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Abstract. Recently, the property of connectedness has been claimed
to give a strong motivation on the design of local search techniques
for multiobjective combinatorial optimization. Indeed, when connect-
edness holds, a basic Pareto local search, initialized with at least one
non-dominated solution, allows to identify the efficient set exhaustively.
However, this becomes quickly infeasible in practice as the number of ef-
ficient solutions typically grows exponentially with the instance size. As
a consequence, we generally have to deal with a limited-size approxima-
tion, ideally a representative sample of efficient solutions. In this paper,
we propose the biobjective long and multiple path problems. We show
experimentally that, on the first problem, even if the efficient set is con-
nected, a local search may be outperformed by a simple evolutionary
algorithm in the sampling of the efficient set. At the opposite, on the
second problem, a local search algorithm may successfully approximate
a disconnected efficient set. Then, we argue that connectedness is not
the single property to study for the design of multiobjective local search
algorithms. This work opens new discussions on a proper definition of
multiobjective fitness landscapes.

1 Introduction

The single-objective long path problem [1] has been introduced to show that a
problem instance can be difficult to solve for a hillclimber-like heuristic even if
the search space is unimodal, i.e. the single local optimum is the global optimum.
For such a problem, a hillclimber guarantees to reach the global optimum, but
the length of the path to get it is exponential in the dimension of the search
space. As a consequence, a hillclimbing-based heuristic cannot expect to solve
the problem in polynomial time. The ‘path length’ takes then place in the rank
of problem difficulty, on the same level as multimodality, ruggedness, deceptivity,
and so on. Rudolph [2] demonstrated that the long path problem can be solved in
a polynomial expected amount of time for a (1+1) evolutionary algorithm (EA)



which is able to mutate more than one bit at a time. This (1 + 1) EA is able to
take some shortcuts on the outside of the path so that it makes the computation
more efficient. However, it does not change the argument that, even for unimodal
problems, the path length to the global optimum must be taken into account in
the design of efficient local search algorithms.

Like in single-objective optimization, the structure of the search space can
explain the difficulty for multiobjective local search methods. In multiobjective
combinatorial optimization (MoCO), the efficient set is the set of solutions which
are not dominated by any other feasible solution. It is often claimed that the
structure of this efficient set plays a crucial role for the development of efficient
local search methods [3]. Connectedness is related to the property that efficient
solutions are connected (at distance 1) with respect to a neighborhood rela-
tion [4]. This property has later been extended to the notion of cluster, where
distances can take higher values [5]. When connectedness holds, it becomes pos-
sible to find all the efficient solutions by means of the iterative exploration of
the neighborhood of the current approximation set by starting by one (or more)
solution(s) from the efficient set. This strategy coincides with the Pareto Local
Search (PLS) algorithm [6], initialized with one efficient solution, and then acts
like an exact approach. However, a common knowledge is that, for most MoCO
problems, the number of non-dominated solutions is not polynomial in the size
of the problem instance [7], so that a PLS algorithm can take an exponential
time to identify the efficient set once the later contains an exponential number
of solutions. Then, the goal of the optimization process is often to identify a
representative sample set, containing a limited number of efficient solutions.

In this work, we argue that connectedness is not the only feature which
explains the difficulty of MoCO for search algorithms. Analogously to the single-
objective long path problems, where a hillclimbing algorithm is outperformed by
a simple EA, even if the search space is unimodal, we here oppose straightforward
extensions of those algorithms, a hillclimbing algorithm and a simple EA, in a
multiobjective context. On one side, PLS extends a single-objective hillclimber
in terms of Pareto dominance [6]. At the opposite, we use an adaptation of the
Simple Evolutionary Multiobjective Optimization (SEMO) algorithm [8]. Both
approaches are initialized with one solution from the efficient set, corresponding
to an extreme point of the Pareto front. In this paper, we propose the definition
of the biobjective long path problem (k-lp2) and of the biobjective multiple
path problem (k-mp2). With k-lp2, we show experimentally that, even if the
efficient set is connected, the runtime required by PLS to find a reasonably
good approximation (in terms of hypervolume [9]) is larger than for SEMO,
and becomes computationally prohibitive for large-size instances. Furthermore,
we construct k-mp2 instances where the efficient set is completely disconnected,
but some additional shortcuts are available to walk from one non-dominated
solution to the others. In this case, we show experimentally that PLS can find a
good approximation in a significantly less amount of time than SEMO. Indeed,
both algorithms differ in the way they sample the efficient set. For k-lp2, PLS can
only follow the path defined by the connectedness property while SEMO is able



to take some shortcuts outside of the path. For k-mp2, PLS takes advantage
of the multiple paths, defined outside the efficient set, which are temporally
non-dominated and that lead to further non-dominated solutions.

The reminder of the paper is organized as follows. First, some notions re-
lated to MoCO, connectedness and long path problems are briefly presented in
the next section. Section 3 introduces the class of biobjective long path prob-
lems, for which the efficient set is fully connected and exponential in the size of
the problem instance. Next, the class of multiple path problems is presented in
Section 4. It handles an exponential number of disconnected efficient solutions.
Our experiments illustrate that PLS appears to be outperformed by SEMO for
biobjective long path problems, while more surprisingly, the opposite occurs for
multiple path problems. This work leads to further investigations on a proper
definition of fitness landscapes for MoCO, not only with regards to the efficient
set itself, but also to the way that leads to its approximation.

2 Background

2.1 Multiobjective Combinatorial Optimization

A multiobjective optimization problem can be defined by a set ofm ≥ 2 objective
functions (f1, f2, . . . , fm), and a set X of feasible solutions in the decision space.
In the combinatorial case, X is a discrete set. Let Z = f(X) denote the set of
feasible outcome vectors in the objective space. To each solution x ∈ X is assigned
an objective vector on the basis of a vector function f : X → Z with f(x) =
(f1(x), f2(x), . . . , fm(x)). Without loss of generality, we here assume that all m
objective functions are to be maximized. A solution x ∈ X is said to dominate

a solution x′ ∈ X , denoted by x ≻ x′, iff ∀i ∈ {1, 2, . . . ,m}, fi(x) ≥ fi(x
′) and

∃j ∈ {1, 2, . . . ,m} such as fj(x) > fj(x
′). A solution x ∈ X is said to be efficient

(or Pareto optimal, non-dominated) if there does not exist any other solution
x

′

∈ X such that x
′

dominates x. The set of all efficient solutions is called the
efficient set and its mapping in the objective space is called the Pareto front.
A possible approach in MoCO is to find a minimal set of efficient solutions,
such that strictly one solution maps to each non-dominated vector. However,
generating the entire efficient set of a MoCO problem is usually infeasible for
two main reasons. First, the number of efficient solutions is typically exponential
in the size of the problem instance [7]. In that sense, most MoCO problems
are said to be intractable. Second, deciding if a feasible solution belongs to the
efficient set is known to be NP-complete for numerous MoCO problems [10], even
if none of its single-objective counterpart is NP-hard. Therefore, the overall goal
is often to identify a good efficient set approximation, ideally a subpart of the
efficient set. To this end, heuristic approaches have received a growing interest
in the last decades.

2.2 Local Search and Connectedness

A neighborhood structure is a function N : X → 2X that assigns a set of solutions
N (x) ⊂ X to any solution x ∈ X . N (x) is called the neighborhood of x, and a



solution x′ ∈ N (x) is called a neighbor of x. Local search algorithms for MoCO,
like the Pareto Local Search (PLS) [6], generally combine the use of such a
neighborhood structure with the management of an archive (or population) of
mutually non-dominated solutions found so far. The basic idea is to iteratively
improve this archive by exploring the neighborhood of its own content until no
further improvement is possible, or until another stopping condition is fulfilled.

Recently, local search approaches have been successfully applied to MoCO
problems. Some structural properties of the landscape seem to allow the search
space to be explored in an effective way. Such a property, related to the efficient
set, is connectedness [3, 4]. As argued by the original authors, it could provide a
theoretical justification for the design of multiobjective local search. Let us define
a graph such that each node represents an efficient solution, and an edge connects
a pair of nodes if the corresponding solutions are neighbors with respect to a
given neighborhood relation [4]. The efficient set is said to be connected if there
exists a path between every pair of nodes in the graph. Paquete and Stützle [5]
extended this notion by introducing an arbitrary distance separating two efficient
solutions (i.e. the minimal number of neighbors to visit to go from one solution
to another). Unfortunately, in the general case, rather negative results have been
reported in the literature for some classical MoCO problems [3, 4]. However, in
practice, many empirical results show that efficient solutions for some MoCO
problems are strongly clustered with respect to more classical neighborhood
structures from combinatorial optimization, see for instance [5]. Indeed, in the
case of connectedness, by starting with one or more non-dominated solutions,
it becomes possible to find all the efficient solutions through a basic iterative
neighborhood exploration procedure, like PLS. However, we show in this paper
that connectedness is not the only property to deal with when searching for an
approximation of the efficient set.

2.3 The Single-objective Long k-path Problem

The long path problem has been introduced by Horn et al. [1] to design unimodal
landscapes where the path length to reach the global optimum is exponential
in the size of the problem instance. The long k-path is defined on bit strings of
size l. Let Pl,k be a long k-path of dimension l, and Pl,k(i) the i

th solution on this
path. The long k-path of dimension 1 is only made of two solutions P1,k = (0, 1),
and the path of dimension l + k can be defined by recursion:

Pl+k,k(i) =







0kPl,k(i) if 0 ≤ i < sl,k
0k−j1jPl,k(sl,k − 1) if sl,k ≤ i < sl,k + k − 1 with j = i− sl,k + 1
1kPl,k(sl+k,k − 1− i) if sl,k + k − 1 ≤ i < sl+k,k

where sl,k = |Pl,k| = 2sl−k,k + (k − 1) = (k + 1)2(l−1)/k − k + 1 is the length of
the k-path of dimension l. The fitness function of the long k-path problem (to
be maximized) is defined as follows. For all x ∈ {0, 1}l:

f(x) =

{

l + i if x ∈ Pl,k and x = Pl,k(i)
|x|0 if x 6∈ Pl,k



where |x|0 is the number of ‘0’ in the bit string x. In the long k-path, a shortcut
can be found by flipping k consecutive bits. For a hillclimbing algorithm which
chooses the best solution in the neighborhood defined by Hamming distance 1,
the number of iterations to reach the global optimum matches the length of
the path, sl,k. The number of evaluations is then (l · sl,k) for a hillclimber. On
the contrary, a (1 + 1) EA which flips each bit with a probability p = 1/l at
each iteration is found the global optimum in polynomial expected running time
O(lk+1/k) [2]1.

3 The Biobjective Long k-path Problem

In this section, we propose a biobjective problem where the efficient set is con-
nected, but so huge that the full enumeration of it cannot be made in polynomial
time. We define the biobjective long k-path problem to show that the required
runtime to sample a connected efficient set can be very long for a simple local
search algorithm.

3.1 Definition

The biobjective long k-path problem (k-lp2) is defined on a bit string of length l,
with an objective function vector of dimension 2. Each objective function corre-
sponds to a ‘single’ long k-path problem, which is to be maximized. The k-lp2 is
built such that the efficient set matches the path Pl,k. The objective function
vector of k-lp2 is defined as follows. For all x ∈ {0, 1}l:

f(x) = (f1(x), f2(x)) =

{

hl,k(i) if x ∈ Pl,k and x = Pl,k(i)
(|x|0, |x|0) if x 6∈ Pl,k

where h is the function which associates each integer i to the point of coordi-
nates (l + i, l + sl,k − 1− i) in the objective space. So, the first objective is the
fitness function of the single-objective long k-path problem.

The efficient set of k-lp2 corresponds to the path Pl,k (see Fig. 1). By con-
struction, all solutions in Pl,k are neighbors with respect to Hamming distance 1,
so that the efficient set is connected. The size of Pl,k is sl,k = (k+1)2(l−1)/k−k+1,
which cannot be enumerated in a polynomial number of evaluations in the gen-
eral case. The efficient set of k-lp2 is then (i) connected and (ii) intractable.
Let us now experimentally examine the ability of search algorithms to identify
a good approximation of it.

3.2 Experimental Analysis

Ingredients. For the single-objective long path problems, existing studies are
based on the comparison of a hillclimber and of a (1 + 1) EA [2]. Then, we will

1 The lower bound of the expected runtime could be exponential when k =
√
l − 1 [11].
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Fig. 1. Objective space of the biobjective long 2-path problem of dimension l = 7.

here consider straightforward multiobjective extensions of these approaches, re-
spectively a PLS- and a SEMO-like algorithm. They are both adapted to the
path problems (k-lp2 and k-mp2) introduced in this paper, and they will be
respectively denoted by PLSp and SEMOp to differentiate them from their orig-
inal implementation. A pseudo-code is given in Algorithm 1 and Algorithm 2,
respectively. At each PLSp iteration, one solution is chosen at random from
the archive. All solutions located at Hamming distance 1 are evaluated and are
checked for insertion in the archive. For the problem under study, note that at
most two neighbors are located on the long path, with one of them being already
found at a previous iteration. The current solution is then marked as visited in
order to avoid a useless revaluation of its neighborhood. At each SEMOp step,
one solution is randomly chosen from the archive. Each bit of this solution is
independently flipped with a probability p = 1/l, and the obtained solution is
checked for insertion in the archive. In PLSp, the whole neighborhood is explored
while in SEMOp, all solutions are potentially reachable with respect to differ-
ent probabilities2. In order to take advantage of the connectedness property, the
archive of both algorithms is initialized with one solution from the efficient set:
the bit string (0, 0, . . . , 0) of size l.

However, the efficient set of k-lp2 is intractable. It becomes then impracti-
cable to use an unbounded archive for large-size problem instances. As a conse-
quence, contrary to the original approaches, we here maintain a bounded archive

2 In SEMO, the neighborhood operator is generally supposed to be ergodic [8].



Algorithm 1 PLSp

A← {0l}
repeat

select x ∈ A at random such that x is not visited
set x to visited

for all x′ such that |x− x′|1 = 1 do

updateArchive (A, x′)
end for

until I⋆H − IH(A) < ǫ · I⋆H

Algorithm 2 SEMOp

A← {0l}
repeat

select x ∈ A at random
create x′ by flipping each bit of x with a probability p = 1/l
updateArchive (A, x′)

until I⋆H − IH(A) < ǫ · I⋆H

of size M in our implementation of the algorithms. Our attempt is not to com-
pare different bounded archiving techniques, but rather to limit the number
of evaluations required for computing a reasonably good approximation of the
efficient set. So, we define a nearly ideal archiving method to find such an ap-
proximation for the particular case of k-lp2. If the Pareto front was linear, an
‘optimal’ approximation of size M contains uniformly distributed points over
the segment [(l, l + sl,k − 1), (l + sl,k − 1, l)] in the objective space. Note that,
in our case, those points do not necessarily correspond to feasible solutions in
the decision space. The distance between 2 solutions with respect to the first
objective is then δ = (sl,k − 1)/(M − 1). The bounded archiving technique un-
der consideration is given in Algorithm 3. First, dominated solutions are always
discarded. If the number of non-dominated solutions becomes too large, the solu-
tion with the lowest first objective value which is too close from the previous one
(i.e. the difference with respect to the first objective is below δ) is removed from
the archive. If this rule does not hold for any solution, the penultimate solution
(with respect to the order defined by objective 1) is removed (not the last one).
Of course, such an archiving technique is k-lp2-specific, but it does not intro-
duce any bias within heuristic rules generally defined by existing diversity-based
archiving approaches.

Experimental Design. The algorithms are compared in terms of the required
number of evaluations to attain a reasonable approximation of the efficient set.
The cost related to archiving is then ignored, as we want to focus on the complex-
ity of algorithms independently of the archiving strategy. The stopping criteria
is based on a percentage of hypervolume IH [9] covered by the solutions from
the archive. For k-lp2, an upper bound of the maximal hypervolume (I⋆H) for an



Algorithm 3 Bounded archiving

updateArchive(A, x):
for all a ∈ A do

if x ≻ a then

A← A \ {a}
end if

end for

if not ∃a ∈ A : a ≻ x then

A← A ∪ {x}
if |A| > M then

reduceArchive(A)
end if

end if

reduceArchive(A):
Sort A in the increasing order w.r.t f1-
values: A = {a1, a2, a3, . . .}
i← 2
while |A| > M do

if i = |A| then
A← A \ {a|A|−1}

else if f1(ai)− f1(ai−1) < δ then

A← A \ {ai}
else

i← i+ 1
end if

end while

approximation of size M can be computed by uniformly distributing M points
over the Pareto front, that is I⋆H = δ2(M + 1)M/2, (l, l) being the reference
point. Once the hypervolume covered by the current archive IH(A) is below an
ǫ-value from I⋆H , the algorithm stops.

The experimental study has been conducted with k = 2 and dimensions
l = {19, 29, 39, 49, 59}. We use an archive of size M = 100, and the required
approximation to be found is less than ǫ = 2% of the maximal hypervolume. In
other words, at least 98% of the best-possible approximation is covered in terms
of hypervolume. The archive is initialized with a bit string where all bits are set
to ‘0’. The number of evaluations is reported over 30 independent runs.

Results and Discussion. Fig. 2 shows the average and the standard deviation
of the number of evaluations for each algorithm. The number of evaluations
required by PLSp seems to grow exponentially with the dimension l. It could be
interpreted as follows. To approximate the efficient set, PLSp follows the long
path. When the archive reaches its maximum size, the archiving technique let
one solution at an ‘optimal’ position in the objective space at every δ iteration.
So, at a given iteration i, the current hypervolume is approximately IH (A) ≈
δ2(2M + 1 − j) · j/2, where j = ⌈i/δ⌉. Then, the stopping criteria is reached
at the end of the long path only, so that the number of evaluations is more
than exponential in the dimension of the problem instance (l times larger). For
SEMOp, the number of evaluations increases from 20.103 evaluations for l = 19 to
250.103 for l = 59. The computational effort required by SEMOp and by PLSp is
different of several orders of magnitude. For SEMOp, it is difficult to pretend that
the runtime is polynomial or not, nevertheless the number of evaluations remains
huge. The increase is higher than quadratic and seems to fit a cubic curve.

To summarize, SEMOp can sample the efficient set more easily than PLSp
by taking shortcuts out of the long path. From the SEMOp point of view, the
efficient set is k-connected [5]: one efficient solution can be reached by flipping
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k bits of another efficient solution. The computational difference between the
two algorithms can be explained by different structures of the graph of efficient
solutions. For PLSp, it is linear, and for SEMOp, the distance between 2 efficient
solutions in the graph is much smaller than the distance in the objective space.
This result suggests that the connectedness property is not fully satisfactorily
to explain the degree of difficulty of the problem. The structure of the graph
of efficient solutions induced by the neighborhood relation should also be taken
into account. In the next section, we will show that the structure of this graph
is still not enough to explain all the difficulties.

4 The Biobjective Multiple k-path Problem

In the biobjective long k-path, the efficient set is connected, intractable and
difficult to sample. In this section, we define the biobjective multiple k-path
problem (k-mp2) where the efficient set is still intractable but not connected
anymore, while easier to sample for a PLS-like algorithm.

4.1 Definition

The idea is to modify k-lp2 in order to make the efficient set disconnected (with
respect to Hamming distance 1), and to add some shortcuts out of the path that
guide the search towards efficient solutions. A k-mp2 instance of dimension l
is defined for bit strings of size l such that (l − 1)/k ∈ N, with k being an
even integer value. First, let us define the additional paths, called extra paths.
Let Dl,k and Ul,k be the extra paths of the k-path of dimension l. Let u ∈



(0k|1k)∗ be a concatenation of 1k and 0k. Dl,k(u, j, i) (resp. Ul,k(u, j, i)) is the j
th

solution on the extra path from solution Pl,k(i0) = u0kPl−|u|−k,k(i) to solution

Pl,k(i1) = u1kPl−|u|−k,k(i) of the long k-path (resp. from Pl,k(i1) to Pl,k(i0)). D
and U are defined like the bridges in the single-objective long path problem [1].
∀p ∈ [0.. l−1−k

k ] , ∀u ∈ (0k|1k)p , ∀i ∈ [0..sl−(p+1)k,k − 1] , ∀j ∈ [1..k − 1]:

{

Dl,k(u, j, i) = u0k−j1jPl−(p+1)k,k(i)
Ul,k(u, j, i) = u1k−j0jPl−(p+1)k,k(i)

The sequence of neighboring solutions (Dl,k(u, 1, i), . . . , Dl,k(u, k − 1, i)) is the
extra path to go from solution Pl,k(i0) to solution Pl,k(i1). Respectively, the
sequence (Ul,k(u, 1, i), . . . , Ul,k(u, k− 1, i)) allows to go from Pl,k(i1) to Pl,k(i0).
For k an even number, i0 and i1 have the same parity: i0 is even iff i1 is even.

In k-mp2, the efficient set corresponds to the set of solutions Pl,k(i) in the
long path where i is an even number. The efficient set is then fully disconnected
with respect to Hamming distance 1. Solutions Pl,k(2n+1) which are out of the
efficient set are translated by a vector (−0.5,−0.5) ‘under’ the solutions Pl,k(2n+
2), so that they become dominated. As a consequence, a solution Pl,k(2n +
1) leads to, but is dominated by, the efficient solution Pl,k(2n + 2). However,
Pl,k(2n + 1) and Pl,k(2n) are mutually non-dominated. In the same way, the
extra paths to go from Pl,k(i0) to Pl,k(i1) are put on the first diagonal of the
square enclosed by (xi1 − 1, yi1 − 1) and (xi1 , yi1). More formally, the fitness
function of the k-mp2 can be defined as follows. For all x ∈ {0, 1}l:

f(x) =







































hl,k(i) if x ∈ Pl,k and x = Pl,k(i) and i even
hl,k(i + 1)− (0.5, 0.5) if x ∈ Pl,k and x = Pl,k(i) and i odd

hl,k(i1)− (k−j
k , k−j

k ) if x ∈ Dl,k and x 6∈ Pl,k and
x = Dl,k(u, j, i) with Pl,k(i1) = u1kPl,k(i)

hl,k(i0)− (k−j
k , k−j

k ) if x ∈ Ul,k and
x = Ul,k(u, j, i) with Pl,k(i0) = u0kPl,k(i)

(|x|0, |x|0) otherwise

Fig. 3 illustrates the extra paths starting from one solution. Fig. 4 shows the
objective space of a k-mp2 instance. For j < k − 1, solution Dl,k(u, j, i) is a
neighbor of solution Dl,k(u, j + 1, i) and is dominated by it. As well, solution
D(u, k − 1, i) is a neighbor of the efficient solution Pl,k(i1) and is dominated by
it. However, all Dl,k(u, j, i) and Pl,k(i0) are mutually non-dominated. The extra
paths D (Down) lead to a further solution in the long path, and the extra paths
U (Up) are the backward paths of the extra paths D. With those extra paths, an
algorithm based on one bit-flipping can reach an efficient solution easily, just by
following the sequence defined by the set of mutually non-dominated solutions
found so far.

4.2 Experimental Analysis

The experimental study is conducted with the same approaches and parameters
defined for the biobjective long path problem on the previous section. Fig. 5
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The length of extra paths is 1. Each solution is labelled by D and U .
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Fig. 4. Objective space of the biobjective multiple 2-path problem of dimension l = 7.



shows the average value and the standard deviation of the number of evaluations
for each algorithm. Fig. 6 allows to compare the number of evaluations with the
previous problem. Contrary to the results obtained for the long 2-path problem,
PLSp here clearly outperforms SEMOp which needs 3 times more evaluations for
dimension l = 49. For PLSp, the number of evaluations increases linearly with the
dimension of the problem instance. PLSp can find easily the same shortcuts than
SEMOp, and the latter now loses computational resources to explore dominated
solution and to evaluate the neighborhood of some solutions from the archive
more than once. The curves on the right show that it is much easier to sample
the efficient set of the multiple 2-path than for the long 2-path problem: for
dimension 49, nearly 27 times more evaluations are required between SEMOp

for k-lp2 and PLSp for k-mp2.

This is the main results of this study. The extra paths guide the search process
to efficient solutions distributed all over the Pareto front. The extra solutions
are not in the efficient set and do not appear on the graph of efficient solutions,
but they are the keys to explain the performances of local search approaches.
Indeed, efficient solutions can now be reached very quickly by following the extra
paths, this explains the good performances of the algorithms. Features from the
efficient set (connectedness, etc.) are independent of the solutions from the extra
paths. Hence, the features of the efficient set are not the only key issue to explain
the success of local search for MoCO.
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Fig. 5. Average value and standard deviation of the number of evaluations for PLSp

and SEMOp on biobjective multiple 2-path problems.
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5 Conclusions and Future Works

In this paper, we proposed two new classes of biobjective combinatorial opti-
mization problems, the long and the multiple path problems, in order to demon-
strate empirically that connectedness is not the only key issue that characterizes
the difficulty of a multiobjective combinatorial optimization problem. In other
words, connectedness is not the ‘Holy Grail’ of search space features when the
efficient set is intractable, and when the goal is to find a limited-size approxi-
mation. Indeed, on the long path problems, where the efficient set is intractable
and connected, our experiments show that the running time to approximate it is
exponential for a Pareto-based local search (PLS), and polynomial for a simple
Pareto-based evolutionary algorithm (SEMO). On the multiple path problems,
where the efficient set is still intractable but disconnected, PLS now outperforms
SEMO, which seems rather unexpected at first sight. This suggests two new con-
siderations to measure the difficulty of finding a good efficient set approximation:

– First, the structure of the graph of efficient solutions induced by the neigh-
borhood relation defined by the algorithm should also be taken into account.
In the long path problems, this graph is a huge line for PLS whereas it is
highly connected for SEMO. Extending the notion of cluster on the efficient
graph as defined by Paquete and Stützle [5], we should study a graph where
an edge between efficient solutions is defined as the probability to reach one
solution from the other.

– Second, the solutions outside the efficient set should also be considered. In
the multiple path problems, some solutions outside of the efficient set are



temporally non-dominated so that they are saved into the archive during the
search process. They help to approximate the (disconnected) efficient set.

In some sense, the fitness landscape of biobjective multiple path problems is uni-
modal, with a number of short paths leading to good solutions. On the contrary,
the biobjective long path problem can be characterized by a unimodal landscape
where the path to good solutions is intractable.

Clearly, following the work of Horoba and Neumann [12], the next step will
consist in leading a rigorous runtime analysis of PLS and SEMO for both the
multiple and the long path problems. The actual bounded archiving method
is probably too specific, and seems very difficult to study rigorously. Then, in
order to do so, we certainly have to change this strategy with the concept of
ǫ-dominance, for instance. It is also possible to extend the biobjective path prob-
lems proposed in this paper to a larger objective space dimension (more than 2
objective functions), or with a larger ‘disconnectedness’ (delete more than one
solution over two). The next challenge will be to define a relevant definition of
fitness landscape in order to better understand the difficulty of multiobjective
combinatorial optimization problems. Given that the goal is here to find a set
of solutions, we believe that another way to do so would be to analyze a fitness
landscape where the search space consists of sets of solutions. A solution would
then be a set of bit strings instead of a single bit string for the problems under
study in this paper. Therefore, we plan to formally define fitness landscapes for
the recent proposal of set-based multiobjective optimization [13].
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