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Abstract

This article is devoted to prove a stability result for two indepen-
dent coefficients for a 2 × 2 nonlinear parabolic system with only one
observation. The main idea to obtain this result is to use a modified
form of the Carleman estimate
To cite this article: M. Cristofol, P. Gaitan, H. Ramoul and M. Ya-
mamoto

1 Introduction and main result

This paper is an improvement of the work [4] in the sense that we determine
two independent coefficients with the observation of only one component in
a nonlinear 2 × 2 parabolic system. The system of coupled linear reaction-
diffusion-convection equations had been recently widely studied in [1] and
[2] with applications in inverse area but also in control domains.
Several works concern inverse problems associated with linear and nonlinear
parabolic equations (see [13], [15], [3], [7], [8], [17], [5], . . . ) but few concern
system of nonlinear parabolic equations. Such systems arise in biological,
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ecological domain or combustion and chemical reactions (see [16], [18]).
Let Ω ⊂ R

n be a bounded domain of Rn with n ≤ 3 and ω ⊂ Ω a non empty
subset. We denote by ν the outward unit normal to Ω on Γ = ∂Ω assumed
to be of class C1. Let T > 0 and t0 ∈ (0, T ). We shall use the following
notations Q0 = Ω×(0, T ), Q = Ω×(t0, T ), Qω = ω×(t0, T ), Σ = Γ×(t0, T )
and Σ0 = Γ × (0, T ). We consider the following 2 × 2 reaction-diffusion
system:





∂tU = ∆U + a11(x)U + a12(x)V + a13(x)f(U, V ) in Q0,

∂tV = ∆V + a21(x)U + a22(x)V in Q0,

U(x, t) = k1(x, t), V (x, t) = k2(x, t) on Σ0,

U(x, 0) = U0 and V (x, 0) = V0 in Ω,

(1)

where, the function f is assumed to be Lipschitz with respect the two vari-
ables U and V .
Uniqueness and existence results for initial boundary value problem for such
systems can be found in [14].
Throughout this paper, we consider the following set

Λ(R) = {Φ ∈ L∞(Ω); ‖Φ‖L∞(Ω) 6 R},

where R is a given positive constant.
For t0 ∈ (0, T ), we denote T ′ = t0+T

2 . Let (U, V ) (resp. (Ũ , Ṽ )) be solution
of (1) associated to (a11, a12, a13, a21, a22, k1, k2, U0, V0) (resp. (a11,
a12, ã13, ã21, a22, k1, k2, U0, V0)) satisfying some regularity and positivity
properties:

Assumption 1.1. 1. For i = 1, 2, j = 1, 2, 3, aij, ã13 and ã21 ∈ Λ(R).

2. There exist constants r1 > 0 and a0 > 0 such that
Ũ0 ≥ r1, Ṽ0 ≥ 0, a11r1 + a12Ṽ0 + ã13 f(r1, Ṽ0) ≥ 0,
a21 ≥ a0, ã21 ≥ a0, k1 ≥ r1 and k2 ≥ 0.

Such assumptions allow us to state that the function Ũ satisfies
|Ũ(x, T ′)| ≥ r1 > 0 in Ω (see [19]).

Assumption 1.2. 1. The function f checks a generalized Lipschitz prop-
erty in the following sense : ∃ C > 0, such that

|∂tf(U, V )−∂tf(Ũ , Ṽ )| ≤ C
(
|U − Ũ |+ |V − Ṽ |+ |(U − Ũ)t|+ |(V − Ṽ )t|

)
.

2. ∃ r2 > 0 such that f(Ũ , Ṽ )(T ′, x) ≥ r2 > 0 in Ω.
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3. ∂tf(U, V ) ∈ L2((0, T );H2(Ω)).

This set of functions is not empty and contains, in particular, a large
class of semilinear terms (e.g. f(U, V ) = UαV β with α and β non negative
constants in chemical reactions).
The main result is the following Theorem:

Theorem 1.3. Let ω be a subdomain of an open set Ω of Rn. We suppose
that Assumptions 1.1 and 1.2 are checked and (U, V )(·, T ′) = (Ũ , Ṽ )(·, T ′).
Furthermore, we assume that U0, V0 in H2(Ω). Then there exists a constant
C = C(Ω, ω, a0, t0, T, r1, r2, R) > 0 such that

‖a21 − ã21‖
2
L2(Ω) + ‖a13 − ã13‖

2
L2(Ω) ≤ C‖∂tV − ∂tṼ ‖2L2(Qω)

.

In [4], for a coupled linear reaction diffusion system, we prove a stability
result for one coefficient with only one observation. Note that our method
does not work if the system (1) contains a non linear term in each equa-
tion. The novelty in this paper is the identification of two coefficients with
only one observation for a nonlinear system. The main tool is a Carleman
estimate established in [4] which is adapted, using a ”shift” of the large
parameters, to recover two independent coefficients, one in each equation of
(1).
The paper is organized as follows: In section 2, we give the modified Car-
leman estimate for a reaction-diffusion system with only one observation.
Then using this modified Carleman estimate, we prove in section 3 a stabil-
ity result for two coefficients with the observation of only one component.

2 Carleman estimate

At first, we recall the general form of the Carleman estimate associated to
the operator ∂tq − ∆q (see [9], [11], [12]). Let ω′ ⋐ ω ⋐ Ω and let β̃ be a
C2(Ω) function such that

β̃ > 0, in Ω, β̃ = 0 on ∂Ω, min{|∇β̃(x)|, x ∈ Ω \ ω′} > 0 and ∂ν β̃ < 0 on ∂Ω.

Then, we define β = β̃ +K with K = m‖β̃‖∞ and m > 1. For λ > 0 and
t ∈ (t0, T ), we define the following weight functions (see [10])

ϕ(x, t) =
eλβ(x)

(t− t0)(T − t)
, η(x, t) =

e2λK − eλβ(x)

(t− t0)(T − t)
.

We then have the following Carleman estimate:
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Theorem 2.1. Let τ ∈ R. Then there exist λ0 = λ0(Ω, ω) ≥ 0, s0 =
s0(λ0, T, τ) > 0 and a positive constant C0 = C0(Ω, ω, τ) such that, for any
λ ≥ λ0 and any s ≥ s0, the following estimate holds:

I(τ, q) ≤ C0

[∫∫

Qω

e−2sηλ4(sϕ)τ+3|q|2 dx dt+

∫∫

Q

e−2sη(sϕ)τ |∂tq −∆q|2 dx dt

]
, (2)

where

I(τ, q) =

∫∫

Q

e−2sη(sϕ)τ−1(|∂tq|
2 + |∆q|2) dx dt+ λ2

∫∫

Q

e−2sη(sϕ)τ+1|∇q|2 dx dt

+λ4
∫∫

Q

e−2sη(sϕ)τ+3|q|2 dx dt

Remark 1. If we denote

M
(τ)
1 ψ = −∆ψ − s2λ2ϕ2|∇β|2ψ − (

τ

2
− s∂tη)ψ,

and
M

(τ)
2 ψ = ∂tψ + 2sλ(ϕ+

τ

2
)∇β.∇ψ,

with ψ = e−sηϕ
τ

2 q, the Carleman estimate (2) also gives an upper bound of

‖M
(τ)
1 ψ)‖2

L2(Q) + ‖M
(τ)
2 ψ‖2

L2(Q) (see [9]).

We assume that a11, a12, a21, a22 ∈ Λ(R), a21 ≥ a0 > 0 and we consider the
following system:





∂tY = ∆Y + a11(x)Y + a12(x)Z +H1, in Q0,

∂tZ = ∆Z + a21(x)Y + a22(x)Z +H2 in Q0,

Y (x, t) = Z(x, t) = 0 on Σ0,

Y (x, 0) = K1(x), Z(x, 0) = K2(x) in Ω,

(3)

where H1 and H2 are arbitrary functions. Following [4], we can derive a
modified Carleman estimate : ”shifted Carleman”, with a single observation
acting on a subdomain ω of Ω for the system (3). Such estimate will be
used in the next section to prove stability result for two coefficients with
the observation of only one component. Then we can have the following
theorem:

Theorem 2.2. There exist λ1 = λ1(Ω, ω) ≥ 1, s1 = s1(λ1, T ) > 1 and a
positive constant C1 = C1(Ω, ω,R, T, a0) such that, for any λ ≥ λ1 and any
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s ≥ s1 and ǫ > 0 fixed, the following estimate holds:

λ−4+ǫI(−3, Y ) + I(0, Z) ≤ C1s
4λ4+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt (4)

+C1

[
s−3λ−4+ǫ

∫∫

Q

e−2sηϕ−3 |H1|
2 dx dt+ λ2ǫ

∫∫

Q

e−2sη |H2|
2 dx dt

]
.

Remark 2. This ”shifted Carleman” method allows us to estimate two co-
efficients, one in each equation, by the observation of only one component
with L2-norm in the observation term. This point is of interest in view to
obtain controllability to trajectories with only one control force.

The proof derives from the proof given in [4, Theorem 2.3]. We only
highlight the main points in the proof.

Proof. Using the Carleman estimate (2), the solution (Y , Z) of system (3)
satisfies

λ−4+ǫI(−3, Y ) + I(0, Z) ≤ C0

[
λǫ

∫∫

Qω

e−2sη|Y |2 dx dt

+ s3λ4
∫∫

Qω

e−2sηϕ3|Z|2 dx dt (5)

+ s−3λ−4+ǫ

∫∫

Q

e−2sηϕ−3 (|a11Y |2 + |a12Z|
2 + |a13H1|

2) dx dt

+

∫∫

Q

e−2sη (|a21Y |2 + |a22Z|
2 + |a23H2|

2) dx dt

]
.

The main difficulty is in estimating the term I := λǫ
∫∫

Qω

e−2sη|Y |2 dx dt

in function of the localized observation of Z. Thus, through the assumption
a21(x) ≥ a0 with a0 is a positive constant, we can estimate the following
integral:

I ′ := λǫ
∫∫

Qω

a21ξe
−2sη|Y |2 dx dt,

where ξ is a smooth cut-function satisfying





ξ(x) = 1 ∀x ∈ ω′,

0 < ξ(x) ≤ 1 ∀x ∈ ω′′,

ξ(x) = 0 ∀x ∈ R
n \ ω′′,

and ω′ ⋐ ω′′ ⋐ ω ⋐ Ω.

5



Using the second equation of system (3), we have

I ′ = λǫ
∫∫

Qω

e−2sηξ(∂tZ −∆Z − a22Z − a23H2)Y dx dt

= λǫ
∫∫

Qω

e−2sηξ(∂tZ)Y dx dt− λǫ
∫∫

Qω

e−2sηξ(∆z)Y dx dt

λǫ
∫∫

Qω

a22e
−2sηξZY dx dt−λǫ

∫∫

Qω

a23e
−2sηξH2Y dx dt := I1+I2+I3+I4.

Then, by integration by parts and Young inequalities (see [4] for more de-
tails), we obtain, for s sufficiently large,

|I1|+ |I2|+ |I3| ≤ Cs4λ4+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt+ ”absorbed terms” ,

and

|I4| ≤ C

(
λ2ǫ

∫∫

Qω

e−2sη|H2|
2 dx dt+

∫∫

Qω

e−2sη|Y |2 dx dt

)
,

C being a generic constant which depends on Ω, ω, R and T and ”absorbed
terms” means integrals terms dominated by the left hand side of (5) for large
s. Finally, we have, for s sufficiently large,

|I| ≤
1

a0
|I ′| ≤

C

a0
s4λ4+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt+ Cλ2ǫ
∫∫

Q

e−2sη|H2|
2 dx dt

+ ”absorbed terms” . (6)

If we note

J := s−3λ−4+ǫ

∫∫

Q

e−2sηϕ−3 (|a11Y |2 + |a12Z|
2 + |a13H1|

2) dx dt

+

∫∫

Q

e−2sη (|a21Y |2 + |a22Z|
2 + |a23H2|

2) dx dt,

we obtain, according (6), for s sufficiently large and ǫ > 0,

|J |+ |I| ≤ C

(
s−3λ−4+ǫ

∫∫

Q

e−2sηϕ−3 |H1|
2 dx dt+ λ2ǫ

∫∫

Q

e−2sη |H2|
2 dx dt

)

+ ”absorbed terms” .

Finaly, the previous estimate achieves the proof of Theorem 2.2.
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3 Stability result

In this section we give the proof of Theorem 1.3.

Let (U, V ) (resp. (Ũ , Ṽ )) be solution of (1) associated to (a11, a12, a13, a21,
a22, k1, k2, U0, V0) (resp. (a11, a12, ã13, ã21, a22, k1, k2, U0, V0). Then, if

we set u = U − Ũ , v = V − Ṽ , Y = ∂tu and Z = ∂tv, (Y, Z) is solution to
the following problem





∂tY = ∆Y + a11(x)Y + a12(x)Z + γ1∂tf(Ũ , Ṽ ) + a13(x)∂tF (U, V, Ũ , Ṽ ), in Q0,

∂tZ = ∆Z + a21(x)Y + a22(x)Z + γ2∂tŨ in Q0,

Y (x, t) = Z(x, t) = 0 on Σ0,

Y (x, 0) = γ1f(U0, V0), Z(x, 0) = γ2U0 in Ω,
(7)

where γ1 = (a13 − ã13), γ2 = (a21 − ã21) and F (U, V, Ũ , Ṽ ) = f(U, V )− f(Ũ , Ṽ ).
If we apply the modified Carleman estimate (4) to the previous system (7), we have

λ−4+ǫI(−3, Y ) + I(0, Z) ≤ C1s
4λ4+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt

+C1

[
s−3λ−4+ǫ

∫∫

Q

e−2sη ϕ−3 (|γ1∂tf(Ũ , Ṽ )|2 + |∂tF |
2) dx dt (8)

+ λ2ǫ
∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt

]
.

Now we shall ”absorb” the term A = s−3λ−4+ǫ

∫∫

Q

e−2sη ϕ−3 |∂tF |
2 dx dt. So, we

need the following lemma (see [13]):

Lemma 3.1. There exists a positive constant C > 0 such that.

∫∫

Q

∣∣∣∣
∫ t

T ′

q(x, ξ)dξ

∣∣∣∣
2

e−2sηdxdt ≤
C

s

∫∫

Q

|q(x, t)|2e−2sηdxdt

for all large s > 0 and q ∈ L2(Q).

Since ϕ−3 ≤ C T 6

43 , ϕ
−3 ≤ C T 12

46 ϕ
3 and using Assumption 1.2-(1), the previous

Lemma yields

A ≤ Cλ−4+ǫs−3(1 + s−1)

∫∫

Q

e−2sη (|Y |2 + ϕ3|Z|2) dx dt. (9)

Therefore, for s large enough and ǫ > 0, the integral A can be ”absorbed” by the
left hand side of (8).
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Then (8) can be written as follows

λ−4+ǫI(−3, Y ) + I(0, Z) ≤ C1s
4λ4+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt

+C1

[
s−3λ−4+ǫ

∫∫

Q

e−2sη ϕ−3 |γ1∂tf(Ũ , Ṽ )|2 dx dt (10)

+ λ2ǫ
∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt

]
.

Let us introduce the following integral

I1 = λ−4+ǫ

∫ T ′

t0

∫

Ω

M
(−3)
2 ψ1 · ψ1 dx dt,

with ψ1 = e−sηY ϕ−3/2 and T ′ = T+t0
2 .

We first estimate I1 with the modified Carleman estimate (10):

I1 ≤
1

2
λ−2

[
λ−4+ǫ‖M

(−3)
2 ψ1‖

2
L2(Q) + λǫ

∫ T ′

t0

∫

Ω

e−2sηϕ−3|Y |2 dx dt

]

≤
1

2
λ−2C1

[
s4λ4+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt (11)

+ s−3λ−4+ǫ

∫∫

Q

e−2sηϕ−3 |γ1∂tf(Ũ , Ṽ )|2 dx dt

+ λ2ǫ
∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt

]
.

By computing I1, we obtain

1

2
λ−4+ǫ

∫

Ω

|ψ1(· , T
′)|2 dx ≤ 2|I1|+C1λ

−3+ǫs(λ+1)

∫∫

Q

e−2sηϕ−2|Y |2 dx dt. (12)

Applying the modified Carleman estimate (10) to the last term in (12) with ϕ−2 ≤
CT 4 and using the estimate (11), we have

1

2
λ−4+ǫ

∫

Ω

|ψ1(· , T
′)|2 dx ≤

1

2
sλ−2C1

[
s4λ4+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt

+ s−3λ−4+ǫ

∫∫

Q

e−2sηϕ−3 |γ1∂tf(Ũ , Ṽ )|2 dx dt

+ λ2ǫ
∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt

]
. (13)
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Then, the estimate (13) yields

λ−4+ǫ

∫

Ω

e−2sη(· , T ′)ϕ−3(· , T ′)|Y (· , T ′)|2 dx ≤ C

[
s5λ2+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt

+ s−2λ−6+ǫ

∫∫

Q

e−2sη ϕ−3 |γ1∂tf(Ũ , Ṽ )|2 dx dt

+ sλ−2+2ǫ

∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt

]
.

Since (U, V )(·, T ′) = (Ũ , Ṽ )(·, T ′), we have Y (· , T ′) = γ1f(Ũ , Ṽ )(· , T ′). Thus, we
obtain

λ−4+ǫ

∫

Ω

e−2sη(· , T ′)ϕ−3(· , T ′)|γ1f(Ũ , Ṽ )(· , T ′)|2 dx

≤ C

[
s5λ2+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt (14)

+ s−2λ−6+ǫ

∫∫

Q

e−2sη ϕ−3 |γ1∂tf(Ũ , Ṽ )|2 dx dt

+ sλ−2+2ǫ

∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt

]
.

In a similar way, we introduce

I2 =

∫ T ′

t0

∫

Ω

M
(0)
2 ψ2 · ψ2 dx dt,

with ψ2 = e−sηZ.
Using the fact that Z(· , T ′) = γ2Ũ(· , T ′), we obtain
∫

Ω

e−2sη(· , T ′)|γ2Ũ(· , T ′)|2 dx ≤ Cs5/2λ2+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt

+Cs−9/2λ−6+ǫ

∫∫

Q

e−2sη ϕ−3 |γ1∂tf(Ũ , Ṽ )|2 dx dt (15)

+Cs−3/2λ−2+2ǫ

∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt.

By adding (14) and (15), we have

λ−4+ǫ

∫

Ω

e−2sη(· , T ′)ϕ−3(· , T ′)|γ1f(Ũ , Ṽ )(· , T ′)|2 dx+

∫

Ω

e−2sη(· , T ′)|γ2Ũ(· , T ′)|2 dx

≤ Cs5λ2+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt+ Csλ−2+2ǫ

∫∫

Q

e−2sη |γ2∂tŨ |2 dx dt (16)

+Cs−2λ−6+ǫ

∫∫

Q

e−2sη ϕ−3 |γ1∂tf(Ũ , Ṽ )|2 dx dt.
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By [14], we can have Ũ ∈ H1((t0, T );H
2(Ω)) for suitable boundary and initial con-

ditions, so ∂tŨ ∈ L2((t0, T );H
2(Ω)). Moreover, by Assumption 1.2-(3) ∂tf(Ũ , Ṽ ) ∈

L2((t0, T );H
2(Ω)). Then for n ≤ 3, ∂tŨ and ∂tf(Ũ , Ṽ ) are in L2((t0, T );L

∞(Ω))
by classical Sobolev imbedding. Thus, using Assumptions 1.1-(2) and 1.2-(2), the
inequality (16), for 0 < ǫ < 1 and λ sufficiently large, yields

λ−4+ǫ

∫

Ω

e−2sηϕ−3|γ1|
2 dx+

∫

Ω

e−2sη|γ2|
2 dx ≤ Cs5λ2+ǫ

∫∫

Qω

e−2sηϕ4|Z|2 dx dt.

Then, the proof of Theorem 1.3 is complete.

Remark 3. Denote that in this result we need the use of the two large parameters s
and λ. This technical point allows to obtain the observation in L2-norm.

We have thus the following uniqueness result:

Corollary 3.2. Under the same assumptions as in Theorem 1.3 and if

(∂tV − ∂tṼ )(x, t) = 0 in Qω,

then a21 = ã21 and a13 = ã13 in Ω.
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