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Stochasticity: A Feature for Analyzing and
Understanding Textures

Abdourrahmane M. ATTO1, Yannick BERTHOUMIEU2, Rémi MÉGRET3,

Abstract—The paper addresses the breaking of semantic
gaps in image feature characterization through the stochas-
ticity or randomness appearance. Measuring stochasticity in-
volves finding suitable representations that can significantly
reduce statistical dependencies of any order. Wavelet packet
representations provide such a framework for a large class
of stochastic processes trough an appropriate dictionary of
parametric models. From this dictionary and the Kolmogorov
stochasticity index, the paper proposes semantic stochasticity
templates upon wavelet packet subbands in order to support
high level classification and content-based image retrieval. The
approach is shown to be relevant for texture images.

keywords: Texture Descriptors; Stochasticity Measurements;
Semantic gap; Parametric modeling.

I. INTRODUCTION

The diversity of real world images has led researchers to
use various mathematical tools in order to extract relevant
image features or retrieve suitable information in images.
For instance, probabilistic models, geometry properties and
functional analysis have raised much dissertation in the last
decades. In practice, the selection of appropriate features is
driven by the class of images of interest. In this paper, the
class of images we deal with can be conceptually defined
through its departure from the class of regular images.

From the literature, a regular image is defined as either
smooth or geometrically regular [1]: the image is composed
of different smooth regions delimited by singularity curves.
In contrast, a non-regular image is such that: when split-
ting the image into smaller and smaller subimages (sub-
surfaces), almost every subimage is non-regular in that it is
expected to contain many delimitation curves.

From the above consideration, a texture can be identified
as either geometrically regular (composed of different or
repetitive regions that are smooth except along their delimi-
tation curves) or non-regular. Geometrically regular textures
can be well characterized by local or global regularity
measurements such as Holder exponents [1], [2], [3], [4],
[5], [6], [7] or spectral measurements [8], [9], [10] [11]. In
contrast, regularity measurements fail to be efficient for the
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characterization of non-regular textures since measuring
very low regularity parameters is not straightforward.

The approach proposed below to characterize non-
regular textures involves most relevant features that have
proven useful in texture analysis [2]. These features are
considered jointly in the framework of 1) stochasticity, a
concept which relies on, but is not limited to: coarseness,
roughness and 2) wavelet packet transform, a representa-
tion that provides time-frequency, directionality, as well as
other suitable statistical properties mentioned below.

The stochasticity degree (or randomness appearance) is
hereafter measured by using the Kolmogorov stochasticity
parameter [12]. This parameter applies under assumption
that data are independent and identically distributed (iid)
and their cumulative distribution function is completely
specified. Recent works related to this parameter concern
measuring the randomness degree of discrete sequences
from dynamical systems and number theory [13], as well
as measuring the contribution of randomness in the cos-
mic microwave background [14]. In these works, the Kol-
mogorov parameter has been used for specific datasets that
are expected to comply with the underlying iid assumption,
with a known distribution function.

In a more general framework involving real world tex-
tures, this iid assumption is very restrictive due to non-
stationarity, correlation and other more intricate statistical
dependencies that occurs among real world images.

The contributions of the present paper with respect to
[13], [14] concern relaxing these restrictive assumptions by:

1) Considering the wavelet packet transform, a transform
that makes it possible to distribute many random
processes as stationary, independent and identically
distributed sequences, see for instance [15], [16], [17];

2) Considering a dictionary of parametric models that
are relevant with respect to the statistical distribution
of the wavelet packet coefficients.

Under the above considerations, stochasticity can be
measured even for correlated and non-stationary data
through their wavelet packet representations. Furthermore,
from the order structure that characterizes wavelet packet
bases, we derive two different semantic templates for
supporting high level texture description: 1) generating a
semantic stochasticity template upon a fixed wavelet packet
basis and 2) learning a wavelet packet tree structure that
support best stochastic bases of training samples, provided
that a critical stochasticity value is fixed.

The presentation of this paper is as follows. Section
II introduces the Kolmogorov stochasticity parameter and
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assesses its relevance in detecting deterministic regular
patterns. Section III addresses texture classification by us-
ing stochasticity templates. Section IV presents application
of stochasticity analysis to standard content-based image
retrieval by providing stochastic structuring of databases.
Section V provides semantic based texture retrieval con-
cepts and experimental results. Finally, Section VI provides
a conclusion to the paper.

II. STOCHASTICITY MEASUREMENTS

A. Kolmogorov stochasticity index - Deterministic pattern

Let x = (x1, x2, . . . , xN ) be a sample set that follows from
iid random variables with probability density function, pdf
f and cumulative distribution function, cdf F . The Kol-
mogorov stochasticity parameter [12] is:

κ (x,F ) = sup
t

∣∣Fx,N (t )−F (t )
∣∣ . (1)

where Fx,N is the empirical cdf of the N -sample sequence
x.

Standard approaches in testing random generators are
based on binary hypothesis testing (stochastic or not) and
focus on the asymptotic of

p
Nκ(x,F ) with N . In contrast

with these approaches, we assume no binary hypothesis
since we will use the heights of κ(x,F ) to compare textures
in term of their randomness appearances, whatever the
values of the stochasticity indices.

Note that κ(x,F ) ¿ 1 for datasets that are stochastic
with respect to F (consequence of the Glivenko-Cantelli
theorem) This implies that any x satisfying κ(x,F ) = 1 is
non-stochastic with respect to F . For instance, since we
are dealing with a dictionary of continuous cdfs, we will
say that a constant sequence is deterministic with respect
to this dictionary: for such a sequence, the reader can check
that sup

∣∣Fx,N (t )−F (t )
∣∣= 1 as far as N Ê 2. Furthermore, we

have that the presence of a value with large occurrence in
a dataset can be qualified as a deterministic pattern since
it impacts as well sup

∣∣Fx,N (t )−F (t )
∣∣.

The following section addresses the relevance of κ(x,F )
in pointing out deterministic patterns, in comparison with
other stochasticity measures available from the literature.

B. The relevance of the Kolmogorov stochasticity parameter
in detecting deviations from a specified distribution

The results presented in this section concern the sen-
sitivity of different stochasticity measures when data with
a given stochasticity degree are corrupted with elementary
deterministic patterns with increasing sizes.

There are basically two criteria that distinguish stochas-
ticity measures:

1.) the norm used, which can be cumulative or uniform.
2.) the distribution, which can be specified as pdf or cdf.

Examples issued from random generator testing are a)
Kolmogorov-Smirnov test [18], based on the uniform (`∞)
norm and comparing two cdfs in a binary hypothesis
testing, b) the chi-square test [19], based on the cumulative

`2 norm and comparing two pdfs in a binary hypothesis
testing problem.

Let us consider a dataset having stochasticity degree η

with respect to a given distribution model. Assume that
these data are affected by a deterministic pattern in the
sense that a proportion K /N of the data is set to a constant
value. Since a stochasticity measure can be seen as a
dissimilarity measure between distribution functions, then
a relevant stochasticity measure is such that its stochasticity
parameter should increases as K increases.

In the following experiments, a deterministic pattern
consisting in the insertion of K occurrences of a fixed value
is introduced in datasets and the relevance of different
stochasticity measures is tested when the size K of this
pattern increases. These experiments are performed upon
the detail wavelet coefficients of texture images. These
coefficients are expected to be very small in smooth re-
gions and large in the neighborhood of edges. Increas-
ing the number of null coefficients (if any) by forcing K
large coefficients to zero (deterministic pattern) results in
smoothing some edges of the image. This implies reducing
the intrinsic stochasticity of the data when K increases. A
relevant stochasticity measure should depart from the initial
stochasticity degree1, when K increases.

We consider the experimental setup presented in Ta-
ble I: different combinations between norms (`2,`∞) and
distribution specifications (cdf, pdf ) are used for testing
stochasticity measures. In this table, || · || specifically de-
notes either the `∞ and `2 norms. The Kullback-Leibler2

Divergence (KLD) is also used for comparison purpose.
In addition, if c j ,n denotes the wavelet packet coefficients
obtained at subband W j ,n , then cK

j ,n corresponds to the
dataset obtained by setting the K largest values of c j ,n to
0. In particular, c0

j ,n = c j ,n .
Departure from the initial stochasticity value of the

wavelet coefficients is measured with respect to the gener-
alized gaussian distributions. In addition, Gaussian, triangle
and Epanechnikov kernels have been used for the estima-
tion of the empirical pdfs involved in Table I. The results
provided in Figures 1 and 2 are obtained with a Gaussian
kernel and the wavelet decomposition has been performed
with a Daubechies wavelet function of order 7. These results
concern the images “Fabric.0004” and “Fabric.0018” from
the VisTeX database (see Figure 1). Results are similar for
other textures from the VisTeX database and for other
kernels (concerning pdf based measures).

As it can be seen in Figures 1 and 2, the uniform
norm on the cdfs (Kolmogorov strategy) is the sole strat-
egy that guarantee non-decreasing Relative Stochasticity

1The initial stochasticity degree is the value of the stochasticity param-
eter when no coefficients are forced to zero.

2The Kullback-Leibler similarity measure between random variables X1
and X2 having probability distribution functions fX1 and fX2 is defined
as

K (X1, X2) =K (X1||X2)+K (X2||X1),

with K (Xi ||X j ) =
∫
R

fXi
(x) log

fXi
(x)

fX j
(x)

d x, i , j = 1,2.
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TABLE I
EXPERIMENTAL SETUP FOR TESTING THE RELEVANCE OF THE UNIFORM (`∞) NORM VERSUS THE CUMULATIVES `2 NORM AND KULLBACK-LEIBLER DIVERGENCE

(KLD) IN STOCHASTICITY MEASUREMENTS. THE QUANTITIES INVOLVED IN THE COMPUTATION OF THE RELATIVE STOCHASTICITY VALUE (RSV ) ARE THE

EMPIRICAL DISTRIBUTION AND THE MODEL.

For 0 É K É 150, do:

Compute the wavelet coefficients
(
c j ,n

)
j ,n

of the input image.

Introduce a deterministic pattern among the coefficients of a subband

by setting the K largest coefficients to zero (notation
(
cK

j ,n

)
j ,n

).

Compute the stochasticity parameters:
Check the distribution type from variable “specification”
Case specification is “cdf ”, then:

Compute RSV(K ) =

∣∣∣∣∣
∣∣∣∣∣FcK

j ,n
,N

−Fθ
(
cK

j ,n

)∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣Fc0
j ,n

,N
−Fθ

(
c0

j ,n

)∣∣∣∣∣
∣∣∣∣∣
,

Case specification is “pdf ”, then:

Compute RSV(K ) =

∣∣∣∣∣
∣∣∣∣∣ f

cK
j ,n

,N
− fθ

(
cK

j ,n

)∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ f
c0

j ,n
,N

− fθ
(
c0

j ,n

)∣∣∣∣∣
∣∣∣∣∣

End
Compare the measurements obtained: for a relevant stochasticity measure,

RSV is a non-decreasing function of K .

Image “Fabric.0004”

RSV(K )

cdf based stochasticity measures pdf based stochasticity measures

←- W1,1 ,→

←- W1,2 ,→

←- W1,3 ,→

K

Fig. 1. Relative stochasticity values for the image “Fabric.0004” from the VisTeX database. The RSV of a relevant stochasticity measurement must be
an increasing function of the size K of the deterministic pattern. We have K = 0,10,20, . . . ,150 and N = 68644.
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Image “Fabric.0018”

RSV(K )

cdf based stochasticity measures pdf based stochasticity measures

←- W1,1 ,→

←- W1,2 ,→

←- W1,3 ,→

K

Fig. 2. Relative stochasticity values for the image “Fabric.0018” from the VisTeX database. The RSV of a relevant stochasticity measurement must be
an increasing function of the size K of the deterministic pattern. We have K = 0,10,20, . . . ,150. and N = 68644.

Value (RSV, see Table I) when the size K of the pattern
increases. Cumulative measures (`2, KLD), as well as pdf
based specifications are not very relevant for stochasticity
assessment because of non-increasing deviations from the
initial stochasticity degree: the local information is blurred
through the averaging effect induced by cumulative mea-
sures or through neighborhood consideration when com-
puting pdfs. Moreover, the same conclusion as above holds
true when the experiments are performed on synthetic
random numbers and without the use of wavelet transform.

From now on, we assume that the stochasticity parameter
is of Kolmogorov type: uniform norm that applies to com-
pare the empirical cdf with the distribution model. Section
III-A addresses the choice of different bounds on this
parameter for generating a semantic stochasticity template.
This makes it possible to classify textures by mapping
their sequences of stochasticity values on the stochasticity
templates under consideration.

III. CLASSIFICATION FROM WAVELET PACKET BASED

STOCHASTICITY TEMPLATES

A. Kolmogorov stochasticity measure versus error-bounds
from image estimation

As shown in Section II-B, the Kolmogorov parameter is
relevant for detecting deterministic patterns in stochastic
datasets and vice versa. For the main purpose of this paper,
it is convenient to specify stochasticity bounds that make it
possible to classify textures depending on their stochasticity
degrees.

In the following, we derive different semantic classes
consisting in stochasticity categories, by fixing bounds
on sup

∣∣Fx,N (t )−F (t )
∣∣. This is performed by dealing with

sup
∣∣Fx,N (t )−F (t )

∣∣ < ηi as a problem of estimating an
unknown function from observed samples, and by fixing
ηi so as to guarantee a PSNR greater than Ωi dBs, where
(Ωi )i are bounds taken from standards on PSNR quality
from image denoising and compression problems.

The PSNR (Peak Signal-to-Noise Ratio, in deciBel unit,
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dB) is given by

PSNR = 10log10

(
d 2/MSE

)
, (2)

where d is the dynamic of the image and MSE denotes the
Mean Squared Error.

Proposition 1
Consider the problem of fitting Fx,N (ti ) by F (ti ) for i =
1,2, . . . , N . Then in order to have a PSNR greater than ΩdBs,
it suffices that η2 É d ×10−Ω/10.

The dynamic of Fx,N is 1. Now, we set Ω0 = 30dBs, Ω1 =
35dBs and Ω2 = 40dBs (a minimum of 30dBs is required
for an image denoising or compression algorithm to be
relevant). These values are associated with the constants:

ηi =
√

10−Ωi /10, i = 0,1,2,

hereafter referred as lower bounds for high, good and fair
quality set indicators. Then, we will use below, 4 stochas-
ticity classes:

Definition 1 (Semantic stochasticity classes)
A sample set x is said to be strongly stochastic (resp.
stochastic, quasi-stochastic, non-stochastic) with respect to
a continuous cdf F if κ (x,F ) ∈ [

0,η2
]

(resp. κ (x,F ) ∈ ]
η2,η1

]
,

κ (x,F ) ∈ ]
η1,η0

]
, κ (x,F ) ∈ ]

η0,+∞[
).

B. Texture classification by using stochasticity templates
upon wavelet packet bases

Wavelet packet bases constitute a general framework for
studying dictionaries of functional bases. Indeed, they offer
a large family of functional bases with several properties,
depending on whether we decide to split a given subband or
not [20], [21], [22], [23], among others. Best basis algorithms
for the representation of signals involves seeking for func-
tional atoms satisfying a given benchmark. In the wavelet
framework, this benchmark is usually expressed in terms
of energy of the coefficients, sparsity or number above a
threshold and entropy measurements [20], [24], [25]. Recent
works on best basis algorithms concern compressive sensing
and are related to the sparsity benchmark for piecewise
regular images [26].

Hereafter the best basis is computed upon the wavelet
packet transform and under the stochasticity criterion:
starting from the root node W0,0, this consist in splitting
every wavelet packet node W j ,n recursively, unless the
stochasticity of a node have reached the fixed stochasticity
bound. Indeed, the statistical properties of the wavelet
packet coefficients (in particular the higher order cumulant
decay, see [15], [17], among others) ensure that the Kol-
mogorov parameter decrease for a large class of stationary
and non-stationary random processes. The corresponding
algorithm is hereafter called BSB-WP: Best Stochastic Basis
upon Wavelet Packets.

We run the BSB-WP algorithm in order to classify the
“Fabric” textures of the VisTeX database (see Figure 3).
Stochasticity is measured with respect to cdfs pertaining

TABLE II
VISTEX “FABRIC” TEXTURE CLASSIFICATION FROM BSB-WP STOCHASTICITY

MEASUREMENTS. THE “FABRIC” TEXTURES ARE GIVEN IN FIGURE 3. IN THIS

TABLE, “DET” DESIGNATE WAVELET PACKET DETAILS AND “APPROX”
DESIGNATE WAVELET APPROXIMATIONS.

Quasi-stochastic Stochastic Strongly-stochastic
Det. Approx. Det. Approx. Det. Approx.

Fabric.18
p p p p p

–
Fabric.07

p p p p
– –

Fabric.17
p p p

– – –
Fabric.04

p p p
– – –

Fabric.09
p p p

– – –
Fabric.11

p
–

p
– – –

Fabric.15
p

–
p

– – –
Fabric.00 – – – – – –
Fabric.14 – – – – – –

“Fabric.18” “Fabric.07” “Fabric.17”

“Fabric.04” “Fabric.11” “Fabric.09”

“Fabric.15” “Fabric.00” “Fabric.14”

Fig. 3. Textures “Fabrics” from the VisTeX database.

Fabric.07
1.99

W[7]
1,0

0.44
W[7]

1,1

0.90
W[7]

1,2

0.49
W[7]

1,3

1.02

Fig. 4. 100×κ for texture “Fabric.07” from the VisTeX database. The BSB-
WP is composed of framed subbands.
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Fabric.09
10.10

W[8]
1,0

7.57

W[8]
2,0

6.17
W[8]

2,1

1.26
W[8]

2,2

1.26
W[8]

2,3

1.53

W[8]
1,1

2.06

W[8]
2,4

1.40
W[8]

2,5

1.28
W[8]

2,6

0.77
W[8]

2,7

0.90

W[8]
1,2

1.73
W[8]

1,3

1.52

Fig. 5. 100×κ for texture “Fabric.09” from the VisTeX database. The BSB-WP is composed of framed subbands. The texture is represented as the sum
of a smooth approximation and stochastic details. �

�
�
�Fabric.14

9.30

W[8]
1,0

7.48

W[8]
2,0

7.04
W[8]

2,1

2.01
W[8]

2,2

4.44
W[8]

2,3

1.34

W[8]
1,1

1.75

W[8]
2,4

0.70
W[8]

2,5

2.00
W[8]

2,6

2.68
W[8]

2,7

3.87

�



�
	W[8]

1,2

9.59

W[8]
2,8

3.61
W[8]

2,9

4.01

�



�
	W[8]

2,10

10.11

W[8]
2,11

3.54

W[8]
1,3

4.76

W[8]
2,12

2.31
W[8]

2,13

2.33
W[8]

2,14

3.26
W[8]

2,15

3.95

Fig. 6. 100×κ for texture “Fabric.14” from the VisTeX database at decomposition level 2. Many subbands remain non-stochastic. In addition, the
stochasticity parameter κ does not systematically decrease as the decomposition level increases in some detail paths (see the path with oval boxes).

to the exponential class and the 4 semantic classes given
in Definition 1 (non-stochastic, quasi-stochastic, stochas-
tic and strongly-stochastic semantic classes). We used a
maximum depth J∗ fixed to 4 for the wavelet packet
decomposition and the Daubechies wavelet of order 7.
Table II summarizes the results obtained.

One can note that these results are consistent with the
visual perception of randomness appearance. Furthermore,
we derive from these results that textures “Fabric.18” and
“Fabric.07” can be well characterized by using probabilistic
distribution modeling applied on the nodes involved in
their best bases. In contrast, probabilistic distribution mod-
eling is not relevant for describing non stochastic textures
such as “Fabric.00” and “Fabric.14” because their wavelet
packet coefficient distribution deviate significantly from
the continuous cdfs used. Note that the latter textures
are regular and thus, the appropriate criterion for their
characterization needs to be based on regularity: regular
images are sparse in the wavelet packet domain and the
sparsity criterion is thus expected to be more relevant.

The following provides some examples for illustrating
BSB-WP texture characterization.

Example 1
Texture “Fabric.07” is intrinsically quasi-stochastic:
κFabric.07 < η0. BSB-WP provides a basis (see the basis

composed of framed subbands in Figure 4) where all
subbands involved in the representation are stochastic:
κc1,n [Fabric.07] < η1 for every n = 0,1,2,3. BSB-WP basis with
higher stochasticity property (κ < η2) has not been found
up to decomposition level J∗.

Example 2
Texture “Fabric.09” is not intrinsically stochastic: κFabric.09 >
η0. BSB-WP provides a basis where the texture can rep-
resented as a deterministic (smooth) approximation and
stochastic details: κc j ,n [Fabric.09] < η1 for every nodes ( j ,n)
involved in the tree of Figure 5, with n 6= 0.

Example 3
Texture “Fabric.14” is not stochastic. κ-measurements are
out of stochasticity bounds for the input texture as well
as for many of its wavelet packet subbands up to de-
composition level J∗. In addition, this texture presents a
“singular” path in the sense given in [15]. Indeed, depending
on the input process, some paths are such that no cdf
regularization can be expected. In this case, stochasticity
measures can increase as the decomposition level increases.
This occurs for the path with subbands marked in oval
frames in Figure 6.
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Table II and Figure 3 highlight that stochasticity mea-
surements in the wavelet domain are sensitive to the
roughness/coarseness/coherence of textures and reflect the
“randomness-appearance” of textures.

IV. CONTENT-BASED IMAGE RETRIEVAL WITH STOCHASTIC

STRUCTURING

In what follows, T denotes a texture database assumed
to be heterogeneous in the sense that it contains both
stochastic and regular textures. We consider the problem
of structuring the elements of T by using the stochasticity
degree. The structuring proposed is a splitting of database
T in two metaclasses: stochastic versus regular textures.
This structuring will be used as a pre-classification for
level 1 Content-Based Image Retrieval (CBIR) based on
parametric modeling of the statistical distributions of the
wavelet coefficients. In this standard 1 CBIR [27], the query
is completely specified through the statistical distributions
of texture pixel values.

A. Stochastic structuring

The structuring is performed with respect to the stochas-
ticity measurements in the wavelet domain. The wavelet
transform used is the Stationary Wavelet Transform (SWT).
Indeed the SWT is appreciated for its shift-invariance prop-
erty and is known to be relevant for the level 1 CBIR under
consideration [28].

We consider the Edgeworth expansions of order 4 for
modeling the SWT approximation subbands and the Gener-
alized Gaussian, Pareto and Weibull distributions for mod-
eling the detail SWT coefficients. Model validation regarding
the above issues can be found in [28]. The symmetric
Kullback-Leibler divergence is used as similarity measure
between the statistical distributions given above.

Experimental tests concern 40 texture classes of the
VisTeX database. The database structuring for these classes
is given, in terms of stochastic versus regular textures,
in Table III: this structuring yields a stochastic metaclass
composed with 22 texture classes and a regular metaclass
composed with 18 texture classes.

B. Content-based image retrieval on structured databases

This section provides CBIR experimental results on struc-
tured databases, in comparison with the results obtained
without stochastic structuring. The experimental setup is
the one used in [28]: any texture class (among the 40 texture
classes considered) is composed with 16 images obtained
by splitting every large texture image in 16 non-overlapping
subimages. Thus, we have a test database T composed with
640 images, among which, 352 images forming a database
structure T1 are issued from a stochastic class; whereas the
288 remaining textures constitute a database structure T2

associated with regular texture classes, with T =T1 ∪T2.
We then run CBIR from parametric modeling and sim-

ilarity measurements, as described in [28], with the Sym-
let wavelet of order 8. Experimental tests are performed
independently on the tree database structures T1,T2,T .

For a given structure, performance measurements concern
the retrieval rates, when a query is any subimage of the
structure under consideration. Retrieval rates per class are
given in Table III concerning T1 and T2. Average retrieval
rates per structures structures T1,T2,T are given in Table
IV for comparison purpose.

TABLE IV
AVERAGE VALUES OF TEXTURE-SPECIFIC RETRIEVAL FOR THE WHOLE

DATABASE T , THE DATABASE COMPOSED OF stochastic textures T1 AND THE

DATABASE COMPOSED OF regular textures T2 , WITH T1 ∪T2 =T .
EXPERIMENTAL RESULTS PERFORMED WITHOUT STOCHASTIC STRUCTURING

(BLIND APPROACH) ARE GIVEN FOR COMPARISON PURPOSE.

Stochastic textures (T1)
Blind approach Stochastic structuring

GG WBL PRT GG WBL PRT
88.12 87.82 66.05 90.45 90.02 66.67

Regular textures (T2)
Blind approach Stochastic structuring

GG WBL PRT GG WBL PRT
78.95 79.60 83.18 81.10 81.81 83.51

Whole texture database (T )
Blind approach Stochastic structuring

GG WBL PRT GG WBL PRT
83.99 84.12 73.76 86.24 86.33 74.25

From Table IV, it follows that the retrieval is more concise
when the search focuses either on T1 or on T2 than on the
whole structure T . Since T1 and T2 have low cardinality,
the structuring also eases the search. In addition, from Table
IV and when comparing the role played by the distribution
type on the metaclass, it follows that the more relevant
family is:

• the GG family for modeling the stochastic textures,
• the PRT family for modeling the regular textures,
• the WBL family for modeling the whole database con-

taining both regular and stochastic textures.

The above remarks confirm the suitability of separating a
heterogeneous database into structures with approximately
the same stochasticity degrees.

V. CONTENT-BASED STOCHASTICITY RETRIEVAL

This section addresses stochasticity consideration for
CBIR feature selection in texture databases. This CBIR takes
into account the inference made in Section III for deriving
different stochasticity templates. It is worth noting that the
stochasticity degree can be seen as an index aggregating
many low-level texture features (statistical distributions) in
order to derive a high-level feature: the randomness-like
appearance of a dataset. In this respect, we are concerned
by the level 2 CBIR [27]. The motivation in using a stochas-
ticity criterion for level 2 CBIR is the following.

Consider a geometrically regular image (a human face,
textures “Fabric.00” and “Fabric.14” given in Figure 3, etc).
For such an image, the form (through primitives) and the
regularity are known to be relevant features for content
description [10], [29]. Consider now a stochastic texture (see
for instance “Fabric.18” and “Fabric.07”). Such a texture is
not regular and has no structured components that can be
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TABLE III
RETRIEVAL RESULTS PER TEXTURE CLASSES FOR 40 CLASSES ISSUED FROM THE VISTEX DATABASE. EXPERIMENTAL RESULTS ARE PERFORMED WITHOUT (BLIND

APPROACH) AND WITH STOCHASTIC STRUCTURING, RESPECTIVELY. STOCHASTIC TEXTURE CLASSES ARE GIVEN IN RED WHEREAS NON-STOCHASTIC CLASSES ARE

COLORED IN BLUE, WHEN CONSIDERING STOCHASTIC STRUCTURING.

Blind approach Stochastic structuring

Texture
Bark.00
Bark.06
Bark.08
Bark.09
Bric.01
Bric.04
Bric.05
Buil.09
Fabr.00
Fabr.04
Fabr.07
Fabr.09
Fabr.11
Fabr.14
Fabr.15
Fabr.17
Fabr.18
Flow.05
Food.00
Food.05

GG
69.53
71.09
68.75
43.36
98.83
84.38
91.80
76.56
87.89
86.72
98.05

100
92.58

100
92.58
92.58
94.92
66.80
96.48
78.91

WBL
67.58
70.70
67.19
42.97
98.83
82.81
89.45
97.66
86.72
86.72
98.05

100
92.58

100
92.19
96.09
91.80
65.63
96.48
78.91

PRT
76.95
62.89
56.64
70.70
75.39
87.50
81.64
87.89
78.13
81.64
75.39
80.47
57.81
89.45
57.03
85.16
47.27
80.47
84.77
72.27

Texture
Food.08
Gras.01
Leav.08
Leav.10
Leav.11
Leav.12
Leav.16
Meta.00
Meta.02
Misc.02
Sand.00
Ston.01
Ston.04
Terr.10
Tile.01
Tile.04
Tile.07
Wate.05
Wood.01
Wood.02

GG
99.61
98.83
74.22
61.72
67.58
78.13
72.27
83.20

100
96.09
96.48
73.83
93.75
55.08
62.11
99.61
98.05

100
57.42

100

WBL
100

98.83
73.44
60.94
66.80
78.52
71.48
82.42

100
95.70
97.66
74.61
92.97
53.52
61.72
99.61
97.66

100
56.64

100

PRT
86.33
52.73
80.86
76.17
87.11
53.91
87.11
59.38
86.33
56.64
51.56
78.13
49.22
87.89
91.41
94.14
83.98
56.25
75.39
66.41

Texture
Bark.00
Bark.06
Bark.08
Bark.09
Bric.01
Bric.04
Bric.05
Buil.09
Fabr.00
Fabr.04
Fabr.07
Fabr.09
Fabr.11
Fabr.14
Fabr.15
Fabr.17
Fabr.18
Flow.05
Food.00
Food.05

GG
69.92
85.55
69.53
48.05
98.83
84.77
92.97
76.56
94.92
89.84
98.05

100
92.58

100
92.97
92.58
94.92
68.36

100
81.64

WBL
68.36
85.94
68.36
47.27
98.83
83.20
89.84
97.66
91.80
87.89
98.05

100
92.58

100
92.97
96.09
91.80
66.41

100
81.64

PRT
78.13
64.06
56.64
73.05
76.56
88.28
83.98
88.28
78.13
84.38
75.39
80.47
57.81
89.84
57.03
85.16
47.27
80.86
87.50
72.27

Texture
Food.08
Gras.01
Leav.08
Leav.10
Leav.11
Leav.12
Leav.16
Meta.00
Meta.02
Misc.02
Sand.00
Ston.01
Ston.04
Terr.10
Tile.01
Tile.04
Tile.07
Wate.05
Wood.01
Wood.02

GG
99.61
98.83
82.03
64.84
73.05
98.05
72.27
83.20

100
96.09
96.48
73.83
93.75
63.28
62.11
99.61
99.22

100
61.33

100

WBL
100

98.83
83.20
63.67
72.66
97.27
71.48
82.42

100
95.70
97.66
74.61
92.97
62.50
61.72
99.61
98.83

100
61.33

100

PRT
86.33
53.13
80.86
77.34
87.50
53.91
87.11
59.38
86.33
56.64
51.56
78.13
49.22
88.28
91.41
94.14
83.98
56.25
75.78
67.58

taken as feature descriptors. In contrast, the randomness
appearance measured by the stochasticity parameter is ap-
pealing in differencing textures “Fabric.18” and “Fabric.07”:
stochasticity is an index that address the intrinsic coherence
(non-coherence being close to stochasticity) of the texture.

The following provides two CBIR strategies based on
stochasticity measurements and referred as Content-Based
Stochasticity Retrieval (CBSR): 1) CBSR by learning the
stochasticity tree structure characterizing the BSB-WP of
some texture training samples and 2) CBSR by generating
the stochasticity template from a set of training texture
samples, given a fixed wavelet packet basis.

A. Content-based stochasticity retrieval by learning the
stochasticity tree structure

In this section, we consider a set of M texture classes
indexed by integer m,1 É m É M . For a given class m, we
assume that samples (mk )k=1,2,...Km are avalaible (learning
database). Let BBest[mk ] denotes the BSB-WP associated
with sample mk at the fixed stochasticity degree η.

Consider the smallest (infimum) and the largest (supre-
mum) wavelet packet tree structures of the BSB-WP trees
associated with samples (mk )k of texture class m. These
trees define some wavelet packet bases denoted respectively
by

Binf[m] = inf
{
BBest[m1],BBest[m2], . . . ,BBest[mKm ]

}
,

Bsup[m] = sup
{
BBest[m1],BBest[m2], . . . ,BBest[mKm ]

}
.

In this respect, we will say that the tree structure describing
the behaviour of the best stochastic representations of the
samples of texture m have lower bound Binf[m] and upper
bound Bsup[m].

The CBSR principle considered in this section is the
following: an arbitrary sample belongs to stochasticity class
m if its best basis at stochasticity degree η, denoted by B,
is such that: Binf[m] ¹B¹Bsup[m].

Consider the set of “Fabric” textures from the VisTeX
database (see Figure 3). From the classification obtained
in Table II, we focuses on “Fabric.0007” and “Fabric.0018”
which are closer on the basis of their stochasticity degrees.
We set the stochasticity degree to η2. We then consider the
following experimental setup: each image is splited into 16
non-overlapping subimages, K = 8 images among them (the
8 upper-half subimages) are used as the training set. The
remaining 16 subimages, 8 subimages of ‘Fabric.0007” and
8 subimages of “Fabric.0018”, the lower-half subimages, are
put together to form the test database.

We run the following CBSR strategy:

• Learn the stochasticity tree structure for any of the
“Fabric” texture by computing Binf and Bsup from its
8 samples available from the learning database.

• Retrieve, from the test database, the samples that
belong to the semantic class of any of the “Fabric”
texture, that are the samples having stochasticity bases
bounded by the infimum and supremum bases asso-
ciated with the class.

• Sort the samples thus obtained and compute texture-
specific retrieval.

From the experiments carried out, we have that:

• The learned basis structure corresponding to “Fab-
ric.0007” is any basis B such that:

⋃
n=0,1,2,3

W1,n ¹B¹ W2,0 ∪
( ⋃

n=4,5,...,43−1

W3,n

)
.

• The learned basis structure for “Fabric.0018” is any
basis B such that

W2,0∪
( ⋃

j=1,2

⋃
n=1,2,3

W j ,n

)
¹B¹ W3,0∪

( ⋃
j=1,2,3

⋃
n=1,2,3

W j ,n

)
.

The retrieval rates obtained from the test database are such
that:
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• Query “Fabric.0007”, associated with the lowest ran-
domness degree among the two classes, reduces the
search database from 16 to 8 including 7 good re-
trieval/8.

• Query “Fabric.0018”, associated with the highest ran-
domness degree among the two classes, reduces the
search database from 16 to 7 including 7 good re-
trieval/8.

From these experiments, stochasticity, as a feature mea-
suring the intrinsic coherence of a texture, can be used to
generate a stochasticity tree structure representing the BSB-
WPs a texture observed through some training samples.

B. Content-based stochasticity retrieval by learning the
stochasticity bounds

Depending on constraints such as computational load
or dealing with a large number of semantic classes, it
may sometimes be desirable to fix the decomposition
basis. In this section, we consider a fixed wavelet packet
basis B=⋃

p=1,2,...,L WJp ,np and propose high-level CBSR by
computing, from training samples, the subspace where the
stochasticity parameters are expected to lie within.

Assume the availability of K samples (subimages) for
every texture class m considered, with 1 É m É M (train-
ing set for this texture). Let us denote by κm`

(Jp ,np ),
the value of the stochasticity parameter (see Eq. (1)) as-
sociated with the subband WJp ,np coefficients of subim-
age m`. The sequence

(
κm`

(Jp ,np )
)
`=1,2,...,K represents the

behaviour of the stochasticity parameters of the projec-
tion of texture m samples on subband WJp ,np . Let us
denote κm

min(Jp ,np ) = min
{
κm`

(Jp ,np ),`= 1,2, . . . ,K
}

and
κm

max(Jp ,np ) = max
{
κm`

(Jp ,np ),`= 1,2, . . . ,K
}
. Define the

stochasticity hypercube associated with the samples of
texture m on basis B by

H m
L =

L∏
p=1

[
κmin

m (Jp ,np ),κmax
m (Jp ,np )

]
.

The CBSR principle considered in this section is
the following: a query sample admitting stochastic-
ity parameters κ(J1,n1),κ(J2,n2), . . . ,κ(JL ,nL) on basis
B is decided to belong to class m if the vector
(κ(J1,n1),κ(J2,n2), . . . ,κ(JL ,nL)) ∈H m

L .
In this respect, a texture can be characterized by the

hypercube defined from the lower and upper bounds of
the stochasticity parameters of its sample coefficients on
the basis B. This hypercube defines the semantic class of
the texture.

Assume that a new sample of the texture is available.
Then we can re-evaluate the stochasticity bounds when
some of the additional stochasticity parameters of this
sample are out of the texture stochasticity hypercube. In
addition, depending on the distribution of the stochasticity
parameters, the user can discard those behaving as outliers
in order to tighten the stochasticity hypercube and avoid
overlapping with stochasticity hypercubes associated to
other semantic classes. This re-evaluation is known to be
useful in integrated CBIR systems [30].

The following provides CBSR experimental results ob-
tained for M = 40 textures from the VisTeX database. The
experimental setup used is described below:

• First, we construct the learning database by using
the top-half of the images: each top-half image is
splited into K = 8 non-overlapping subimages (128
× 128 pixels per subimage). These K subimages are
used to compute the stochasticity hypercube H m

L for
m = 1,2, . . . ,40.

• Then, we constitute the test database by using the
down-half of the images: each down-half image is
splited into 8 non-overlapping subimages. Thus, the
test database is composed of 8×M subimages.

• In order to increase the number of experiments, we
have also permutated the roles played by the learning
and the test database (top-half becomes down-half and
vice-versa).

We run this procedure when the decomposition is per-
formed by using a wavelet basis with J∗ = 2. The stochas-
ticity is measured with respect to dictionary D (Table V)
and with respect to a single distribution family: the GG
distributions (Table VI). Specifically, in these tables, we have
that 2 stochasticity coordinates out of H m

L are tolerated,
that is, 2 stochasticity parameters out-of-bounds are toler-
ated among a set of 3∗ J∗+1 = 7 stochasticity parameters
κ(J1,n1),κ(J2,n2), . . . ,κ(JL ,nL) with L = 7. In Tables V and
VI, TPR denotes the True Positive Rate defined as the ratio
(fraction relevant queries per class):

TPR[m] =
Number of admissible subimages that

are issued from texture m

Total number of relevant subimages,

and FAR denotes the False Alarm Rate per class:

FAR[m] =
Number of admissible subimages that

are not issued from texture m
Total number of subimages that are

not issued from texture m

TABLE V
TRUE POSITIVE RATE ( TPR) AND FALSE ALARM RATE (FAR) FOR CBRS BY

LEARNING THE STOCHASTICITY BOUNDS. DICTIONARY D IS USED FOR

STOCHASTICITY MEASUREMENTS.

Texture TPR FAR

Bark.00 62.50 08.97
Bark.06 37.50 07.69
Bark.08 62.50 00.80
Bark.09 75.00 10.58
Bric.01 31.25 01.44
Bric.04 37.50 02.56
Bric.05 50.00 06.89
Buil.09 37.50 00.96
Fabr.00 43.75 01.92
Fabr.04 50.00 07.05
Fabr.07 62.50 01.12
Fabr.09 37.50 00.48
Fabr.11 56.25 01.44
Fabr.14 50.00 0
Fabr.15 68.75 00.80
Fabr.17 56.25 01.12
Fabr.18 68.75 00.48
Flow.05 31.25 07.21
Food.00 62.50 01.92
Food.05 31.25 03.21

Texture TPR FAR

Food.08 56.25 0
Grass.01 37.50 04.81
Leav.08 68.75 12.66
Leav.10 43.75 09.13
Leav.11 56.25 04.65
Leav.12 43.75 04.65
Leav.16 62.50 01.92
Meta.00 50.00 01.92
Meta.02 68.75 00.32
Misc.02 62.50 00.64
Sand.00 31.25 02.24
Ston.01 56.25 08.01
Ston.04 62.50 01.92
Terr.10 50.00 08.01
Tile.01 31.25 02.40
Tile.04 37.50 00.96
Tile.07 25.00 0
Wate.05 62.50 02.40
Wood.01 56.25 12.18
Wood.02 56.25 09.29
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TABLE VI
TRUE POSITIVE RATE ( TPR) AND FALSE ALARM RATE (FAR) FOR CBRS BY

LEARNING THE STOCHASTICITY BOUNDS. THE GG FAMILY IS USED FOR

STOCHASTICITY MEASUREMENTS.

Texture TPR FAR

Bark.00 100 18.27
Bark.06 75.00 13.78
Bark.08 68.75 03.37
Bark.09 75.00 20.83
Bric.01 62.50 03.85
Bric.04 68.75 04.01
Bric.05 75.00 08.97
Buil.09 56.25 02.56
Fabr.00 62.50 02.88
Fabr.04 50.00 13.62
Fabr.07 81.25 01.44
Fabr.09 75.00 00.64
Fabr.11 81.25 02.40
Fabr.14 87.50 00.16
Fabr.15 87.50 02.08
Fabr.17 87.50 03.05
Fabr.18 81.25 01.12
Flow.05 56.25 11.06
Food.00 93.75 02.56
Food.05 50.00 04.17

Texture TPR FAR

Food.08 75.00 00.48
Grass.01 50.00 07.85
Leav.08 75.00 16.03
Leav.10 56.25 14.58
Leav.11 62.50 06.89
Leav.12 43.75 04.81
Leav.16 75.00 02.56
Meta.00 68.75 02.72
Meta.02 87.50 00.64
Misc.02 68.75 00.96
Sand.00 62.50 03.37
Ston.01 62.50 13.94
Ston.04 68.75 03.53
Terr.10 68.75 16.35
Tile.01 37.50 04.17
Tile.04 68.75 02.08
Tile.07 31.25 0
Wate.05 81.25 07.69
Wood.01 93.75 24.20
Wood.02 75.00 15.22

As it can be seen in these tables, stochasticity based
retrieval is relevant for most textures given in this database.
Low TPRs occur when texture is very regular (Example:
“Tile.0001”, “Tile.0007”), see Figure 7. High FARs occur
when texture have non-homogeneous subimages (Example:
“Wood.0001”): the bounds define a large interval which is
expected to contain stochasticity values related to many
other textures, see Figure 7.

“Tile.0001” “Tile.0007” “Wood.0001”

Fig. 7. Textures “Tile.0001”, “Tile.0007”, “Wood.0001” from the VisTeX
album.

Experiments on the Brodatz album yield approximately
the same results. The global TPR is 69% for the Brodatz al-
bum (resp. 70% for the VisTeX album) and the global FAR is
10% for the Brodatz album (resp. 7% for the VisTeX album),
when GG modeling is used for stochasticity measurements.
Tables concerning Brodatz album are omitted because 111
textures are concerned by the tests.

VI. CONCLUSION

The paper has addressed semantic texture description
and understanding through stochasticity or randomness ap-
pearance. The framework used for measuring stochasticity
is that of the wavelet bases because of their suitable statis-
tical properties. The Kolmogorov stochasticity parameter is
shown to be relevant for pointing out deterministic smooth
patterns from wavelet coefficients of textures. The relevance
of the stochasticity consideration is proven to be efficient

for classification, database structuring and content-based
image retrieval involving textured images.

Open issues related to this work may concern the analysis
and the interpretation of the sequence of wavelet subband
stochasticity parameters. In this work, we have consid-
ered the whole stochasticity hypercube obtained from the
minimum and the maximum values of the stochasticity
parameters of texture training samples. However, more
investigations need to be performed in order to derive,
among these sequences of parameters, some clusters or
the manifold that describes well the observed stochasticity
sequences.
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