements in princi-
pal components to generate scenarios of "large" historical changes in term
structures, i.e. stress-scenarios. This approach, however, has at least two
shortcommings. This paper answers at these two problems and proposes
a general two-steps procedure. The �rst step relies on �tting the discount
bond yields and the second step relies on estimating statistically independent
variables. Using the distribution of independent components identi�ed, we
combine their movements to produce stress-scenarios by specifying separate
"shocks" in each of the directions given by the three independent compo-
nents. We apply our methodology to the U.S. term structure of interest
rates over the last three decades.
Keywords: Term structure; Yield curve; IRR; Stress-Testing; Scenario
analysis; Principal Component Analysis; Independant Component Analy-
sis.
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I Introduction

While, stress testing is mostly used in managing market risk, a recent survey

of �nancial �rms by the Committee on the Global Financial Sytem (2005)

found that stress tests based on movements in interest rates remain the main

dominant type of stress test. The Basel Committee on Banking Supervision

(BCBS, 2004) has issued several guidelines regarding interest rate risk (IRR)

management that is de�ned as the change in a bank�s portfolio value due

to interest rate �uctuations both in the trading book and in the banking

book. They pointed out that IRR management system should be stressed

by examining uncommon, although not implausible, scenarios. As a wide

range of shifts in the shape of the yield curve are observed in practice, the

quality and the e¤ectiveness of IRR management depends on the ability to

generate relevant yield curve stress-scenarios. Indeed, in order to estimate

their IRR exposure, banks should use multiple stress-scenarios, including

potential e¤ects in "large" changes in the relationships among interest rates

as well as "large" changes in the general level of interest rates. Measuring

IRR may seem to require specifying a very large number of perturbations

of interest rates. In fact, interest rates movements are highly correlated

contemporaneously and numerous studies have found that shifts or changes

in the shape of the yield curve are attributable to three unobservable factors,

which are often called level, slope, and curvature. The interpretation of these

factors describes how the yield curve shifts or changes shape in response to

a "shock" on a factor. These labels have turned out to be extremely useful

in thinking about the driving forces of the yield curve until today and have
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important macroeconomic and monetary policy underpinnings (see Diebold,

Piazzesi, and Rudebusch, 2005). The "e¤ective dimensionality" of IRR is

therefore considerably less than the number of large number of nominal

bonds that are trading and held in a typical portfolio.

Principal Component Analysis (PCA) is often proposed as a tractable method

for extracting such factors from yield curves (see Litterman and Scheinkman,

1991). Several authors have proposed to combine movements in principal

components to produce scenarios as a method to: 1) separate computation-

ally intensive �xed-income portfolio revaluations from the simulation step

in Value-at-Risk by Monte Carlo, i.e. Scenario simulation (see Frye, 1996

and Jamshidian and Zhu, 1997); 2) generate scenarios of "large" historical

changes in term structures, i.e. stress-scenarios (see Loretan, 1997 and Ro-

drigues, 1997). In fact, the approach involves creating a separate scenario

for each possible combination of changes in the princpal components, say Nk

for k = 1; 2; 3. Thus, with 3 principal components there are N1 �N2 �N3

possible scenarios. The extreme outcomes for each principal component

could be selected using either observed values in the tails of the empirical

distribution or multiples of the standard deviation (with an assumption of

elliptical distributions). Each actual scenario is derived by multiplying the

corresponding principal component value by the yield sensitivities. This ap-

proach, however, has at least two shortcommings. Firstly, as pointed out by

Diebold and Li (2006), PCA have unappealing features, including: (1) they

cannot be used to produce yields at maturities other than those observed in

the data, (2) they do not guarantee a smooth yield curve and forward curve,
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(3) they do not guarantee positive forward rates at all horizons, and (4) they

do not guarantee that the discount function starts at 1 and approaches 0 as

maturity approaches in�nity. Secondly, Fung and Hsieh (1996) have shown

that during periods of large interest rate moves, the change in the shape of

the yield curve is usually correlated to the level of interest rate itself. This

fact means that specifying separate "shocks" in each of the directions given

by the retained principal components is not appropriate to genetare stress

scenarios. Ironically, this is also the key scenario of concern from the risk

management perspective. This paper answers at these two problems.

In this paper we propose a general two-step procedure which is computa-

tionally feasible and can account for the dependence of interest rates at all

available maturities. In the �rst step, we apply the term-structure model

introduced by Nelson and Siegel (1987) which is popular among market and

central bank practitioners and since it has been recently re-interpreted by

Diebold and Li (2005) as a linear three-factor model of level slope and cur-

vature. The second step relies on estimating three statistically independent

components, as linear combination of level, slope and curvature factors. A

popular method for solving the above problem is Independent Component

Analysis (ICA), see Hyvärinen, Karhunen and Oja ( 2001). Using the dis-

tribution of independent components identi�ed, we combine movements in

ICs to produce stress-scenarios by specifying separate "shocks" in each of

the directions given by the three independent components. We apply our

methodology to the U.S. term structure of interest rates over the last three

decades. The data used in this empirical analysis are the zero-coupon bond
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yields from January 1972 to December 2002. This sample period spans sev-

eral major recessions and major expansions according to the NBER, and

covers the terms of four Federal Reserve chairmen, namely Burns, Miller,

Volcker, and Greenspan. The remainder of the paper proceeds as follows.

Section I describes the procedures. Section II presents an empirical analysis

based on the U.S. term structure of interest rates over the last three decades.

Section III o¤ers a summary and concluding comments.

II General Framework

A Parsimonious model of bond yields

Numerous studies have found that shifts or changes in the shape of the yield

curve are attributable to three unobservable factors, which are often called

level, slope, and curvature . The interpretation of these factors describes

how the yield curve shifts or changes shape in response to a "shock" on

a factor. These labels have turned out to be extremely useful in thinking

about the driving forces of the yield curve until today and have important

macroeconomic and monetary policy underpinnings (see Diebold, Piazzesi,

and Rudebusch, 2005). The "e¤ective dimensionality" of IRR is therefore

considerably less than the number of large number of nominal bonds that

are trading and held in a typical portfolio.

While various models have been developed and estimated to characterize the

movement of these unobservable factors and the associated factor loadings

that relate yields to di¤erent maturities to those factors, we claim in this
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paper that a particular interesting approach is the Diebold and Li (2006)

reformulation of a �tted Nelson-Siegel curve (1987). A little background is

required to understand what follows. Nelson and Siegel (1987) proposed the

parsimonious yield curve model,

yt (�) = b1t + b2t

�
1� e��t�
�t�

�
� b3te��t�

where yt (�) denotes the continuously-compounded zero-coupon nominal

yield at maturity � , and b1t; b2t; b3t and �t are (time-varying) parameters.

The Nelson-Siegel model can generate a variety of yield curve shapes in-

cluding upward sloping, downward sloping, humped, and inversely humped.

Recently, this model has been re-interpreted by Diebold and Li (2005) as a

modern linear three-factor model. The corresponding yield curve is

yt (�) = �1t + �2t

�
1� e��t�
�t�

�
+ �3t

�
1� e��t�
�t�

� e��t�
�
:

The advantage of this representation is that we can easily give economic

interpretations to the parameters �1t; �2t and �3t. In particular, we can

interpret them as a level factor and two shape factors: a slope factor, and

a curvature factor, respectively. To see this, note that the loading on �1t

is 1, a constant that doesn�t depend on the maturity. Thus �1t a¤ects

yields at di¤erent maturities equally and hence can be regarded as a level

factor. The loading associated with �2t is
�
1�e��t�
�t�

�
, which starts at 1 but

decays monotonically to 0. Thus �2t a¤ects primarily short-term yields and

hence changes the slope of the yield curve. Finally, factor �3t has loading
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�
1�e��t�
�t�

� e��t�
�
, which starts at 0, increases, and then decays. Thus �3t

has largest impact on medium-term yields and hence moves the curvature

of the yield curve.

Rather than estimating the three factors by nonlinear least squares, Diebold

and Li (2006) �x the value of �t = � (with maturities measured in months)

and estimate the model for each period using ordinary least squares. They

argue that this not only greatly simpli�es the estimation, but likely results in

more trustworthy estimates of the level, slope and curvature factors. More

precisely, they set � = 0:0609 precisely the value where the loading on the

curvature factor reaches it maximum on the assumption that the curvature

of the yield curve reaches its maximum at 30 months. In short, we can ex-

press the yield curve at any point of time as a linear combination of the level,

slope and curvature factors, the dynamics of which drive the dynamics of the

entire yield curve. Diebold, Rudebusch, and Aruoba (2005) examine the cor-

relations between Nelson-Siegel yield factors and macroeconomic variables.

While, they �nd that the level factor is highly correlated with in�ation, and

the slope factor is highly correlated with real activity, the curvature factor

appears unrelated to any of the main macroeconomic variables.

B Independent Component Analysis

First of all, let us present an example of the problem of �nding independent

component in the data. A popular example is the so called cocktail party

problem: Imagine a room full of people discussing with each other. A few

microphones, located at di¤erent positions in the room, collect the sounds

7



of mixed human voices and possible external noises. An outsider listening to

the mixtures of sounds recorded by the microphone cannot decipher what

was actually discussed in the room. The task now is to decompose the

mixtures of sounds back into their original form, that is, human voices and

external noises. These original sounds are called the latent sources, as they

are �hidden� from the outsider listener. The task is often referred to as

source separation. The computational methods discussed later in this paper

are aimed at solving problems similar to this one.

More generally, assume that we observe n linear mixtures x1; :::; xn of n

independent components s1; :::; sn

xj = aj1s1 + aj2s2 + :::+ ajnsn; for all j

Using a vector-matrix notation we note the ICA model as:

x = As

Denoting aj the jth columns of matrix A, the model becomes

x =

nX
j=1

ajsj

The ICA model is a generative model, i.e., it describes how the observed data

are generated by mixing the components si. The independent components

are latent variables, i.e., not directly observable. The mixing matrix A is
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also unknown. We observe only the random vector x, and we must estimate

both A and s. This must be done under as general assumptions as possible.

ICA is a special case of blind source separation. Blind means that we know

very little, if anything, on the mixing matrix, and make little assumptions

on the source signals.

Like in standard factor models, ICA have two major ambiguities. The �rst

ambiguity is that we cannot determine the variances of the independent

components. The reason is that any scalar multiplier in one of the indepen-

dent components could always be cancelled by dividing the corresponding

column ai of A by the same scalar. Whitening (sphering) of the indepen-

dent components, i.e., choose all variances equal to one: E
�
s2i
�
= 1 can

solve this ambiguity but the ambiguity of the sign remains, as we can mul-

tiply any independent component by �1 without a¤ecting the model. The

second ambiguity is that we cannot determine the order of the independent

components. In fact we can freely change the order of the terms in the sum

in x =
nP
j=1

ajsj , and call any of the independent components the �rst one.

A permutation matrix P and its inverse can be substituted in the model to

give

x = AP�1Ps = A0s0; s0 = Ps; A0 = AP�1

There are two schools of thought with respect to what actually is the aim in

estimating the ICs in the data. A �rst point of view is to regard ICA as a

method (like factor analysis) of presenting the data in a more comprehensible

way by revealing the hidden structure in the data and often reducing the di-

mensionality of the representation. According to this school of thought, data
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is tranformed as a combination of a few latent factors that are statistically as

independent as possible. Second, one may regard the data being generated

by a combination of some existing but unknown independent source signals

and the task is to estimate them. This viewpoint is chosen in the so called

Blind Source Separation framework � there are some sources which have

been mixed, and the mixing process is completely unknown to us (hence the

word �blind�). This paper mostly concentrates on the last viewpoint of ICA.

There are several approaches to estimating the independent components, re-

sulting in di¤erent algorithms. An interesting approach to ICA estimation

are tensorial methods. Tensors are generalizations of linear operators �

in particular, cumulant tensors are generalizations of the covariance matrix.

Minimizing the higher order cumulants approximately amounts to higher or-

der decorrelation, and can thus be used to solve the ICA model. The most

well-known among these are the JADE (Joint Approximate Diagonalization

of Eigenmatrices) algorithm, see Cardoso and Souloumiac (1993).

III JADE Algorithm

Cardoso (1999) has shown how higher-order correlations can be e¢ ciently ex-

ploited to reveal independant component. These ICA algorithms use higher

order two statistical information for separating the signals. Note that uncor-

relatedness alone is not enough to separate the desired components. To keep

the following exposition simple it is restricted to symmetric distributions.

For any n� n matrix M , we de�ne the associated cumulant matrix Tx (M)
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as the n� n matrix de�ned component-wise by

[Tx (M)]ij =
X
k;l

Cum (xi; xj ; xk; xl)Mkl

where the subscript ij means the (i; j)�th element of a matrix T is a linear

operator, and thus has n2 eigenvalues that correspond to eigenmatrices.

Cum (x1; x2; x3; x4) are fourth-order cumulants de�ned by

Cum (x1; x2; x3; x4) = E [�x1�x2�x3�x4]�E [�x1�x2]E [�x3�x4]�E [�x1�x3]E [�x2�x4]�E [�x1�x4]E [�x2�x3]

where �xi = xi � E [xi]. Recall that for symmetric distributions odd-order

cummulants are zero and that second order cumulants are Cum (x1; x2) =

E [�x1�x2].

The variance and the kurtosis of a real random variable x are de�ned as

�2 (x) = Cum (x; x) = E
�
�x2
�

k (x) = Cum (x; x; x; x) = E
�
�x4
�
� 3E2

�
�x2
�

that is, they are the second and fourth-order autocumulants. A cumulant

involving at least two di¤erent variables is called a cross-cumulant.

Under x = As which also reads xi =
P
p aipsp where aij denotes the (ij)�th
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entry of matrix A the cumulants of order 4 transform can be written as:

Cum (xi; xj ; xk; xl) =
X
pqrs

aipajqakralsCum (sp; sq; sr; ss)

Using the assumption of independence of s by which Cum (sp; sq; sr; ss) =

k (sp) � (p; q; r; s), we readily obtain the simple algebraic structure of the

cumulants of x = As:

Cum (xi; xj ; xk; xl) =
nX
u=1

k (su) aiuajuakualu

The structure of a cumulant matrix in the ICA model is easely deduced from

this last equation that:

Tx (M) = A� (M)A0

� (M) = diag
�
k (s1) a

0
1Ma1; :::; k (sn) a

0
nMan

�

where ai denotes the i�th column of A. In this factorization the kurto-

sis enter only in the diagonal matrix. Solving for the eigenvectors of such

eigenmatrices, the ICA model can be estimated. This is typically a joint

diagonalization of several matrices but the most di¢ culty is that A is not

an orthogonal matrix. The following section outlines the JADE algorithm

(Cardoso and Souloumiac, 1993). The approach for the JADE algorithm is

the following two-stage procedure : Whitening and Rotation.

JADE like some other ICA algorithms require a preliminary whitening of
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the data x. This means that before the application of the algorithm (and

after centering), we transform the observed vector x linearly so that we

obtain a new vector ~x which is white, (~x = Qx) i.e. its components are

uncorrelated and their variances equal unity. In other words E [~x~x0] = I.

The whitening transformation is always possible. The whitening transform

Q can be determined by taking the inverse square root of the covariance

matrix via an eigenvalue decomposition of the covariance matrix or by a

PCA. Denoting � the orthogonal matrix of eigenvectors of E [xx0] and � is

the diagonal matrix of its eigenvalues, one has E [xx0] = ���0. Whitening

can now be performed by

~x = ��
1
2�0x

that is Q = ��
1
2�0.

It is easy to check that E [~x~x0] = I by taking the expectation of ~x~x0 =

��
1
2�0x

h
��

1
2�0x

i0
= ��

1
2�0xx0���

1
2 . Since x = As and after whitening

~x = Qx, one has

~x = ~As

where ~A = QA. It can be easily shown that ~A is an orthogonal matrix.

Indeed

E
�
~x~x0
�
= I = ~AE

�
ss0
�
~A0 = ~A ~A0

Recall that we assumed that the independent components si have unit vari-

ance. Whitening reduced the problem of �nding an arbitrary matrix in
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model x = As to the simpler problem of �nding an orthogonal matrix ~A.

Once it is found, ~A is used to solve the independent components from the

observed by

ŝ = ~A�1~x = ~A0~x

A couple of remarks merites to be done. First, whitening alone does not

solve the separation problem. This is because whitening is only de�ned up

to an additional rotation: if Q1 is a whitening matrix, then Q2 = UQ1 is

also a whitening matrix if and only if U is an orthogonal matrix. Therefore,

we have to �nd the correct whitening matrix that equally separates the

independent components. This is done by �rst �nding any whitening matrix

Q, and later determining the appropriate orthogonal transformation from a

suitable non-quadratic criterion. Second, whitening reduces the number of

parameters to be estimated. Instead of having to estimate the n2 parameters

that are the elements of the original matrix A, we only need to estimate the

new, orthogonal mixing matrix ~A. An orthogonal matrix contains n(n�1)
2

degrees of freedom. In larger dimensions, an orthogonal matrix contains only

about half of the number of parameters of an arbitrary matrix. Thus one can

say that whitening solves half of the problem of ICA. Because whitening is a

very simple and standard procedure, much simpler than any ICA algorithms,

it is a good idea to reduce the complexity of the problem this way.

For any n � n matrix M , we can de�ne the associated cumulant matrix
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T~x (M) de�ned component-wise by

[T~x (M)]ij =
X
k;l

Cum (~xi; ~xj ; ~xk; ~xl)Mkl

where the subscript ij means the (i; j)�th element of a matrix T . We have

shown that whitening yields to the model ~x = ~As with ~A orthonormal. This

model is still a model of independant components. From the above section

the structure of the corresponding cumulant matrix of ~x can be written as:

T~x (M) = ~A~� (M) ~A0

~� (M) = diag
�
k (s1) ~a

0
1M~a1; :::; k (sn) ~a

0
nM~an

�

where ~ai denotes the i�th column of ~A and for any n� n matrix M .

Let � = fM1;M2; :::;Mpg be a set of p matrices of size n � n and denote

by T~x (Mi) 1 � i � p the associated cumulant matrices of the whitened

data ~x = ~As. Again for all i we have T~x (Mi) = ~A~� (Mi) ~A
0 with ~� (Mi)

a diagonal matrix. As a measure of nondiagonality of a matrix H, de�ne

O¤(H) as the sum of the squares of the non diagonal elements: O¤(H) =P
i6=j (Hij)

2. We have in particular O¤
�
~A0T~x (Mi) ~A

�
=O¤

�
~� (Mi)

�
= 0

since T~x (Mi) = ~A~� (Mi) ~A
0 and ~A ~A0 = I:

For any matrix set � and any orthonormal matrix V , the Jade algorithm
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optimize an orthogonal contrast

argmin
X
i

Off
�
V 0T~x (Mi)V

�

This criterion measures how close to diagonality an orthonormal matrix V

can simultaneously bring the cumulants matrices generated by �. With

JADE algorithm, this joint diagonalizer is found by a jacobi technique.

IV Summary

We propose here a sequential procedure for yield curve stress-scenarios. Our

procedure follows the generic strategy that is divided in three steps:

1. We express the yield curve at any point of time, t, (each month) as

a linear combination of the level, slope and curvature factors (�1t; �2t

and �3t) and estimate the model for each period using ordinary least

squares. At that stage the yield curve is summarized by 3 coe¢ cients.

We then assume a h months holding period and we calculate ��it =

�i(t+h) � �it; i = 1; 2; 3. This is due to the linearity of the model:

factors a¤ecting bond yield changes are the changes of the estimated

bond yield factors.

2. We employ an the JADE algorithm to estimate three independent

component sj ; j = 1; 2; 3 as a linear combination of ��i; i = 1; 2; 3:

3. Once these independent components have been computed, we use their

distribution and combine movements in each independent component
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to produce stress-scenarios by specifying separate "shocks" in each

of the directions given by the three independent components. Yield

curve scenarios are then computed by multiplying the value of each

independent component to �rst, factor sensivities and second, yield

sensitivities.

V Empirics

A The data

We use end-of-month price quotes (bid-ask average) for U.S. Treasuries,

from January 1972 through December 2002, taken from the CRSP govern-

ment bonds �les (372 months). CRSP �lters the data, eliminating bonds

with option features (callable and �ower bonds), and bonds with special

liquidity problems (notes and bonds with less than one year to maturity,

and bills with less than one month to maturity), and then converts the �l-

tered bond prices to unsmoothed Fama-Bliss (1987) forward rates. Then,

using programs and CRSP data kindly supplied by Rob Bliss, we convert

the unsmoothed Fama-Bliss forward rates into unsmoothed Fama-Bliss zero

yields. At each month, we consider a set of �xed maturities: the maturities

spanned include 3 months to 12 months at one month increment, then at

three months increment to the 5 year maturity, and �nally at six months

increment to the 10 year maturity, where a month is de�ned as 30.4375

days. These cover the range of bond maturities, and they also re�ect the

di¤erent trading volumes at di¤erent maturities. In particular, at the short
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end where bonds concentrate, we include more �xed maturities, and at the

long end where there are fewer bonds, we include fewer �xed maturities. We

did not use the one month or the two month yield to represent the short

end, because they are more likely to be in�uenced by liquidity needs (see

Du¤ee, 1996). According to the NBER, this sample period contains sev-

eral major recessions and major expansions.1 Several major historical and

economic events occurred during our period of analysis (e.g. the Vietnam

war, the oil price shocks, the monetary experiment, the 1987 crash, the Gulf

war), among which some strongly impacted U.S. interest rates. Moreover,

in this sample there have been four di¤erent Federal Reserve chairmen (see

Thornton, 1996, for more details): Arthur F. Burns (February 1970 - Janu-

ary 1978), G. William Miller (March 1978 - August 1979), Paul A. Volcker

(August 1979 - August 1987), and �nally Alan Greenspan (August 1987 -

present). The various yield as well as the yield curve level, slope and curva-

ture de�ned above, will play a prominent role in the sequel. Hence we focus

on them now in some details. In Fig. 1 we provide a three-dimensional plot

of our yield curve data. The large amount of temporal variation in the yield

curve is visually important. Moreover we consider a one year holding period

and we plot in the same vein as for yield curves a three-dimensional plot of

changes in our yield curve data in Fig. 2. Again a large amount of temporal

variation in the yield change is visually important.

< Insert Figures 1 and 2>

1The NBER peaks are 1969:12, 1973:11, 1980:01, 1981:07, 1990:07, and 2001:03, and
the NBER troughs are 1970:11, 1975:03, 1980:07, 1982:11, and 1991:03.
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B Generating standardised stress-scenarios

In the �rst step, as in Fama and Bliss (1987), we use a bootstrap method

to infer zero bond yields from available bill, note, and bond prices. In the

second step, we treat the factor loadings in the above equation as regressors

and we lambda equal to 0:0609 to calculate the regressor values for each

zero bond. In the third step, we run a cross-sectional regression of the

zero yields on the calculated regressor values. The regression coe¢ cients

are the estimated factor values. We do this in each month to get the time

series of three factors. As discussed above, we �t the yield curve using the

three-factor model,

yt (�) = �1t + �2t

�
1� e���
��

�
+ �3t

�
1� e���
��

� e���
�
:

and estimate it through OLS. The residual plot in Fig. 3 and Mean Squared

Errors plots in Fig. 4 indicate a good �t. In Fig. 5 we plot the implied

average �tted yield curve (resp. yield curve change) against the average

actual yield curve (resp. yield curve change). Both the bootstrapped zero

yields and the three-factor �tted yield curves are included. The two agree

quite closely.

< Insert Figures 3, 4, 5>

In Fig. 6 (resp. Fig. 7) we plot
n
�̂1t; �̂2t; �̂3t

o
(resp.

n
��̂1t;��̂2t;��̂3t

o
).

Scatter plots of the changes of Level, Slope and Curvature Factors is pre-
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sented in Fig. 8 What we can say is the deviation from normality in the

data.

< Insert Figures 6, 7, 8>

In selecting the standardised intrest rate shock the following guiding prin-

ciple for IRR exposures in G-10 currencies is proposed by the BCBS (2004,

Annex 3, p. 36): banks should consider either a parallel rate change of �200

basis points or the changes implied by the 1st and 99th percentiles of his-

torically observed interest rate changes over at least �ve years (using a one

year holding period). A one year holding period was selected by the BCBS

both for practical purposes and in recognition that within a one-year period

most institutions have the ability to restructure or hedge their positions to

mitigate further losses in economic value should rates appear exceptionally

volatile. We use a similar strategy in our generation of stress-scenarios.

How does one specify scenarios? Consider �rst the case where a single in-

dependant component is estimated. Since an independent component is a

one-to-one transformation of the observed data, it is possible to "reverse" the

calculations and to compute the values of each of the series that correspond

to given values of this independent component. Next, since the independent

component is a random variable we may pick tailevent quantiles of the em-

pirical distribution of the independent component to generate corresponding

tail events of the observable series. When more than one independent com-

ponent is added, one may proceed by specifying separate "shocks" in each
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of the directions given by the retained independent components, in anal-

ogy to the case of a single one. Alternatively, one may choose to form

arbitrary linear combinations of the estimated independent components to

generate "combined" shocks. For each of the three types of independent

stress-scenarios, the following quantiles of the resulting distributions are re-

ported: 0.5%, 1%, 5%, 10%, 90% 95%, 99%, and 99.5%. By measuring the

exposure to shocks of increasing severity-from 10% to 0.5%, and from 90%

to 99.5%-it may be possible to determine if there is "curvature" in the ex-

posure, i.e., if there is gamma risk that could lead to systemic breakdowns

if these exposures are hedged by dynamic trading strategies. Note that the

quantiles of the shock distributions should not be interpreted as meaning

that any of these particular scenarios will occur with the speci�ed probabil-

ities; "real world" shocks are combinations of the shocks in the directions of

the various IC-shocks. The results are listed in Figure 9. They show that

shocks in the direction of the �rst independent component seems lead to a

"shift" in all rates. The second scenario is a "tilt" of the yield curve, and

the third serves to increase or decrease curvature. However, it should be

remembered that they are "pure factor shocks," and that "actual" shocks

are combinations of the "pure" shocks. In Figure 10 we present simultane-

ous shock to the three independent components. The following quantiles of

the resulting distributions are reported: 1% and 99% which lead to 23 = 8

scenarios.

< Insert Figures 9 and 10>
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VI Conclusion

In support of the revised Basel Capital Accord, which was released in June

2004 and is to be fully implemented by year-end 2007, the Basel Committee

on Banking Supervision (BCBS, 2004) has issued several guidelines regard-

ing interest rate risk (IRR) management that is de�ned as the change in

a bank�s portfolio value due to interest rate �uctuations both in the trad-

ing book and in the banking book. A wide range of shifts in the shape

of the yield curve are observed in practice. Therefore the quality and the

e¤ectiveness of IRR management depends on the ability to identify relevant

yield curve shocks. Taking on IRR is a key part of what banks do; but

taking on excessive IRR could threaten a bank�s earnings and its capital

base, raising concerns for bank supervisors. For instance, in order to fa-

cilitate supervisory monitoring of IRR exposures across institutions, banks

should try to use a standardized interest rate shock to provide the results of

their internal measurement systems, expressed in terms of changes to eco-

nomic value. These rate shocks should in principle be determined by banks

but based on the recommended criteria. For example, the following guiding

principle for IRR exposures in G-10 currencies is proposed: banks should

consider either a parallel rate change of �200 basis points or the changes

implied by the 1st and 99th percentiles of historically observed interest rate

changes over at least �ve years (using a one year holding period both for

practical purposes and in recognition that within a one-year period most in-

stitutions have the ability to restructure or hedge their positions to mitigate

further losses in economic value should rates appear exceptionally volatile).
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However recognizing the relative simplicity of this parallel rate shock, super-

visors will continue to expect institutions to examine multiple shocks that

include yield curve twists, inversions, and other relevant shocks in evaluat-

ing the appropriate level of their IRR exposures. This paper has described a

methodology for summarising historical movements in interest rates across

government term structures. The methodology could be used to construct

scenarios of large historical changes in term structures. These scenarios

could be used both for computing the exposure of a �nancial �rm�s trad-

ing book to term structure movements as well as for stress testing purposes.

The outputs from the scenarios could also be aggregated over market-making

�rms to analyse the impact of large term structure shifts on aggregate pro�t

& loss statements.
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VII Annexes

A Independence versus orthogonality

Consider two scalar-valued random variables y1 and y2. The variables y1

and y2 are said to be independent if information on the value of y1 does

not give any information on the value of y2, and vice versa. Let us denote

by p (y1; y2) the joint probability density function (pdf) of y1 and y2. Let us

further denote by p1 (y1) the marginal pdf of y1, i.e. the pdf of y1 when it

is considered alone:

p1 (y1) =

Z
p (y1; y2) dy2

and similarly for y2.Then we de�ne that y1 and y2 are independent if and

only if the joint pdf is factorizable in the following way:

p (y1; y2) = p1 (y1) p2 (y2)

The de�nition can be used to derive a most important property of indepen-

dent random variables. Given two functions, h1 and h2, we always have

E [h1 (y1)h2 (y2)] = E [h1 (y1)]E [h2 (y2)]

A weaker form of independence is uncorrelatedness. Two random variables

y1 and y2 are said to be uncorrelated, if their covariance is zero:

E [y1y2]� E [y1]E [y2] = 0
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If the variables are independent, they are uncorrelated, which follows di-

rectly, taking hi (yi) = yi:On the other hand, uncorrelatedness does not

imply independence. Assume that (y1; y2) are discrete valued and follow

such a distribution that the pair are with probability 1=4 equal to any of the

following values: (0; 1); (0;�1); (1; 0); (�1; 0). Then y1 and y2 are uncorre-

lated, as can be simply calculated. On the other hand,

E
�
y21y

2
2

�
= 0 6= 1

4
= E

�
y21
�
E
�
y22
�

so the variables cannot be independent. Since independence implies uncor-

relatedness, many ICA methods constrain the estimation procedure so that

it always gives uncorrelated estimates of the independent components. This

reduces the number of free parameters, and simpli�es the problem.

Consider the arti�cial dataset, where the two components are non-independent.

The goal of PCA is to detect the strongest uncorrelated factors in a mixture

of components (the two arrays on the Figure representing the directions of

the factors). If the two factors are uncorrelated (on the right of the Figure),

they are obviously non-independent. Next Figure shows random generations

of the two factors, where the two factors are assumed to be independent.

Observe on the right that assuming independent yield underestimation of

tail events: there is undoublty less weight in corners of the polygon. On

the other hand, with ICA, we are able to detect independent factors. Using

those factors, generated independently, we are able to generate scenarios

identical with initial observations.
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Figure 1: Fig. 1. Yield curves, 1972.01-2002.12. The sample consists
of monthly yield data from January 1972 to December 2002. Maturities
spanned include 3 months to 12 months at one month increment, then at
three months increment to the 5 year maturity, and �nally at six months
increment to the 10 year maturity, where a month is de�ned as 30.4375 days.
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Figure 2: Fig. 2. Yield curve changes with a one year holding period,
1973.01-2002.12. The sample consists of monthly yield data from January
1973 to December 2002. Maturities spanned include 3 months to 12 months
at one month increment, then at three months increment to the 5 year
maturity, and �nally at six months increment to the 10 year maturity, where
a month is de�ned as 30.4375 days.
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Figure 3: Fig. 3. Yield curve residuals, 1972.01-2002.12. We plot residuals
from Nelson and Siegel curves �tted month-by-month with � = 0:0609. The
sample consists of monthly yield data from January 1972 to December 2002.
Maturities spanned include 3 months to 12 months at one month increment,
then at three months increment to the 5 year maturity, and �nally at six
months increment to the 10 year maturity, where a month is de�ned as
30.4375 days.
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Figure 4: Fig. 4. Root Mean Square Errors, 1972.01-2002.12. We plot Root
Mean Square Errors (RMSE) from Nelson and Siegel curves �tted month-
by-month with � = 0:0609. The sample consists of monthly yield data from
January 1972 to December 2002. Maturities spanned include 3 months to
12 months at one month increment, then at three months increment to the 5
year maturity, and �nally at six months increment to the 10 year maturity,
where a month is de�ned as 30.4375 days.
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Figure 5: Fig. 5. Actual (data-based) and �tted (model-based) average
yield curve and yield change curve (with a one year holding period). We
show the actual average yield curve (resp. yield change curve) and the �tted
average yield curve (resp. yield change curve) obtained by evaluating the
Nelson-Siegel function at the mean values of the three factors (resp. factor
changes). The sample consists of monthly yield data from January 1973 to
December 2002. Maturities spanned include 3 months to 12 months at one
month increment, then at three months increment to the 5 year maturity,
and �nally at six months increment to the 10 year maturity, where a month
is de�ned as 30.4375 days.
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Figure 6: Fig. 6. Model-based level, slope and curvature (i.e. estimated
factors) from Nelson and Siegel curves �tted month-by-month with � =
0:0609. The sample consists of monthly yield data from January 1972 to
December 2002. Maturities spanned include 3 months to 12 months at one
month increment, then at three months increment to the 5 year maturity,
and �nally at six months increment to the 10 year maturity, where a month
is de�ned as 30.4375 days.
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Figure 7: Fig. 7. Model-based level change, slope change and curvature
change with an holding period of one year from Nelson and Siegel curves
�tted month-by-month with � = 0:0609. The sample consists of monthly
yield data from January 1972 to December 2002. Maturities spanned in-
clude 3 months to 12 months at one month increment, then at three months
increment to the 5 year maturity, and �nally at six months increment to the
10 year maturity, where a month is de�ned as 30.4375 days.
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Figure 8: Fig. 8. Scatter plots of the changes of Level, Slope and Curva-
ture Factors with an holding period of one year from Nelson and Siegel
curves �tted month-by-month with � = 0:0609. In the diagonal we plot an
histogram that shows the distribution of each factor change. The sample
consists of monthly yield data from January 1972 to December 2002. Matu-
rities spanned include 3 months to 12 months at one month increment, then
at three months increment to the 5 year maturity, and �nally at six months
increment to the 10 year maturity, where a month is de�ned as 30.4375 days.
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Figure 9: Fig. 9. Independent yield curve "Stress Scenarios". The following
quantiles of the resulting distributions are reported: 0.5%, 1%, 5%, 10%,
90% 95%, 99%, and 99.5%. The sample consists of monthly yield data from
January 1972 to December 2002. Maturities spanned include 3 months to
12 months at one month increment, then at three months increment to the 5
year maturity, and �nally at six months increment to the 10 year maturity,
where a month is de�ned as 30.4375 days.
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Figure 10: Fig. 10. Simultaneous shock to the three independent compo-
nents. The following quantiles of the resulting distributions are reported:
1% and 99% which lead to 23 = 8 scenarios. The sample consists of monthly
yield data from January 1972 to December 2002. Maturities spanned include
3 months to 12 months at one month increment, then at three months in-
crement to the 5 year maturity, and �nally at six months increment to the
10 year maturity, where a month is de�ned as 30.4375 days.
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