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Abstract. We show in this paper the results on the phase transition of the so-called

fully frustrated simple cubic lattice with the Ising spin model. We use here the Monte

Carlo method with the flat energy-histogram Wang-Landau technique which is very

powerful to detect weak first-order phase transition. We show that the phase transition

is clearly of first order, providing a definite answer to a question raised 25 years ago.

PACS numbers: 05.50.+q Lattice theory and statistics , 64.60.Cn Order-disorder

transformations , 75.40.Mg Numerical simulation studies

‡ Corresponding author



Phase Transition in Fully Frustrated Lattice 2

1. Introduction

Statistical physics provides powerful methods to study behaviors of systems of

interacting particles. In particular, different kinds of transition from one phase to

another has been studied with efficiency during the last 40 years by exact methods[1],

renormalization group, high- low-temperature expansions[2], numerical simulations, ...

Experiments have verified most of these theoretical results. Among the most studied

subjects, we mention the effect of the frustration in spin systems. The frustration

is known to be the origin of spectacular properties such as large ground state (GS)

degeneracy, successive phase transitions, partially disordered phase, reentrance and

disorder lines. Though these aspects have been found in exactly solved models[3], we

believe that many of these features remain in complicated frustrated systems where

exact solutions are not available. These general frustrated systems still constitute at

present a challenge for theoretical physics[4].

Let us recall the definition of a frustrated system. When a spin cannot fully satisfy

energetically all the interactions with its neighbors, it is ”frustrated”. This occurs when

the interactions are in competition with each other, for instance incompatible nearest-

neighbor (NN) and next-nearest-neighbor (NNN) interactions, or when the lattice

geometry does not allow a spin to satisfy all interaction bonds simultaneously such as

the triangular antiferromagnet. Except a few two-dimensional frustrated Ising systems

where exact methods have been devised to solve with mathematical elegance[3, 5, 6, 7,

8, 9], most systems have recourse to numerical simulations and various approximations.

One of the most studied systems is the stacked triangular antiferromagnet (STA) with

interaction between NN. This system with Ising[10], XY and Heisenberg spins[11, 12]

have been intensively studied since 1987[13, 14, 15, 16, 17, 18, 19, 20], but only recently

that the 20-year controversy comes to an end[21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Note

that numerical simulations require now new efficient algorithms to deal with frustrated

systems[29, 30].

There is another fully frustrated system. Initially defined in two-dimensions (2D)

on a square lattice by Villain[31], this model has been generalized in three dimensions

(3D) as shown in Fig. 1. A detailed description of the model will be presented in section

2. The nature of the phase transition in the classical XY[32] and Heisenberg[33] spin

models has been recently investigated. It was shown that it is a first-order transition

putting an end to a 25-year long controversial issue[34, 35]. In this paper, we extend

our study to the case of Ising spin model.

In Section 2 we describe the model and give some technical details of the Wang-

Landau (WL) methods as applied in the present paper. Section 3 shows our results.

Concluding remarks are given in section 4.
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Figure 1. Fully frustrated simple cubic lattice. Discontinued (continued) lines denote

antiferromagnetic (ferromagnetic) bonds.

2. Model and Wang-Landau Method

The model shown in Fig. 1 has been previously called ”fully frustrated simple cubic

lattice” (FFSCL). The Hamiltonian is given by

H = −
∑

(i,j)

JijSi.Sj, (1)

where Si is the Ising spin of values ±1 at the lattice site i,
∑

(i,j) is made over the NN spin

pairs Si and Sj with interaction Jij . We take Jij = −J (J > 0) for antiferromagnetic

bonds indicated by discontinued lines in Fig. 1, and Jij = J for ferromagnetic bonds

indicated by continued lines. The 2D Villain’s model has been intensively studied

with Ising model[31, 36] and XY spin model due to its application in arrays of planar

Josephson’s junctions[38, 39, 40].

Let us recall some results on the present model. The GS degeneracy is infinite due

to the fact that each face of the cube is frustrated, there is thus an infinite number

to arrange the spins in an infinite crystal. Note that ferromagnetic state is one of

the GS spin configurations. In an early MC study[41], it has been shown that as the

temperature T increases, the system selects the long-range ferromagnetic state at low

T but goes to a partially disordered phase where two of the 8 sublattices of the cube

are disordered. The passage to this phase does not have the characteristics of a phase

transition. The specific heat shows a ”shoulder” at T ≃ 0.5 (in unit of J/kB), far below

the transition temperature for the whole system occurring at T ≃ 1.345. Note that

the nature of the low-T ordering of the present model is still not elucidated. However,

in 1987 we have shown[5] in an exactly solved 2D model that a partial disorder can

coexist with an order at equilibrium. Therefore, we believe that the early observation

of two disordered sublattices in an ordered phase may have the same origin rooted in
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the frustration and in the order selection by entropy[31, 36, 37]. The shoulder of the

specific heat may turn out to be a true phase transition. This point has to be checked

with careful MC simulations using very large lattice sizes. This is a formidable task,

but it is not the purpose of this work. In the present work, we concentrate our attention

on the nature of the overall phase transition occurring at a higher temperature. Our

previous work in 1985 has used a standard MC algorithm with short runs and small

lattice sizes permitted by the computer capacity at that time[41]. The results show a

second-order transition with an unusual critical properties. In the light of new results

on frustrated systems obtained by not only new efficient MC algorithms but also today’s

huge computer capacity[29, 30, 32, 33], we study this problem again in order to get a

definite answer to that question.

For weak first-order transitions, MC simulations with the standard Metropolis

algorithm cannot give results with good precision even with the use of large sizes and

long runs. This is because the algorithm does not allow us, among other difficulties, to

easily sample rare microscopic states. Wang and Landau[42] have recently proposed a

MC algorithm which allowed to study classical statistical models with difficultly accessed

microscopic states. In particular, it permits to detect with efficiency weak first-order

transitions[29, 30, 32] The algorithm uses a random walk in energy space in order to

obtained an accurate estimate for the density of states g(E) which is defined as the

number of spin configurations for any given E. This method is based on the fact that

a flat energy histogram H(E) is produced if the probability for the transition to a state

of energy E is proportional to g(E)−1. At the beginning of the simulation, the density

of states (DOS) is set equal to one for all possible energies, g(E) = 1. We begin a

random walk in energy space (E) by choosing a site randomly and flipping its spin with

a probability proportional to the inverse of the temporary density of states (DOS). In

general, if E and E ′ are the energies before and after a spin is flipped, the transition

probability from E to E ′ is

p(E → E ′) = min [g(E)/g(E ′), 1] . (2)

Of course, to enhance the possibility to access to rare states, some tricks have been

devised. Each time an energy level E is visited, the DOS is modified by a modification

factor f > 0 whether the spin flipped or not, i.e. g(E) → g(E)f . At the beginning of the

random walk, the modification factor f can be as large as e1 ≃ 2.7182818. A histogram

H(E) records the number of times a state of energy E is visited. Each time the energy

histogram satisfies a certain ”flatness” criterion, f is reduced according to f →
√
f and

H(E) is reset to zero for all energies. The reduction process of the modification factor

f is repeated several times until a final value ffinal which close enough to one. The

histogram is considered as flat if

H(E) ≥ x%.〈H(E)〉 (3)

for all energies, where x% is chosen between 70% and 95% and 〈H(E)〉 is the average

histogram.
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The WL method has been applied to our spin models with success in our recent

papers[29, 30, 32]. We emphasize that for efficiency, we consider here a multi subinterval

energy scale within an energy range of interest[44, 45] (Emin, Emax) which covers not all

possible energies of the system but all energies in the region will will use in applications.

We divide this energy range to R subintervals, the minimum energy of the i − th

subinterval is Ei
min (i = 1, 2, ..., R), and the maximum is Ei

max = Ei+1
min + 2∆E, where

∆E can be chosen large enough for a smooth boundary between two subintervals. The

WL algorithm is used to calculate the relative DOS of each subinterval (Ei
min, E

i
max)

with a flatness criterion x% = 95%. Note that we reject a spin flip and do not update

g(E) and the energy histogram H(E) of the current energy level E if the spin-flip trial

would result in an energy outside the energy segment. The DOS of the whole range is

obtained by joining the DOS of each subinterval (Ei
min +∆E,Ei

max −∆E).

The thermodynamic quantities[42, 43] can be evaluated by

〈En〉 =
1

Z

∑

E

Eng(E) exp(−E/kBT ) (4)

Cv =
〈E2〉 − 〈E〉2

kBT 2
(5)

〈Mn〉 = 1

Z

∑

E

Mng(E) exp(−E/kBT ) (6)

χ =
〈M2〉 − 〈M〉2

kBT
(7)

where Z is the partition function defined by Z =
∑

E g(E) exp(−E/kBT ). The

canonical distribution at a temperature T can be calculated simply by P (E, T ) =
1
Z
g(E) exp(−E/kBT ).

The simulations have been carried our on a rack of several hundreds of 64-bit CPU.

For a given size L, the calculation takes, depending on L, from a few weeks to several

months to have the required histogram flatness.

3. Results

We have started the simulations from the system linear size L = 60 (the system size is

L3). But only from L = 90 that a sign of first-order transition appears. Therefore, we

use extremely large sizes up to 180. Periodic boundary conditions are used in the three

directions. J = 1 is taken as the unit of energy in the following.

We show in Fig. 2 the energy per spin and the specific heat, for L = 180, using the

flat histogram obtained with WL method. Several remarks are in order:

i) the energy at the largest size shows a ’pseudo” discontinuity at the transition

temperature TC ≃ 1.34814. We will see below that this discontinuity is confirmed by

the double-peak energy histogram at this temperature,

ii) the specific heat shows a very strong size dependence. It should be noted that

the specific heat is calculated from the fluctuation of the energy of the system at a
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given T [see Eq. (5)], not by the derivative of E with respect to T . Therefore, when

the energy has a discontinuity at TC with two levels E1 and E2, the average energy

is E = (E1 + E2)/2. It is the fluctuations of E which gives rise to CV , and we will

not see a delta-like function should CV is calculated by the energy derivative. This

is the reason why in standard MC simulations with the Metropolis algorithm, we do

not see discontinuity in energy for weak first-order transition (what is sorted out of the

simulation is an average energy). So, an energy histogram is really needed if we want

to see weak first order.

The energy histogram can be realized directly in the old fashion manner by

measuring the system energy at a given T [46]. However, when relaxation between rare

states are very slow, we need the temperature-independent WL flat histogram technique

as described above. We show the WL result in in Fig. 3. As seen, for L = 120, the

energy histogram begins to show a sign of the double-peak structure. The dip between

the two maxima becomes deeper with increasing size. Note that a ”true” discontinuity

happens only when the dip comes down to E = 0. This requires sizes much larger than

L = 180. But for our present purpose, we need not to study sizes larger than L = 180.

We note that the distance between the two peaks, i. e. the latent heat, increases

with increasing size and reaches ≃ 0.005 for L = 180. This is very small compared to

the value ≃ 0.03 for the XY case at L = 48, and to ≃ 0.0085 for the Heisenberg case

at L = 90. The smallness of the latent heat in the present Ising case explains why one

should go to an extremely large lattice size to detect the first-order transition.

Let us show in Fig. 4 the maximum of CV versus L in a ln− ln scale, we find a

straight line within statistical errors (by a mean least-square fit) with a slope equal to

φ = 2.794 ± 0.198. This means that Cmax
V = ALφ where A is a constant and φ very

close to the system dimension d = 3. The fact that Cmax
V is proportional to the system

volume gives another strong signature of a first-order transition.

4. Concluding Remarks

We have showed in this paper the results obtained by the WL flat energy-histogram

technique on the phase transition in the Ising fully frustrated simple cubic lattice. We

found that the transition is clearly of first order. Note that the first-order character is so

weak that it has been observed only at extremely large lattice sizes. This finding shows

that early studies using standard MC algorithm with short runs and much smaller

sizes[41] are not correct. Together with our recent results[32, 33], we conclude that

the fully frustrated simple cubic lattice undergoes a first-order transition for Ising,

XY and Heisenberg spin models. It is worth to mention that several other frustrated

systems also show a first-order transition such as helimagnets[47], FCC[48] and HCP[49]

antiferromagnets.

This study shows that one has to be very careful in studying complex systems by

MC simulations: in some cases such as the one studied here, sizes as large as 803 are

still not sufficient to get a correct conclusion. Recent large-scale MC simulations using
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Figure 2. Energy per spin E versus temperature T at the lattice size 1803 (upper

figure) and specific heat per spin CV versus T for lattice sizes 1203, 1403, 1603, 1803

(lower figure). See text for comments.
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Figure 3. Energy histogram for several sizes 1203, 1403, 1603, 1803 at TC indicated

for each linear size on the figure.
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Figure 4. Maximum of the specific heat Cmax

V
versus L in the ln− ln scale. The

straight line is a mean least square fit. The slope is φ = 2.794(198). Note that the

specific heat shown in Fig. 2 has been calculated from the fluctuations of the energy.

special-purpose algorithms such as the WL technique have allowed us to settle several

long-standing controversial questions[29, 30, 32, 33].
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