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Sébastien Verel1,3, Arnaud Liefooghe2,3,
Laetitia Jourdan3, and Clarisse Dhaenens2,3

1 University of Nice Sophia Antipolis – CNRS, France
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Abstract. In multiobjective combinatorial optimization, there exists
two main classes of metaheuristics, based either on multiple aggrega-
tions, or on a dominance relation. As in the single-objective case, the
structure of the search space can explain the difficulty for multiobjective
metaheuristics, and guide the design of such methods. In this work we
analyze the properties of multiobjective combinatorial search spaces. In
particular, we focus on the features related the efficient set, and we pay
a particular attention to the correlation between objectives. Few bench-
mark takes such objective correlation into account. Here, we define a
general method to design multiobjective problems with correlation. As
an example, we extend the well-known multiobjective NK-landscapes.
By measuring different properties of the search space, we show the im-
portance of considering the objective correlation on the design of meta-
heuristics.

1 Introduction

Multiobjective combinatorial optimization (MoCO) problems, where several cri-
teria have to be optimized simultaneously, receive more and more interest in the
field of search algorithms. One of the main issues in multiobjective optimization
is the Pareto dominance relation, which gives a partial order between feasible
solutions. Roughly speaking, a given solution dominates another solution if it
is better according to all objective functions. A possible approach in solving a
multiobjective problem consists in finding the whole set of non-dominated so-
lutions, called the efficient set, or a subset that is close to it. This efficient set
plays a central role in the structure of the search space.

The design of metaheuristics for multiobjective combinatorial optimization
is a real challenge, as it is problem-dependent. Like in single-objective optimiza-
tion, the structure of the search space can explain the ability of multiobjective
metaheuristics. Two main classes of multiobjective metaheuristics can be dis-
tinguished. The first ones, known as scalar approaches, are based on multiple
scalarized aggregations of the objective functions. However, they are only able



to find a subset of efficient solutions, called supported efficient solutions. The
second ones, known as Pareto-based approaches, directly or indirectly focus the
search on the Pareto dominance relation. Moreover, when the size of the effi-
cient set is too large, a metaheuristic should manipulate a limited-size solution
set during the search, and this limit is related to the size of the efficient set. In
addition, connectedness is related to the property that efficient solutions are con-
nected with respect to a neighborhood relation [1]. When connectedness holds,
it becomes possible to find the whole efficient set by iteratively exploring the
neighborhood of the current approximation, initialized with at least one efficient
solution. This strategy is often used explicitly, or implicitly by Pareto-based
approaches. For the design of metaheuristics for MoCO, three main questions,
related to the efficient set properties, are of our interest in this paper:

(i) What is the cardinality of the efficient set? Can we pretend to identify or
approximate the whole set of efficient solutions, or should we consider a
mechanism to bound the size of the approximation set?

(ii) How many efficient solutions are supported? Is a scalar approach able to
identify or approximate enough efficient solutions?

(iii) Are efficient solutions connected with respect to a neighborhood operator?
Is it possible to identify or approximate additional efficient solutions by a
simple local search initialized with a subpart of the efficient set?

In particular we want to study such properties according to the objective corre-
lation, as it seems to largely affect the solutions of MoCO problems [2] and the
behavior of metaheuristics [3]. Few benchmark takes the correlation between ob-
jectives into account. To the best of our knowledge, the multiobjective quadratic
assignment problem [4] should be the single one. In this problem, a parameter can
tune the correlation between different pairs of objectives. Another well-known
benchmark, the multiobjective NK-landscapes [5] facilitate the study of prob-
lem structure in multiobjective optimization. In this class, the epistatic degree,
which is the degree of non-linearity of the problem, can be tuned very precisely.
In this work, in order to study the problem structure, and in particular the
structure of the efficient set, we define a general method to tune the correlation
between all pairs of objectives very precisely. As an example, we define the mul-
tiobjective ρMNK-landscapes, an extension of multiobjective NK-landscapes
with objective correlation. With such a benchmark, we can study the problem
structure according to the objective space dimension, the epistasis and especially
the objective correlation, and then highlight some guidelines for the design of
efficient multiobjective metaheuristics.

In summary, the contributions of this work can be stated as follows. First, we
propose a method to precisely tune the correlation between objective functions.
It is applied to the design of MNK-landscapes, but it can easily be generalized
to other problems. Second, we show the influence of the objective correlation
on some properties of the efficient set (and its image in the objective space):
its size, the proportion of supported solutions, and the connectedness of effi-
cient solutions. Third, we bring those properties with the design of local search
metaheuristics in order to help the practitioner to make proper choices between



several classes of methodologies. The reminder of the paper is organized as fol-
lows. Section 2 is dedicated to multiobjective combinatorial optimization, multi-
objective metaheuristics, as well as single- and multi-objective NK-landscapes.
Section 3 presents the design of ρMNK-landscapes. We conduct a theoretical
analysis and an experimental study to show the sharpness of the objective cor-
relation. Section 4 deeply analyzes the efficient set structure on this new class of
problems according to the objective space dimension, the non-linearity and espe-
cially the objective correlation. The consequence on the design of multiobjective
metaheuristics are discussed in the last section.

2 Background

2.1 Multiobjective Combinatorial Optimization

A large number of real-world optimization problems are multiobjective by na-
ture, because several criteria have to be considered simultaneously. A MoCO
problem can be defined by a set of M ≥ 2 objective functions (f1, f2, . . . , fM ),
and a discrete set X of feasible solutions in the decision space. Let Z = f(X) ⊆
IRM be the set of feasible outcome vectors in the objective space. In a maxi-
mization context, a solution x ∈ X dominates a solution x′ ∈ X , denoted by
x ≻ x′, iff ∀i ∈ {1, 2, . . . ,M}, fi(x) ≥ fi(x

′) and ∃j ∈ {1, 2, . . . ,M} such as
fj(x) > fj(x

′). A solution x ∈ X is said to be efficient (or non-dominated,

Pareto optimal), if there does not exist any other solution x
′

∈ X such that x
′

dominates x. The set of all efficient solutions is called the efficient set (or Pareto
optimal set), denoted by XE , and its mapping in the objective space is called the
Pareto front. A possible approach in MoCO is to identify a minimal complete
efficient set, i.e. one efficient solution mapping to each point of the Pareto front.

However, generating the entire efficient set of a MoCO problem is often in-
feasible for two main reasons [6]. First, for most MoCO problems, the number of
efficient solutions is known to be exponential in the size of the problem instance.
In that sense, most MoCO problems are said to be intractable. Second, deciding
if a feasible solution belongs to the efficient set is NP-complete for numerous
MoCO problems, even if none of its single-objective counterpart is NP-hard.
Therefore, the overall goal is often to identify a good efficient set approximation.
To this end, metaheuristics in general, and evolutionary algorithms in particu-
lar, have received a growing interest since the late eighties, and multiobjective
metaheuristics still constitute an active research area.

2.2 Metaheuristics for Multiobjective Combinatorial Optimization

Two main classes of metaheuristics for MoCO can be distinguished, see for in-
stance [7]. The first ones, known as scalar approaches, are based on multiple
scalarized aggregations of the objective functions. The second ones, known as
Pareto-based approaches, directly or indirectly focus the search on the Pareto
dominance relation (or a slight modification of it). These two kinds of approaches
can also be hybridized in a two-phase way.



Initial approaches dealing with MoCO are based on successive transforma-
tions of the original multiobjective problem into single-objective ones by means
of a scalarization strategy. Most of the time, scalar approaches are based on
a weighted-sum aggregation of the objective functions, that can be defined as
follows. ∀x ∈ X : fλ(x) =

∑M

i=1 λi fi(x) where λi > 0 for all i ∈ {1, . . . ,M}.
The problem is now to identify a (single) solution that maximizes fλ. For any
given weighting coefficient vector λ, if x⋆ = argmaxx∈X fλ(x), then x⋆ is an effi-
cient solution. Multiple weighting coefficient vectors can be iteratively defined so
that several non-dominated solutions are identified (or approximated). For each
scalarization, the corresponding solution is incorporated into an approximation
set, whose dominated solutions are then discarded. However, in the combinato-
rial case, a number of efficient solutions are not optimal for any definition of fλ.
They are known as non-supported (efficient) solutions. On the contrary, there
exists supported (efficient) solutions whose corresponding objective vectors are
located on the convex hull of the Pareto front. The set of all supported efficient
solutions will be denoted by XSE . As a consequence, the proportion of non-
supported solutions over the efficient set has a direct implication on the ability
of scalar approaches to find a proper non-dominated set approximation.

Over the years, other types of approaches were proposed. They are based
on the explicit or implicit use of the Pareto dominance relation, that allows to
define a partial order between feasible solutions. The basic idea is to maintain
a set solutions (typically a population or an archive of mutually non-dominated
solutions). The content of this set is then iteratively updated with new solutions
built by means of variation or neighborhood operators. The update of this set is
based on a specific decision on which solutions to accept or to choose for further
manipulation. This process is iterated until no further improvement is possible
or another stopping condition is fulfilled. In the end, this set corresponds to the
approximation outputted by the algorithm. The implicit goal is to identify an
approximation whose image in the objective space is (i) close to and (ii) well-
spread along the Pareto front. However, as the number of efficient solutions is
often intractable, we generally have to design specific strategies to limit the size
of the approximation set [8]. As a consequence, the cardinality of the efficient
set also plays a major role on the design of multiobjective metaheuristics.

More recently, the neighborhood structure of the efficient set has been claimed
to play a crucial role for the development of efficient metaheuristics. One of these
properties is known as connectedness [1, 9]. Let us define a graph such that each
node represents an efficient solution, and an edge connects a pair of nodes if
the corresponding solutions are neighbors with respect to a given neighborhood
operator [1]. This graph is called the efficient graph. A neighborhood operator
is a function N : X → 2X that assigns a set of solutions N (x) ⊂ X to any
solution x ∈ X . N (x) is called the neighborhood of x, and a solution x′ ∈ N (x)
is called a neighbor of x. The efficient set is said to be connected if there exists
a path between every pair of nodes in the graph. In other words, each efficient
solution is located in the neighborhood of at least one other solution from the
efficient set. This property has later been extended to the notion of cluster by



introducing an arbitrary distance separating two efficient solutions [10]. When
connectedness holds, it becomes possible to find all the efficient solutions by
means of the iterative exploration of the neighborhood of the current approx-
imation by starting with one (or more) solution(s) from the efficient set. This
gives rise to a two-phase approach: (i) identify a number of (typically supported)
non-dominated solutions (ii) improve the set of non-dominated solutions by ex-
ploring their neighborhood.

2.3 NK- and MNK-Landscapes

The family of NK-landscapes [11] is a problem-independent model used for
constructing multimodal landscapes. N refers to the number of (binary) genes in
the genotype (i.e. the string length) and K to the number of genes that influence
a particular gene from the string (the epistatic interactions). By increasing the
value of K from 0 to (N − 1), NK-landscapes can be gradually tuned from
smooth to rugged. The fitness function (to be maximized) of a NK-landscape
fNK : {0, 1}N → [0, 1) is defined on binary strings with N bits. An ‘atom’ with
fixed epistasis level is represented by a fitness component fi : {0, 1}K+1 → [0, 1)
associated to each bit i ∈ N . Its value depends on the allele at bit i and also
on the alleles at K other epistatic positions (K must fall between 0 and N − 1).
The fitness fNK(x) of a solution x ∈ {0, 1}N corresponds to the mean value of
its N fitness components fi:

fNK(x) =
1

N

N∑

i=1

fi(xi, xi1 , . . . , xiK )

where {i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . , N}. Several ways have been proposed
to set the K bits from the bit string of size N . Two possibilities are mainly used:
adjacent and random neighborhoods. With an adjacent neighborhood, the K

bits nearest to the bit i ∈ N are chosen (the genotype is taken to have periodic
boundaries). With a random neighborhood, the K bits are chosen randomly on
the bit string. Each fitness component fi is specified by extension, i.e. a number
yixi,xi1

,...,xiK
from [0, 1) is associated with each element (xi, xi1 , . . . , xiK ) from

{0, 1}K+1. Those numbers are uniformly distributed in the range [0, 1).
More recently, a multiobjective variant of NK-landscapes (namely MNK-

landscapes) [5] have been defined with a set of M fitness functions:

∀m ∈ [1,M ], fNKm
(x) =

1

N

N∑

i=1

fm,i(xi, xim,1
, . . . , xim,Km

)

The numbers of epistasis links Km can theoretically be different for each fitness
function. But in practice, the same epistasis degree Km = K for all m ∈ [1,M ]
is used. Each fitness component fm,i is specified by extension with the numbers
ym,i
xi,xim,1

,...,xim,Km

. In the original MNK-landscapes [5], these numbers are ran-

domly and independently drawn from [0, 1). As a consequence, it is very unlikely
that two different solutions map to the same point in the objective space.



3 ρMNK-Landscapes: Multiobjective NK-Landscapes

with Correlation

In this section, we define the CMNK- and the ρMNK-landscapes, which are
based on the MNK-landscapes [5]. In this multiobjective model, the correlation
between objective functions can be precisely tuned by a correlation matrix. It
allows to study the simultaneous influence of objective space dimension, non-
linearity and objective correlation on the main properties of multiobjective fit-
ness landscapes. The construction of landscapes is defined and the analytic proof
of the correlation between objectives, completed with an experimental study, are
given. Note that the proposed approach to tune the objective correlation can be
applied to other MoCO problems where the objective functions are summing
objectives, share the same definition, but are computed with different cost or
profit matrices. This is the case, for instance, of the multiobjective knapsack,
traveling salesman and quadratic assignment problems [4, 6].

3.1 Definition

In the proposed CMNK-landscapes, the epistasis structure is identical for all
the objective functions: ∀m ∈ [1,M ], Km = K and ∀m ∈ [1,M ], ∀j ∈ [1,Km],
im,j = ij . The fitness components are not defined independently. The num-
bers (y1,ixi,xi1

,...,xiK
, . . . , yM,i

xi,xi1
,...,xiK

) follow a multivariate uniform law of dimen-

sion M , defined by a correlation matrix C. Thus, the y’s follow a multidimen-
sional law with uniform marginals and the correlations between ym,i

... s are defined
by the matrix C. So, the four parameters of the family of CMNK-landscapes
are (i) the number of objective functions M , (ii) the length of the bit string N ,
(iii) the number of epistatic links K, and (iv) the correlation matrix C.

The matrix C is a symmetric positive-definite matrix where M(M−1)
2 numbers

can be defined. In order to limit the number of free numbers in matrix C, we
define the matrix Cρ = (cnp) which has the same correlation between all the
objectives: cnn = 1 for all n, and cnp = ρ for all n 6= p. In this case, we denote
CMNK-landscapes by ρMNK-landscapes, and the original MNK-landscapes
are equivalent to ρMNK-landscapes with ρ = 0. However, it is not possible
to have the matrix Cρ for all ρ between [−1, 1]. Cρ must be positive-definite:

∀u ∈ IRM , utCρu ≥ 0. So, ρ must be greater than −1
M−1 . For two-objective

problems, all the correlations between [−1, 1] are possible. However, for three-
objective problems, the correlation ρ must fall in [−0.5, 1]. Of course, if one
wants to study very negative correlations between some pairs of objectives, it is
possible to design a matrix C that keeps the condition that C is positive-definite.

To generate random variables with uniform marginals and a specified correla-
tion matrix C, we follow the work of Hotelling [12]. We first generate (Z1, . . . , ZM )
a multinormal laws of means 0 and correlation matrix R = 2 sin(π6C). Then, the
values zi = Φ(Zi) are uniformly distributed with a correlation matrix C, where
Φ is the univariate normal cumulative density function. Note that this is not the
only way to generate a multivariate uniform law.



3.2 Correlation between Objective Functions

The construction of CMNK-landscapes defines correlation between the y’s but
not directly between the objectives. In this section, we prove by algebra that the
correlation between objectives is tuned by the matrix C. This proof is followed
by an experimental analysis.

Theoretical analysis. Let Fm = (fmNK(x)) be the fitness vector values of the
2N solutions with respect to objective m. The correlation between objective n

and p is: cor(Fn, Fp) =
cov(Fn,Fp)

σnσp
where σn and σp are the standard deviations

of fitness values over the landscape of the nth and pth NK fitness functions. Fn

(resp. Fp) corresponds to the average value of the N vectors Fni (resp. Fpj) of
fitness component values:

cov(Fn, Fp) =
1

N2

N∑

i,j=1

cov(Fni, Fpj)

By definition, when i 6= j, cov(Fni, Fpj) = 0 and cov(Fni, Fpi) = cnp · σni · σpi,
where cnp is the correlation defined in the matrix C, and σni (resp. σpi) is the
standard deviation of fitness component i. The correlation between objectives n
and p becomes:

cor(Fn, Fp) = cnp

∑N

i=1 σniσpi

N2σnσp

By construction of the fitness functions, the following relation between standard
deviations stands σ2

n = 1
N

∑N

i=1 σ
2
ni (resp. for σ

2
p). On average, the σni are equal

to the standard deviation of the uniform law on [0, 1).

E(cor(Fn, Fp)) = cnp (1)

Then, the average of the correlations between objective functions are given by
the matrix C. In the ρMNK-landscapes, the parameter ρ allows to tune very
precisely the correlation between all pairs of objectives.

Experimental study. In order to enumerate the search space exhaustively, we
conduct an empirical study for N = 18. In order to minimize the influence of
the random creation of landscapes, we considered 30 different and independent
landscapes for each parameter combinations: ρ, M , N and K. The measures re-
ported are the average over these 30 landscapes. The remaining set of parameters
are given in Table 1. Figure 1 shows the average1 of the Spearman correlation
coefficient according to the parameters ρ, M and K. This confirms the result of
equation (1), the correlation coefficients are very close to the expected value ρ.

Then, in the ρMNK-landscapes, the parameter ρ tunes very precisely the
correlation, and, in addition to the correlated multiobjective quadratic assign-
ment problem [4], it is possible to tune this correlation between all pairs of

1 For M > 2, there are several correlation coefficients. We report here the average
correlation coefficients over all the objectives (these values are all very close).



Table 1. Parameters used in the paper for the experimental analysis.

Parameter Values

N 18
M {2, 3, 5}
K {2, 4, 6, 8, 10}
ρ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9} such that ρ ≥ −1
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Fig. 1. Average values of the correlation between objectives according to the parame-
ter ρ. The number of objectives is M = 2 (left) and M = 5 (right).

objectives. In the following, we study the influence of epistasis, number of ob-
jective and objective correlation on the properties of the efficient set for the
ρMNK-landscapes model.

4 Analysis of the Efficient Set Properties

In this section, we conduct experiments on the ρMNK-landscapes in order to
study different properties of the efficient set: its cardinality, the number of sup-
ported solutions and connectedness-related features. The instances under study
are defined by the parameter setting given in Table 1.

4.1 Cardinality of the Efficient Set

Figure 2 shows the proportion of efficient solutions in the search space according
to parameters K, ρ and M of ρMNK-landscapes. First of all, the epistatic
parameter K does not seem to have a major influence on the results. At the
opposite, the objective correlation ρ modifies the number of efficient solutions to
several orders of magnitude. Indeed, the proportion decreases from 10−4 to 10−5

(ρ ∈ [−1, 1]) for two-objective problems, and from 10−1 to 10−5 (ρ ∈ [−0.2, 1])
for M = 5. With respect to the number of objective functions (M = 2, 3, and 5),
the size increases of several decades according to M . For a negative objective



correlation (ρ = −0.2), the proportion goes from 10−4 to 10−1 whereas it goes
from 10−5 to 10−4 for a positive correlation (ρ = 0.9).

The influence of objective correlation on the efficient size becomes as impor-
tant as the number of dimension of objective space. A lot of solutions becomes
efficient when the anti-correlation is high. Now, let us suppose that we want to set
or to bound the size of the approximation set by 100. Such a parameter setting is
often used while handling a population or an archive of non-dominated solutions
in a multiobjective metaheuristic. For the ρMNK-landscapes, the proportion of
non-dominated solutions over the search space should be roughly around 4 ·10−4

(this goes up to 8 · 10−4 for 200 solutions). Whatever the correlation value ρ,
a 100−solution approximation set always allows to store all the efficient set for
two-objective problems. However, this is not the case for a higher dimension of
the objective space. For instance, for M = 5, 100 solutions suffice to store the
whole efficient set for a high objective correlation only (ρ > 0.5). In other words,
for ρ < 0.5, we cannot pretend to identify the whole efficient set exhaustively by
handling a 100−solution approximation set.

To summarize, when the number of objective increases, and even more when
the objectives are in conflict, the size of the efficient set becomes very large, and
then tend to be intractable. In this case, it is not reasonable to pretend to identify
the whole efficient set, and a limited-size approximation should be considered.
This first result shows the importance to design a benchmark where the objective
correlation can be tuned precisely, even when M > 2. Such a property should
be taken into consideration for the development of metaheuristics, when the
number of objective becomes too large, and when there is a high anti-correlation
between objective functions. A special attention should be paid with regards to
the size of the approximation set handled by the search approach.

4.2 Number of Supported Efficient Solutions

Figure 3 shows the proportion of supported solutions in the search space ac-
cording to parameters K, ρ and M of ρMNK-landscapes. Mainly, this number
follows the size of the efficient set: the epistatic parameters K has low influ-
ence on the size. When the objective space dimension increases or the objective
correlation decreases, the number of supported solutions gets higher. The differ-
ence with the size of the efficient set becomes more clear in Figure 4. It gives
the proportion of supported solutions over the efficient set. This proportion is
nearly independent of the epistasis degree of the problem (K). However, when
the objective correlation increases, this proportion increases. For a high objec-
tive correlation (ρ = 0.9), nearly all solutions become supported (this is even the
case for some instances). The same observation can be made with the number
of objectives. The number of supported solution increases with the cardinality
of the efficient set, but the former increases faster than the latter.

While putting this property in relation with the design of a metaheuristic,
we can conclude that scalar approaches should become more appropriate when
the number of objective is low, and when the objective correlation is high.
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Fig. 2. Average ratio of the number of efficient solutions compared to the size of the
search space (2N ) according to parameter ρ (top left M = 2, right M = 5), and
according to parameter K for different number of objectives (bottom left ρ = −0.2,
right ρ = 0.9). Notice the log y-scale.

4.3 Connectedness of the Efficient Set

In this section, the efficient graph (see Section 2.2), i.e. the graph of efficient
solutions where edges are induced by a given neighborhood operator, is analyzed.

Firstly, the efficient graph can be composed of several connected components.
In this case, all the efficient solutions are not connected with respect to the
neighborhood relation. Figure 5 shows the average ratio of the larger connected
component size induced by Hamming distance 1. Nearby all solutions of the
efficient graph are in the same component when the objective space dimension is
high (M = 5) and when the objective correlation is negative (ρ = −0.2). At first
sight, such a result seems to be explained by the very large size of the efficient
set obtained for those parameters (see Section 4.1). However, we compared this
result to the size of the larger component of a graph of same size, but where the
nodes are now random solutions. We found out that this size is much smaller
than the one of the efficient graph, in particular when the epistatic degree is low
(170 times larger for M = 5, ρ = −0.2, and K = 4). Consequently, the ratio
size of the larger component is not the consequence of the number of efficient
solutions only .

Contrary to the size of the efficient set, the size of the largest connected
component seems to depend on the epistatic degreeK. Indeed, this size decreases
when K increases. As an example, for M = 2 and ρ = −0.4, the ratio size is
0.42 for K = 2 and lower than 0.1 for K = 10. When the epistatic degree is low,
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Fig. 3. Average ratio of the number of supported efficient solutions compared to the
size of the search space (2N) according to parameter ρ (top left M = 2, right M = 5),
and according to parameter K for different number of objectives (bottom left ρ = −0.2,
right ρ = 0.9). Notice the log y-scale.

the objective values of neighboring solutions are correlated, and this correlation
decreases with the epistatic degree [13]. This could explain our experimental
result: If a solution is efficient, the probability that one of its neighbors is also
efficient gets higher when the epistatic degree gets lower.

The objective correlation and the number of objective functions also affect
the size of the largest connected component. But the variation is different with
respect to the number of objective functions. For M = 2, the ratio of the larger
component size increases when the objective correlation increases (apart from
K = 2). For M = 5, the ratio decreases when the objective correlation increases.
As a consequence, excepting when the efficient set is intractable (that is, when
there is a high objective space dimension and a high anti-correlation degree),
we cannot expect to reach all the efficient solutions by iteratively exploring
the neighborhood of an approximation set initialized with one non-dominated
solution. However, when there are several connected components for the efficient
graph based on Hamming distance 1 (see the definition of cluster in Section 2.2),
the distance between those components could be small.

When efficient solutions are connected with respect to a neighborhood struc-
ture related to Hamming distance k and not k − 1, the efficient set is then said
to be k-connected [10]. When the minimal distance k is around 9, which is the
average distance between random solutions, we can say that the distance be-
tween efficient solutions is large. Figure 6 shows the average minimal distance k

to connect all the efficient solutions. This minimal distance k increases when the
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Fig. 4. Average ratio of the number of supported efficient solutions compared to the
size of the efficient set according to parameter ρ (top left M = 2, right M = 5), and
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right ρ = 0.9). Notice the log y-scale.

epistatic degree increases. As an example, for ρ = −0.2, the average distance is
equals to 4.3 and 2 for dimension 2 and 5, respectively, when K = 2, whereas it
is equal to 7.1 and 2.8, respectively, when K = 10. These results meet the previ-
ous ones on the largest component size: At the same time, the size of the larger
component decreases, and the distance between efficient solutions increases.

The average k-connectedness increases also when the objective correlation
increases. For an objective space dimension 5 and a negative objective correlation
ρ = −0.2, it could be possible to reach all non-dominated solutions from another
one, as the average minimal distance is lower than 3. At the opposite, when the
objective correlation is positive, it should be easier to find a new non-dominated
solution by restarting the search from a random solution, rather than exploring
the neighborhood of a given non-dominated solution such as the distance is
around the third of the bit string length. When objectives are correlated, less
solutions are to be found, but knowing some of them will not help to find more.
Then, the design of an efficient metaheuristic has to be different according to the
objective correlation. In a two-phase approach, the number of starting solutions
and the size of the neighborhood can be tuned according to correlation between
objectives following this study.
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Fig. 5. Average ratio of the size of the larger component of the efficient graph and
Hamming distance of 1 to the size of the efficient set according to parameter ρ (top left
M = 2, right M = 5), and according to parameter K for different number of objectives
(bottom left ρ = −0.2, right ρ = 0.9).

5 Discussion

In this paper, we analyzed the consequence of the objective space dimension,
the non-linearity, and the objective correlation on the structure of multiobjec-
tive combinatorial search spaces for the design of metaheuristics. We proposed
a new method to design a multiobjective combinatorial benchmark where the
correlation between all pairs of objectives can be tuned very precisely. As an
example, we defined the ρMNK-landscapes which extend the multiobjective
NK-landscapes.

Figure 7 shows three examples of ρMNK-landscapes in the objective space.
The number of objective is 2, the parameter K is 4, and length of the bit string
is 18. This gives a summary of our results in a more intuitive way. When the
objective correlation is negative, the objectives are in conflict (feasible solutions
are in green). The efficient set size (in red) is large, and the problem could
become intractable. In this case, a metaheuristic has to find a limited-size ap-
proximation of the efficient set only. When the objective correlation is null, as
in [5], the image of the search space in the objective space can be represented
as a multidimensional ‘bowl’. The objectives are independent. When the objec-
tive correlation is positive, there exists few solutions in the efficient set. Nearly
all solutions become supported. Indeed, when the number of objectives is low,
and when the objective correlation is high, efficient solutions are supported. We
can conclude that scalar approaches should become more appropriate in such a
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Fig. 6. Average of the minimal Hamming distance to connect all the efficient solutions
according to parameter ρ (top left M = 2, right M = 5), and according to parameter
K for different number of objectives (bottom left ρ = −0.2, right ρ = 0.9).

case. The connectedness property is not represented in the last figure. The size of
larger connected component and the minimal distance to connect all the efficient
solutions depend on the objective space dimension, the epistatic degree, and also
on the objective correlation. A two-phase strategy, starting from some efficient
(supported) solutions, and exploring their neighborhood at a given distance, can
be tuned according to the results of this work.

Bringing those properties with the design of local search metaheuristics help
to make proper choices between several classes of methodologies. This analysis
shows the importance of the objective correlation on the design of benchmark
problems, in particular when the number of objectives is higher than 2. In future
works, we will use some sample technics to study the ρMNK-landscapes of larger
size. We will also compare our results on the properties of search space with the
performance of different metaheuristics. However, the efficient set does not cover
all the search space properties, so next works will focus on the properties related
to the Pareto local optima, and to the Pareto local optimum sets.
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