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Abstract—Stochasticity is proposed as a feature for texture
characterization and analysis. Measuring stochasticity requires
finding suitable representations that can significantly reduce
statistical dependencies of any order. Wavelet packet represen-
tations provide such a framework for a large class of stochastic
processes. The paper first addresses the selection of the best
wavelet packet basis with respect to the stochasticity criterion
and by using the Kolmogorov stochasticity parameter. A best
basis under stochasticity consideration makes possible accurate
texture description trough a dictionary of parametric models,
especially for non regular textures. Among the properties of such
a representation, the paper shows that texture classification
is possible through stochasticity consideration. The relevance
of the analysis also makes possible content-based stochasticity
retrieval with semantics and with respect to the order structure
of the wavelet packet bases.

keywords: Texture Descriptors; Stochasticity Measurements;
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I. INTRODUCTION

The diversity of real world images has led researchers to
use various mathematical tools in order to extract relevant
image features or retrieve suitable information in images.
For instance, probabilistic models, geometry properties and
functional analysis have raised much dissertation in the last
decades. In practice, the selection of appropriate features is
driven by the class of images of interest. In this paper, the
class of images we deal with can be conceptually defined
through its departure from the class of regular images.

From the literature, a regular image is defined as either
smooth or geometrically regular [1]: the image is composed
of different smooth regions delimited by singularity curves.
In contrast with the definition above, a non-regular image is
such that: when splitting the image into smaller and smaller
subimages (sub-surfaces), almost every subimage is non-
regular in that it is expected to contain many delimitation
curves.
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From the above consideration, a texture can be identified
as either geometrically regular (composed of different or
repetitive regions that are smooth except along their delimi-
tation curves) or non-regular. Geometrically regular textures
can be well characterized by local or global regularity
measurements such as Holder exponents [1], [2], [3], [4],
[5], [6], [7] or spectral measurements [8], [9], [10] [11]. In
contrast, regularity measurements fail to be efficient for the
characterization of non-regular textures since measuring
very low regularity parameters is not straightforward.

The approach proposed below to characterize non-
regular textures involves most relevant features that have
proven useful in texture analysis [2]. These features are
considered jointly in the framework of 1) stochasticity, a
concept which relies on, but not limited to: coarseness,
roughness and 2) wavelet packet transform, a representa-
tion that provides time-frequency, directionality, as well as
other suitable statistical properties mentioned below.

The stochasticity degree (or randomness appearance)
of a texture can be assessed by using the Kolmogorov
stochasticity parameter [12]. This parameter applies under
assumption that data are independent and identically dis-
tributed (iid) and their cumulative distribution function is
completely specified. Recent works related to this parame-
ter concern measuring the randomness degree of discrete
sequences from dynamical systems and number theory [13],
as well as measuring the contribution of randomness in the
cosmic microwave background [14]. In these works, the Kol-
mogorov parameter has been used for specific datasets that
are expected to comply with the underlying iid assumption,
with a known distribution function.

In a more general framework involving real world tex-
tures, this iid assumption is very restrictive due to non-
stationarity, spatial correlation and other more intricate
statistical dependencies that occurs among texture samples.
Moreover, the large variety of real world textures makes the
use of a single family of distribution models inappropriate.

The contributions addressed in the present paper with
respect to [13] and [14] concern being free of these restric-
tive assumptions by:

1) Considering the wavelet packet transform, a transform
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Fig. 1. Best representations of some OuTeX quartz textures depending on a fixed stochasticity bound: we split each node until the stochasticity
parameters used have reached this bound. Stochasticity consideration makes it possible to characterize a texture by a specific tree structure in the
wavelet packet domain.

that makes it possible to distribute many random
processes as stationary, independent and identically
distributed sequences, see for instance [15], [16], [17],
[18];

2) Considering a dictionary of parametric models that
are relevant with respect to the statistical distribution
of the wavelet packet coefficients.

Under the above considerations, stochasticity can be
measured even for correlated and non-stationary data
through their wavelet packet representations. Figure 1
provides illustrative examples of texture descriptions with
respect to their best stochastic wavelet packet bases: a
texture is characterized by a tree structure whose terminal
nodes are stochastic, in a sense to be highlighted further.
Furthermore, from the order structure that characterizes
wavelet packet bases, we derive texture classification by
using the stochasticity degree and content-based texture
retrieval with stochasticity semantics.

The presentation of this paper is as follows. Section II
introduces bounds for stochasticity acceptance in natural
images by using the uniform norm involved in the Kol-
mogorov stochasticity parameter. These bounds define a
semantic template composed of 4 classes: non-stochastic,
quasi-stochastic, stochastic and strongly-stochastic. Then,
Section III provides insightful results on the algebraic struc-
ture on the set of wavelet packet bases. Section IV dis-
cusses stochasticity measurements in wavelet packet bases
through model selection by using a dictionary of parametric
probability distribution functions. Section V presents ap-
plication of stochasticity analysis to the classification and
content-based image retrieval for textured images. Finally,
Section VI provides a conclusion to the paper.

II. STOCHASTICITY MEASUREMENTS

Let X = (X1, X2, . . . , XN ) be a sequence of absolutely con-
tinuous real random variables with respect to the Lebesgue
measure on R. This sequence is assumed to be iid with
probability density function, pdf f and cumulative distri-
bution function, cdf F .

The stochastic nature of a sample set x = (x1, x2, . . . , xN )
under the distribution model F is linked on how well we can
consider this set as a realization of the discrete sequence X .
This stochasticity can be assessed by using the Kolmogorov
parameter [12]:

λN =λN (x,F ) =
p

N sup
∣∣Fx,N (t )−F (t )

∣∣ , (1)

where Fx,N is the empirical cdf of the N -sample sequence
x.

Testing stochasticity for random generators involves find-
ing critical values (lower and upper bounds) for λN when
N tends to ∞. These critical values can be computed
from the Kolmogorov distribution: the upper bound on λN

can be fixed by seeking a value C0 such that Φ(C0) ∼= 1
for stochasticity acceptance of the samples issued from
this generator, with Φ being the Kolmogorov distribution
defined as

Φ(λ) = 1+2
+∞∑
k=1

(−1)k e−2k2λ2
. (2)

The rational of this approach is due to an asymptotic
property of the sequence (λN )N : when N tends to ∞, the
cdf of the random variable λN converges to the Kolmogorov
distribution Φ. Thus, asymptotically, the observation of a
stochasticity value λN ÉC0 is a certain event. In this sense,
a random generator yielding λN >> 2.4 as the sample size
size grows will be irrelevant.
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In this paper, we are not concerned by the above
asymptotic consideration for fixing critical values: we are
interested in comparing two datasets in terms of their
randomness degree. This can be performed according to
their stochasticity parameters, whatever the values of these
parameters. The question which arises is then: how far
is the Kolmogorov parameter relevant, compared to other
measures available from the literature on the topic? Sec-
tion II-A provides some answers through an analysis of
the distributions (cdf versus pdf ) involved in stochasticity
parameters and the norm used (cumulative versus uniform
norms). Before presenting these results, we need to find
an elementary non-stochastic pattern of reference. This
pattern will be used to corrupt stochastic data and the
sensitivity of different measures will then be addressed with
respect to the behavior of these measures, when the size of
the pattern increases.

From the Glivenko-Cantelli theorem, the quantity
sup

∣∣Fx,N (t )−F (t )
∣∣ decreases to 0 as N →∞. This implies

that sup
∣∣Fx,N (t )−F (t )

∣∣ is close to 0 for stochastic datasets.
Note that sup

∣∣Fx,N (t )−F (t )
∣∣ É 1 so that any x satisfying

sup
∣∣Fx,N (t )−F (t )

∣∣ = 1 is necessarily non-stochastic. For
instance, we will say that a constant sequence is deter-
ministic with respect to any given continuous distribu-
tion model. Indeed, for such a sequence, we have that
sup

∣∣Fx,N (t )−F (t )
∣∣= 1. Furthermore, we have that the pres-

ence of a value with large occurrence in a dataset can
be qualified as a deterministic pattern since it impacts
sup

∣∣Fx,N (t )−F (t )
∣∣.

A. The relevance of the Kolmogorov stochasticity parameter
in detecting deviations from a specified distribution

There are basically two criteria that distinguish stochas-
ticity measures:

1.) the norm used, which can be cumulative or uniform.
2.) the distribution, which can be specified as a pdf or a

cdf.

As examples, the Kolmogorov-Smirnov test [19] is based on
the uniform (`∞) norm and compares two cdfs. The chi-
square test [20] uses the cumulative `2 norm for comparing
pdfs.

Let us consider a dataset having stochasticity degree η

with respect to a given distribution model. Assume that
these data are affected by a purely deterministic pattern
in the sense that a proportion K /N of the data is set
to a constant value. Since a stochasticity measure can
be seen as a dissimilarity measure between distribution
functions, then a relevant stochasticity measure is such that
its stochasticity parameter should increases as K increases.
In the following experiments, a purely deterministic pattern
consisting in the insertion of K occurrences of a fixed
value is introduced in datasets and we test the relevance
of different stochasticity measures when the size K of this
pattern increases.

Simulations are carried out both on data issued from
random generators and on texture images. For convenience,
we present the experiments concerning textured images.

These experiments are performed upon the detail wavelet
coefficients of the textures under consideration. These coef-
ficients are expected to be very small in smooth regions and
large in the neighborhood of edges. Increasing the number
of null coefficients (if any) by forcing K large coefficients
to zero (deterministic pattern) results in smoothing some
edges of the image. This implies reducing the intrinsic
stochasticity of the data when K increases. A relevant
stochasticity measure should admit an increasing deviation
from the initial stochasticity degree1, when K increases.

For testing stochasticity measures, we consider the exper-
imental setup presented in Table I. We use different combi-
nation between norms (`2,`∞) and distribution specifica-
tion (cdf, pdf ). In this table, || · || specifically denotes either
the `∞ and `2 norms or the Kullback-Leibler2 Divergence
(KLD). In addition, if c j ,n denotes the wavelet packet co-
efficients obtained at subband W j ,n , then cK

j ,n corresponds
to the dataset obtained by setting the K largest values of
c j ,n to 0. In particular, c0

j ,n = c j ,n . The Minimum Expected
Value (Min-EV) of the relative stochasticity value computed
in Table I is the value obtained when no coefficients are set
to zero: this value equals 1.

TABLE I
EXPERIMENTAL SETUP FOR TESTING THE RELEVANCE OF THE UNIFORM (`∞)

NORM VERSUS THE CUMULATIVES `2 NORM AND KULLBACK-LEIBLER

DIVERGENCE (KLD) IN STOCHASTICITY MEASUREMENTS. THE QUANTITIES

INVOLVED IN THE COMPUTATION OF THE RELATIVE STOCHASTICITY VALUE

(RSV ) ARE THE EMPIRICAL DISTRIBUTION AND THE MODEL.

For 0 É K É 150, do:

Compute the wavelet coefficients
(
c j ,n

)
j ,n

of the input image.

Introduce a deterministic pattern among the coefficients of a subband

by setting the K largest coefficients to zero (notation
(
cK

j ,n

)
j ,n

).

Compute the stochasticity parameters:
Check the distribution type from variable “specification”
Case specification is “cdf ”, then:

Compute the RSV:

∣∣∣∣∣
∣∣∣∣∣FcK

j ,n
,N

−Fθ
(
cK

j ,n

)∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣Fc0
j ,n

,N
−Fθ

(
c0

j ,n

)∣∣∣∣∣
∣∣∣∣∣
,

Case specification is “pdf ”, then:

Compute the RSV:

∣∣∣∣∣
∣∣∣∣∣ f

cK
j ,n

,N
− fθ

(
cK

j ,n

)∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ f
c0

j ,n
,N

− fθ
(
c0

j ,n

)∣∣∣∣∣
∣∣∣∣∣

End
Compare the measurements obtained: for a relevant measure,

the larger K , the larger the stochasticity parameter.

The family of distribution functions chosen for modeling
the wavelet coefficients is the generalized gaussian distri-
butions. In addition, Gaussian, triangle and Epanechnikov

1The initial stochasticity degree is the value of the stochasticity param-
eter when no coefficients are forced to zero.

2The Kullback-Leibler similarity measure between random variables X1
and X2 having probability distribution functions fX1 and fX2 is defined
as

K (X1, X2) =K (X1||X2)+K (X2||X1),

with K (Xi ||X j ) =
∫
R

fXi
(x) log

fXi
(x)

fX j
(x)

d x, i , j = 1,2.
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Image “Fabric.0004”
cdf based stochasticity measures pdf based stochasticity measures

W1,1

W1,2

W1,3

Fig. 2. Relative stochasticity values for the image “Fabric.0004” from the VisTeX database. A relevant stochasticity strategy should results in an increasing
function starting from minimum expected value (Min-EV) 1 (represented by a solid line in the figures).

kernels have been used for pdf estimation. The results
provided in Figures 2 and 3 are obtained with a Gaussian
kernel and the wavelet decomposition has been performed
with a Daubechies wavelet function of order 7. These results
concern the images “Fabric.0004” and “Fabric.0018” from
the VisTeX database. The results we have obtained are
similar for other textures from the VisTeX database and for
other kernels concerning pdf based measures.

As it can be seen in Figures 2 and 3, the uniform norm
on the cdfs is the sole strategy that ensures an increase
of the stochasticity parameter from its initial value, when
the size K of the pattern increases. Cumulative measures

(`2, KLD), as well as pdf based specifications are not
very relevant for stochasticity assessment because of non-
increasing deviations from the initial stochasticity degree:
the local information is blurred through the averaging effect
induced by cumulative measures or through the neighbor-
hood consideration for computing pdfs.

Complementary tests performed on synthetic random
numbers, without the use of wavelet transform, confirm
the above conclusion. The results of these tests are not
presented in order to ease the reading of the paper and
also because of the limited size of the present paper.
From now on, we assume that the stochasticity parameter
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Image “Fabric.0018”
cdf based stochasticity measures pdf based stochasticity measures

W1,1

W1,2

W1,3

Fig. 3. Relative stochasticity values for the image “Fabric.0018” from the VisTeX database. A relevant stochasticity strategy should results in an increasing
function starting from minimum expected value (Min-EV) 1 (represented by a solid line in the figures).

is of Kolmogorov’s type: uniform norm that applies to
compare the empirical cdf with the distribution model.
Section II-B addresses the choice of different bounds on this
parameter for generating a semantic stochasticity template.
This makes it possible to classify textures relatively to the
location of their stochasticity parameters on the stochastic-
ity template.

B. Kolmogorov stochasticity measure versus error-bounds
from image estimation

As shown in Section II-A, Kolmogorov parameter, given
by Eq. (1), is consistent for detecting deterministic patterns

in stochastic datasets and vice versa. For the main purpose
of this paper, it is convenient to specify stochasticity bounds
that make it possible to classify textures depending on
their stochastic degrees. Note that the standard approach
on stochasticity testing, [19], is binary and is based on
asymptotic consideration.

In practical applications involving natural images, deriv-
ing a critical value on Eq. (1) from asymptotic consideration
on the sample size is restrictive for assessing the intrinsic
stochastic nature of the scene under consideration. Indeed,
from the fixed sampling grid and quantification steps in-
volved in image acquisition, natural images are with fixed
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dynamical range. For instance, images are described by
using integer values from 0 to 255 for a 8-bit coding, so that
sup

∣∣Fx,N (t )−F (t )
∣∣ is not expected to decrease significantly

when the sample size increases3.
In addition, note that this asymptotic consideration yields

a binary decision making. This decision is taken by com-
paring sup

∣∣Fx,N (t )−F (t )
∣∣ to C/

p
N , where C is the critical

upper bound derived from the Kolmogorov distribution
Φ given by Eq. (2). It is worth emphasizing that such a
decision is also restrictive for the “natural” perception of
stochasticity in textured images: assume that, from a given
texture (query) composed of N pixels, we build a larger
image by copying periodically the query texture. We thus
have the same texture, but two different stochasticity values
for its characterization. These values are 1) the stochasticity
value obtained from the query and 2) that obtained from
the larger image. These values differ significantly since the
sample term

p
N has changed whereas sup

∣∣Fx,N (t )−F (t )
∣∣

will remains approximately unchanged.
From the above analysis, the stochasticity degree of

a given image is hereafter assessed from the height of
the error measurement: sup

∣∣Fx,N (t )−F (t )
∣∣. In contrast

with the binary decision based on asymptotic consid-
eration, we propose to derive different semantic classes
consisting in stochasticity categories, by fixing bounds on
sup

∣∣Fx,N (t )−F (t )
∣∣ and with fixed sample size considera-

tion. This is performed by dealing with sup
∣∣Fx,N (t )−F (t )

∣∣<
ηi as a problem of estimating an unknown function from
observed samples, and by fixing ηi so as to guarantee a
PSNR greater than Ωi dBs, where (Ωi )i are bounds taken
from standards on PSNR quality from image denoising and
compression problems.

The PSNR (Peak Signal-to-Noise Ratio, in deciBel unit,
dB) is given by

PSNR = 10log10

(
d 2/MSE

)
, (3)

where d is the dynamic of the image and MSE denotes the
Mean Squared Error.

Proposition 1
Consider the problem of fitting Fx,N (ti ) by F (ti ) for i =
1,2, . . . , N . Then in order to have a PSNR greater than ΩdBs,
it suffices that η2 É d ×10−Ω/10.

The dynamic of Fx,N is 1. Now, we set Ω0 = 30dBs, Ω1 =
35dBs and Ω2 = 40dBs (a minimum of 30dBs is required
for an image denoising or compression algorithm to be
relevant). These values are associated with the constants:

ηi =
√

10−Ωi /10, i = 0,1,2,

hereafter referred as lower bounds for high, good and fair
quality set indicators. Then, we will use below, 4 stochas-
ticity classes:

3for a random sequence x issued from distribution F , the decay of
sup

∣∣Fx,N (t )−F (t )
∣∣ as N →∞ follows from the Glivenko-Cantelli theorem.

Definition 1 (Semantic stochasticity classes)
Let

κ (x,F ) = sup
t

∣∣Fx,N (t )−F (t )
∣∣ . (4)

A sample set x is said to be strongly stochastic (resp.
stochastic, quasi-stochastic, non-stochastic) with respect to
a continuous cdf F if κ (x,F ) ∈ [

0,η2
]

(resp. κ (x,F ) ∈ ]
η2,η1

]
,

κ (x,F ) ∈ ]
η1,η0

]
, κ (x,F ) ∈ ]

η0,+∞[
).

In order to measure stochasticity from a large class of
stochastic processes including non-stationary and non-iid
processes, we need the two properties:

(P1) a transform that has stationarization, decorrelation and
higher order dependency reduction for the class of
stochastic processes considered.

(P2) a large class of cdfs so as to approach with a good
precision an arbitrary empirical cdf by an element of
the class.

From [21], [22], [23], [24], [25], [18], [17], [16], [15], among
others, wavelet packet bases have property (P1) when
the decomposition level increases, provided that the filters
used are with high orders. In order to have Property (P2),
we need to build a large dictionary composed of several
families of cdfs so as to fit with any arbitrary continuous
distribution shape. Fortunately, the statistical properties of
the wavelet packet coefficients make it possible to drasti-
cally reduce the number of relevant distribution families in-
volved in the dictionary. The next sections address the best
wavelet packet basis selection with respect to stochasticity
measurements. We begin by presenting, in the next section,
some results on the algebraic structures that characterize
the wavelet packet bases. These structures will be useful in
the sequel.

III. PRELIMINARY RESULTS ON ORDER STRUCTURES AMONG

WAVELET PACKET BASES

Wavelet packet bases constitutes a general framework for
studying dictionaries of functional bases. Indeed, they offer
a large family of functional bases with several properties,
depending on whether we decide to split a given subband or
not [26], [27], [28], [29], among others. Best basis algorithms
for the representation of signals involves seeking for func-
tional atoms satisfying a given benchmark. In the wavelet
framework, this benchmark is usually expressed in terms
of energy of the coefficients, sparsity or number above a
threshold and entropy measurements [26], [30], [31]. Recent
works on best basis algorithms concern compressive sensing
and are related to the sparsity benchmark for piecewise
regular images [32].

This Section and the following Section IV provide results
that complement the previous works on best basis search,
in the sense that the issues addressed are: 1) the best mutual
basis when two (or more) functions are concerned (this
Section) and 2) selecting the best basis with respect to a
stochasticity criterion (Section IV). We begin by addressing
the mutual representation since applies for any best basis
benchmark.
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Assume that two different textures admit different bases
for their best representation. We raise the following ques-
tion: how to choose the mutual best basis with respect
to the tree structures spanned by the two bases? The
answer is linked on the order structure that governs the
wavelet packet bases. The following provides some results
on the algebraic structure of the set of wavelet packet bases.
More precisely, an order relation is derived from a binary
operation on the wavelet packet tree. This order relation
makes basis ordering possible and eases best-mutual basis
selection.

A. Order structure in wavelet packet trees

Till now, T∗ denotes a full wavelet packet tree down
to a fixed decomposition level J∗. Tree T∗ is defined by
the collection of nodes (wavelet packet subbands) T∗ ={

W j ,n : 0 É j É J∗,n = 0,1, . . . ,2 j −1∀ j
}
. A full wavelet packet

path P of T∗ is defined by the sequence P=
(
W j ,n j

)
0É jÉJ∗

where n j = n( j ) ∈ {0,1, . . . ,2 j −1}, is recursively defined from
n0 = 0 and n` = 2n`−1+ε`, with ε` ∈ {0,1} for every 1 É `É j .
From the above recurrence, we have that any given wavelet
packet path, down to a fixed decomposition level J É J∗,
can be completely specified by its terminal node WJ ,n J or
equivalently by the binary sequence (ε`)1É`ÉJ [17]. This

path will hereafter be denoted by P(J ,n J ) =
(
W j ,n j

)
0É jÉJ

.

For instance, P(0,0) = {
W0,0

}
is the path consisting of the

root node solely.
Consider two arbitrary wavelet packet paths P(J ,n J ) and

P(L, pL). Let I be the cardinal of the set A = {n1,n2, . . . ,n J }∩
{p1, p2, . . . , pL} and

qI =
{

maxA if A 6=∅,
0 if A =∅.

Define an operation ⊕ on paths by associating to P(J ,n J )⊕
P(L, pL), the path P(I , qI ) with terminal node WI ,qI (smallest
wavelet packet space that contains WJ ,n J and WL,pL ).

A subtree T of the wavelet packet tree T∗ is a collection
T= (

P(J`,n J` )
)
` of paths, where J` É J∗ for every `. Let T

be the set of all wavelet packet subtrees of tree T∗ and
T1 =

(
P(J`,n J` )

)
` ∈T , T2 =

(
P(Lk , p Jk )

)
k ∈T .

Define an operation ] on T by associating to T1]T2, the
tree T0 defined from the convention: P(Im , qIm ) pertains to
T0 if there exists P(J`,n J` ) ∈T1 and P(Lk , p Jk ) ∈T2 such that
P(Im , qIm ) = P(J`,n J` )⊕P(Lk , p Jk ). It follows that tree T0 is
composed of nodes that are common to T1 and T2.

We have: ] is a binary operation on T and,

Theorem 1
(T ,]) is a commutative monoid with identity element T∗.

Proof: Commutativity and associativity follow from the
properties of the binary operation ⊕ on paths. In addition,
T∗ is the identity element due to that any element of T is
included in T∗.

Now, let P(J ,n J ) be a wavelet packet path. We have:
P(J ,n J ) ⊕ P(J ,n J ) = P(J ,n J ). Thus, we can formulate the
following proposition.

Proposition 2
The operation ⊕ is idempotent over the set of all wavelet
packet paths.

The idempotency of ⊕ induces over wavelet packet paths,
an order structure denoted ´ and defined by: P(J ,n J ) ´
P(L, pL) ⇔ P(J ,n J )⊕P(L, pL) = P(L, pL). This order relation
is compatible with the operation ⊕. It is the inverse of
the natural set ordering induced by ⊂ operation on the
wavelet packet subspaces in that the largest wavelet space
with respect to set inclusion (root node W0,0) is associated
with the smallest wavelet packet path.

The lower (minimal, min) and upper (maximal, max)
bounds are defined by: P(J ,n J ) ´ P(L, pL) ⇐⇒ P(J ,n J ) ⊕
P(L, pL) = P(L, pL) ⇐⇒ min

{
P(J ,n J ),P(L, pL)

} = P(J ,n J ) ⇐⇒
max

{
P(J ,n J ),P(L, pL)

}=P(L, pL). In addition, a subtree be-
ing a collection of paths, the collection T of all subtrees of
T∗ associated with ] inherits the path order properties.

A full wavelet packet tree down to the decomposition
level j is composed of 2 j paths whose terminal nodes
are associated with frequency indices n j ∈

{
0,1, . . . ,2 j −1

}
.

Consider a re-ordering of these paths obtained from a
permutation G applied on the set

{
0,1, . . . ,2 j −1

}
. This

permutation operates isotonically with respect to the order
defined on wavelet packet paths:

P(J ,n J )´P(L, pL) =⇒P(J ,G(n J ))´P(L,G(pL)).

Thus, a re-ordering of the wavelet packet nodes such as the
one involved in the Shannon wavelet packet decomposition
do not impacts paths/trees ordering.

B. Infimum/supremum basis among a set of wavelet packet
bases

We will say that a subtree is associated with a basis if
the collection of wavelet functions generating its terminal
nodes constitute a basis of the input space W0,0. This is
equivalent to saying that the union of functional subspaces(
WJ`,n J`

)
`

associated with its terminal nodes equals W0,0.

We seek whether an arbitrary subtree of T∗ defines a basis
or not. Let us define the following interval:

Ij ,n =
[

n

2 j
,

(n +1)

2 j

[
. (5)

Then, we can formalize

Definition 2
A wavelet packet subtree

(
P(J`,n J` )

)
` defines a basis if the

intervals
(
IJ`,n J`

)
`

obtained from its terminal nodes form
a partition of the interval [0,1[.

Example 1
We have:

[
0

21 , 1
21

[
∪

[
2

22 , 3
22

[
∪

[
3

22 , 4
22

[
= [0,1[. Therefore, the

subtree
(
P(1,0),P(2,2),P(2,3)

)
is associated with a basis of

the input space or, in other words, W1,0
⊕

W2,2
⊕

W2,3 = W0,0

where
⊕

represents the direct sum between functional
spaces.
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B1 B2 B3 B4

W0,0

W1,0 W1,1

W0,0

W1,0

W2,0 W2,1

W3,2 W3,3

W1,1

W0,0

W1,0 W1,1

W2,4 W2,5

W0,0

W1,0

W2,0 W2,1

W3,2 W3,3

W1,1

W2,2 W2,3

min
(
B1,B2

)=B1 inf
(
B2,B3

)=B1 sup
(
B2,B3

)=B4 max
(
B1,B4

)=B4

Fig. 4. Basis comparison with respect to ´.

A basis being a particular collection of subtrees, the
collection B of all wavelet packet bases from T∗ associated
with ] inherits the properties of T :

Theorem 2
(B,]) is a commutative monoid with identity element
T∗, that is the basis generated by the full wavelet packet
decomposition.

The order structure on B is such that for two arbitrary
wavelet packet bases B1 = ⊕

`WJ`,n J`
and B2 = ⊕

k WLk ,pLk

associated respectively with terminal nodes
(
P(J`,n J` )

)
`

and
(
P(Lk , pLk )

)
k , we have: B1 ´ B2 if and only if every

IJ`,n J`
can be written as a partition consisting in elements

of
(
ILk ,pLk

)
k

. As above, this order structure makes basis
comparison possible with respect to the lower (min) and
upper (max) elements, as well as the greatest lower (in-
fimum, inf) and least upper (supremum, sup) elements.
Figure 4 illustrates trees and basis comparison.

Remark 1
The above order relation between wavelet packet
bases/trees may have been defined only by terminal node
consideration. But in practice, computing a terminal node
assumes that the coefficients associated with every parent
node have been computed. In addition, the basis/tree
ordering obtained from terminal node consideration is
not straightforward. This makes path consideration more
convenient for defining the order structure given above.

Remark 2
Assume the observation of different samples from a given
texture and a fixed best basis criterion (sparsity, for ex-
ample). Depending on the homogeneity of the texture or
the sampling procedure, the samples of the texture could
admit different best bases. On one hand, the infimum and
supremum trees inform us with the degree of homogeneity
of the samples or the sensitivity of the sampling procedure.
On the other hand, when a specific processing (similarity
measurements between samples, for example) involves a
fixed basis, then, we can chose either the infimum or the
supremum bases, depending on their suitability.

IV. BEST STOCHASTIC BASIS COMPUTATION FROM THE

WAVELET PACKET TREE

This section provides algorithms for best wavelet packet
basis selection with respect to the stochasticity criterion.
Section IV-B addresses the case of a single observation
and Section IV-C presents the case of several observations.
These algorithms require a specified distribution model for
the wavelet coefficients. In this sense, we begin by tackling
in Section IV-A below, the selection of the best distribution
for modeling the wavelet packet coefficients.

A. Stochastic texture retrieval using a dictionary of paramet-
ric models

The stochasticity degree obtained from κ (x,F ) in Eq. (4)
assumes that x is issued from the observation of indepen-
dent random variables, identically distributed, with cdf F .
It is worth emphasizing that a single family of continuous
functions, having 2 or 3 parameters, lacks enough flexibility
to capture a large class of textures. In this respect, we
need to build a dictionary D composed of numerous and
appropriate continuous cdfs.

The literature on wavelet packet statistical properties
highlights that wavelet packet coefficient distributions of
many stochastic processes tend to become more regular
with respect to the Gaussian distribution at large decom-
position levels. This is a consequence of the decay of
wavelet cumulants depending on the decomposition level
and the filter order, see [17], [15] for further details. In
addition, exponential decay has been proven to govern the
amplitudes of the wavelet coefficients of piecewise regular
functions (see [33, Sec. 6.1.3], among others). From these
results, it follows that cdfs of exponential family are mostly
suitable for modeling the wavelet packet coefficients. We
thus consider many of such cdfs for constructing D.

More precisely, the dictionary D used hereafter is com-
posed of the distributions: Generalized Gaussian (GG),
Weibull, Gamma, Exponential, Lognormal, Uniform and
generalized extreme value. These distributions are indexed
with a parameter µ. Dictionary D can thus be expanded as:

D = {
pµ,θ ,µ ∈Υ,θ = θ(µ) ∈Θµ

}
(6)

where index θ refers to distribution parameters. Example:
if µ=GG, then θ(µ) =(location, scale, shape).
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Let x ≡ c j ,n be the sequence of coefficients obtained from
the projection of a texture on the wavelet packet subband
W j ,n . The algorithm given in Table II presents the retrieval
of the best distribution model for x.

TABLE II
RETRIEVAL OF THE BEST MODEL FOR x IN D .

Compute, for every µ ∈Υ,
θ0(µ) = argθ∈Θµ max

∑N
i=1 log fµ,θ(xi )

Set:
µ0 = argµ∈Υminκ

(
x,Fµ,θ0(µ)

)
= argµ∈Υminsupt

∣∣∣Fx,N (t )−Fµ,θ0(µ)(t )
∣∣∣ .

Return: index µ0 and parameters θ0(µ0) of the best distribution.

This algorithm provides from dictionary D, the best dis-
tribution for representing x, that is Fµ0,θ0 : the distribution
pertaining to the family indexed by the argument µ0 and
whose parameters θ0 are those obtained from the maximum
likelihood over the set Θ(µ0) of all possible parameters θ(µ0)
of the distribution µ0. The stochasticity degree of subband
( j ,n) coefficients of the input texture is then κ

(
x,Fµ0,θ0

)
.

As above, T denotes a full wavelet packet tree down to
a fixed decomposition level J∗ and c j ,n = c j ,n(X ) are the
coefficients of the projection of a second order random
process X on W j ,n . To cope with the selection of the best
wavelet filter, we assume that the wavelet order is fixed to
7: Daubechies wavelet with 7 vanishing moments is used.
This choice is motivated by [18], [16], [15] where this order
is proven to be reasonable for decorrelating a large class of
random processes.

B. Best stochastic basis for the representation of a texture

The algorithm below makes it possible to find, for a given
texture and a fixed stochasticity bound, the best stochastic
wavelet packet basis with respect to D. The Best Stochastic
Basis (BSB) research in Wavelet Packet (WP) tree (BSB-
WP) is given in Table III. This algorithm assumes that the
maximum depth of the wavelet packet tree is fixed to J∗.

BSB-WP provides the best basis (subtree of T) in the

TABLE III
BSB-WP ALGORITHM: BEST STOCHASTIC BASIS SEARCH IN A WAVELET PACKET

TREE WITH MAXIMUM DEPTH FIXED TO J∗ .

Do
Decompose any non-stochastic node c j ,n .
Check4 the stochasticity of (c j+1,2n+ε)ε=0,1 with respect to

the distribution models given in D and the bound η.
Until All nodes are stochastic and j É J∗.
Retrieve the nodes associated with the stochastic subbands.

sense that a stochastic node is no more decomposed: the
coefficients issued from this node have already reached the
stochasticity degree imposed by η so that decomposing this
node is not appropriate. As consequence, the texture can
be represented with precison η by a sequence of elements
of D applied for modeling subbands of the BSB-WP tree.

Remark 3
Since, in general, the approximations of non-stationary
processes are not expected to become stationary [15], then,
when the remaining non-stochastic subband is the coarser
approximation subband (J∗,0), we will consider the input
texture as the sum of a deterministic pattern represented
by the approximation contribution and a stochastic process
resulting from the contribution of the BSB-WP detail nodes.

Remark 4
If there exist remaining non-stochastic detail subbands at
decomposition level J∗, then we will say that the texture
admits no stochastic representation with respect to bound
η by using a subtree of T and dictionary D.

C. Which basis for mutual representation or dual analysis?

TABLE IV
COMPUTATION OF THE SUPREMUM OF STOCHASTIC BASES.

Set node unions be an empty set
For every stochastic basis:

Get all nodes associated with the paths having
terminal nodes, the nodes of the stochastic basis.

Compute the new node unions as the
union between these nodes and the nodes
obtained at the former iteration.

End
Retrieve the terminal nodes associated with sequence

node unions. These terminal nodes define
the supremum basis among the bases considered.

TABLE V
COMPUTATION OF THE INFIMUM OF STOCHASTIC BASES.

Let J∗ the larger decomposition level involved in the bases.
Set node intersections be the sequence composed with all nodes

involved in a full wavelet packet tree down to level J∗.
For every stochastic basis:

Get all nodes associated with the paths having
terminal nodes, the nodes of the stochastic basis.

Compute the new node intersections as the
intersection between these nodes and the nodes
obtained at the former iteration.

end
Retrieve the terminal nodes associated with sequence

node intersections. These terminal nodes define
the infimum basis among the bases considered.

This section provides algorithms for finding the stochas-
tic bases that encompass a given set of best bases for
the representation of a family of textures. Without loss of
generality, we assume that two textures are concerned and
that they yield two different stochastic bases at degree ηi for
their representation. The outstanding bases are the infimum
and supremum bases. Indeed, the infimum and supremum
bases (see Section III-B) are the closest bases which inherit
approximately the same properties as the two given bases.
For instance, the supremum stochastic basis is the smallest
basis that yields joint stochastic representation. Now, when
discriminant analysis has to be performed on textures, then
it is reasonable to measure similarity on the infimum basis:
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decomposing beyond the terminal nodes of this basis is
not expected to yield better representation for the textures.
However, note that, beyond this algebraic consideration,
selection of a criterion for the joint representation of
these textures still depends on the problem tackled. The
algorithms for finding the joint optimal bases are detailed
in Tables IV and V.

V. APPLICATION

A. Texture classification

TABLE VI
VISTEX “FABRIC” TEXTURE CLASSIFICATION FROM BSB-WP STOCHASTICITY

MEASUREMENTS. THE “FABRIC” TEXTURES ARE GIVEN IN FIGURE 5. IN THIS

TABLE, “DET” DESIGNATE WAVELET PACKET DETAILS AND “APPROX”
DESIGNATE WAVELET APPROXIMATIONS.

Quasi-stochastic Stochastic Strongly-stochastic
Det. Approx. Det. Approx. Det. Approx.

Fabric.18
p p p p p

–
Fabric.07

p p p p
– –

Fabric.17
p p p

– – –
Fabric.04

p p p
– – –

Fabric.09
p p p

– – –
Fabric.11

p
–

p
– – –

Fabric.15
p

–
p

– – –
Fabric.00 – – – – – –
Fabric.14 – – – – – –

“Fabric.18” “Fabric.07” “Fabric.17”

“Fabric.04” “Fabric.09” “Fabric.11”

“Fabric.15” “Fabric.00” “Fabric.14”

Fig. 5. Textures “Fabrics” from the VisTeX database.

We run the BSB-WP algorithm in order to classify the
subclass of “Fabric” images of the VisTeX textures, with
respect to the semantic 4 classes (non-stochastic, quasi-
stochastic, stochastic, strongly-stochastic) given by Defini-
tion 1. We use a maximum depth J∗ fixed to 4 for the
wavelet packet decomposition and the Daubechies wavelet

of order 7 is used. Table VI summarizes the results obtained,
the corresponding textures being given in Figure 5.

The comparison between the results of this table and the
visual perception of the corresponding textures highlights
that the randomness appearance measured from parameter
κ is coherent with the natural perception of stochasticity.
Some textures (“Fabric.18”, “Fabric.07”) can be well rep-
resented by a sequence of parametric models applied on
all subbands of the best basis. Non stochastic textures
(“Fabric.00”, “Fabric.14”) are such that WP parametric mod-
eling is not relevant for their characterization because WP
coefficient distribution (that tend to be sparse because
these textures are piecewise regular) deviate significantly
from the continuous cdfs composing dictionary D.

The following provides some examples for illustrating
BSB-WP texture characterization.

Fabric.07
1.99

W[7]
1,0

0.44
W[7]

1,1

0.90
W[7]

1,2

0.49
W[7]

1,3

1.02

Fig. 6. 100×κ for texture “Fabric.07” from the VisTeX database. The BSB-
WP is composed of framed subbands.

Example 2
Texture “Fabric.07” is intrinsically quasi-stochastic:
κFabric.07 < η0. BSB-WP provides a basis (see the basis
composed of framed subbands in Figure 6) where all
subbands involved in the representation are stochastic:
κc1,n [Fabric.07] < η1 for every n = 0,1,2,3. BSB-WP basis with
higher stochasticity property (κ < η2) has not been found
up to decomposition level J∗.

Example 3
Texture “Fabric.09” is not intrinsically stochastic: κFabric.09 >
η0. BSB-WP provides a basis where the texture can rep-
resented as a deterministic (smooth) approximation and
stochastic details: κc j ,n [Fabric.09] < η1 for every nodes ( j ,n)
involved in the tree of Figure 7, with n 6= 0.

Example 4
Texture “Fabric.14” is not stochastic. κ-measurements are
out of stochasticity bounds for the input texture as well
as for many of its wavelet packet subbands up to de-
composition level J∗. In addition, this texture presents a
“singular” path in the sense given in [15]. Indeed, depending
on the input process, some paths are such that no cdf
regularization can be expected. In this case, stochasticity
measures can increase as the decomposition level increases.
This occurs for the path with subbands marked in oval
frames in Figure 8.

It follows that wavelet based stochasticity measurements
reflect the “randomness-like contribution” or “randomness
degree” of textures. This randomness degree reflects the
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Fabric.09
10.10

W[8]
1,0

7.57

W[8]
2,0

6.17
W[8]

2,1

1.26
W[8]

2,2

1.26
W[8]

2,3

1.53

W[8]
1,1

2.06

W[8]
2,4

1.40
W[8]

2,5

1.28
W[8]

2,6

0.77
W[8]

2,7

0.90

W[8]
1,2

1.73
W[8]

1,3

1.52

Fig. 7. 100×κ for texture “Fabric.09” from the VisTeX database. The BSB-WP is composed of framed subbands. The texture is represented as the sum
of a smooth approximation and stochastic details. �

�
�
�Fabric.14

9.30

W[8]
1,0

7.48

W[8]
2,0

7.04
W[8]

2,1

2.01
W[8]

2,2

4.44
W[8]

2,3

1.34

W[8]
1,1

1.75

W[8]
2,4

0.70
W[8]

2,5

2.00
W[8]

2,6

2.68
W[8]

2,7

3.87

�



�
	W[8]

1,2

9.59

W[8]
2,8

3.61
W[8]

2,9

4.01

�



�
	W[8]

2,10

10.11

W[8]
2,11

3.54

W[8]
1,3

4.76

W[8]
2,12

2.31
W[8]

2,13

2.33
W[8]

2,14

3.26
W[8]

2,15

3.95

Fig. 8. 100×κ for texture “Fabric.14” from the VisTeX database at decomposition level 2. Many subbands remain non-stochastic. In addition, the
stochasticity parameter κ does not systematically decrease as the decomposition level increases in some detail paths (see the path with oval boxes).

natural perception of textures (see Figure 5 and Table
VI for illustration) in that the human vision is known
to be sensitive to the roughness/coarseness/coherence of
observations. For instance, when SAR image browsing is of
interest, the query of a farm from that of a forest mainly dif-
fers from the roughness that characterizes these elements.
The same holds true when looking for a particular material
in geosciences: the difference of perception between rocks
(resp. geological strata) consists mainly in the intrinsic
coarseness of their particles (resp. layers). The following
provides two methods for content-based texture retrieval
by using stochasticity measurements.

B. Content-based stochasticity retrieval

This section addresses stochasticity consideration in
Content-Based Image Retrieval (CBIR) in texture databases.
Parametric modeling of the wavelet coefficients is known
to be efficient in CBIR (see [34], [35], [36], [37], [38] and
[39], for instance). The CBIR under consideration assumes
that the model distribution of the query and those of the
elements in the database are identified. This corresponds to
be the level 1 CBIR [40]: the query, an image, is completely
specified through its pixel values. The parametric modeling
associated with these values is used to describe the statisti-
cal distribution of the pixels (low-level feature description).

Consider now the level 2 CBIR [40], most commonly used
in practical applications, where the query is specified by
some of its high-level features. The main question concerns
feature selection, features that make inference possible with
respect to the human perception. For structured objects
with geometrically regular edges, the form (through primi-
tives) or the regularity of the objects can serve as features
and a query object can be inferred through these features,
see [10], [41].

In absence of structured components that can be taken
as references, then the randomness degree measured by the
stochasticity parameter can be used to infer the intrinsic
coherence (non-coherence being close to stochasticity) of
the observation and thus, pass by the model. In this sense,
we deal with level 2 Content-Based Coherence/Stochasticity
Retrieval (CBCR/CBSR).

The main contribution of the present paper with respect
to CBIR is the breaking of a semantic gap through texture
CBSR. This is performed by: 1) relating parametric modeling
of textures to the concept of randomness degree, 2) learning
the tree structure that makes stochastic representation of a
given family of texture possible at degree η (example: the
query “forest” will be associated to a specific tree repre-
sentation delimited by the infimum and supremum trees)
and 3) learning the stochasticity degree of subband wavelet



12

coefficients, given a fixed tree, in order to characterize a
texture through the variation of its stochasticity parameters.

In the following, we provide details on the level 2 CBSR
approaches proposed. We first describe in Section V-B1,
how to learn the tree structure that yields stochastic rep-
resentation at a fixed stochasticity degree η. An illustrative
example is given for some “Fabric” textures. Then, Section
V-B2 provides CBRS by learning the stochasticity degrees
for a fixed tree, with detailed experiments based on VisTeX
and Brodatz databases.

1) Content-based stochasticity retrieval by learning the
stochasticity tree structure: In this section, we consider a set
of M texture classes indexed by integer m,1 É m É M . For
a given class m, we assume that samples (mk )k=1,2,...Km are
avalaible (learning database). Let BBest[mk ] denotes the best
basis associated with sample mk at the fixed stochasticity
degree η.

Consider the infimum and supremum of the best
stochasticity bases (see Section III) associated with samples
(mk )k of texture class m and denoted by

Binf[m] = inf
{
BBest[m1],BBest[m2], . . . ,BBest[mKm ]

}
,

Bsup[m] = sup
{
BBest[m1],BBest[m2], . . . ,BBest[mKm ]

}
.

The tree structure describing the behaviour of the best
stochastic representations of the samples of texture m have
lower bound Binf[m] and upper bound Bsup[m].

The CBSR principle considered in this section is the
following: an arbitrary sample belongs to stochasticity class
m if its best basis at stochasticity degree η, denoted by B,
is such that: Binf[m] ¹B¹Bsup[m].

Consider the set of “Fabric” textures from the VisTeX
database (see Figure 5). From the classification obtained
in Table VI, we focuses on “Fabric.0007” and “Fabric.0018”
which are closer on the basis of their stochasticity degrees.
We set the stochasticity degree to η2. We then consider the
following experimental setup: each image is splited into 16
non-overlapping subimages, K = 8 images among them (the
8 upper-half subimages) are used as the training set. The
remaining 16 subimages, 8 subimages of ‘Fabric.0007” and
8 subimages of “Fabric.0018”, the lower-half subimages, are
put together to form the test database.

We run the following CBSR strategy:
• Learn the stochasticity tree structure for any of the

“Fabric” texture by computing Binf and Bsup from its
8 samples available from the learning database.

• Retrieve, from the test database, the samples that
belong to the semantic class of any of the “Fabric”
texture, that are the samples having stochasticity bases
bounded by the infimum and supremum bases asso-
ciated with the class.

• Sort the samples thus obtained and compute texture-
specific retrieval.

From the experiments carried out, we have that:
• The learned basis structure corresponding to “Fab-

ric.0007” is any basis B such that:⋃
n=0,1,2,3

W1,n ¹B¹ W2,0 ∪
( ⋃

n=4,5,...,43−1

W3,n

)
.

• The learned basis structure for “Fabric.0018” is any
basis B such that

W2,0∪
( ⋃

j=1,2

⋃
n=1,2,3

W j ,n

)
¹B¹ W3,0∪

( ⋃
j=1,2,3

⋃
n=1,2,3

W j ,n

)
.

The retrieval rates obtained from the test database are such
that:

• Query “Fabric.0007”, associated with the lowest ran-
domness degree among the two classes, reduces the
search database from 16 to 8 including 7 good re-
trieval/8.

• Query “Fabric.0018”, associated with the highest ran-
domness degree among the two classes, reduces the
search database from 16 to 7 including 7 good re-
trieval/8.

From these experiments, it follows that we can charac-
terize the statistical distributions of the coefficients of a
texture (low-level features) by a tree structure with respect
to stochasticity bounds and perform high-level CBSR with
query concepts consisting in higher or lower randomness
appearance.

2) Content-based stochasticity retrieval by learning the
stochasticity bounds: Depending on constraints such as
computational load or dealing with a large number of
semantic classes, it may sometimes be desirable to fix the
decomposition basis. In this section, we consider a fixed
wavelet packet basis B=⋃

p=1,2,...,L WJp ,np and propose high-
level CBSR by learning the subspace (hypercube) where the
stochasticity parameters are expected to lie within.

Assume the availability of K samples (subimages) for
any texture class m considered, with 1 É m É M (train-
ing set for this texture). Let us denote by κm`

(Jp ,np ),
the value of the stochasticity parameter (see Eq. (4)) as-
sociated with the subband WJp ,np coefficients of subim-
age m`. The sequence

(
κm`

(Jp ,np )
)
`=1,2,...,K represents the

behaviour of the stochasticity parameters of the projec-
tion of texture m samples on subband WJp ,np . Let us
denote κm

min(Jp ,np ) = min
{
κm`

(Jp ,np ),`= 1,2, . . . ,K
}

and
κm

max(Jp ,np ) = max
{
κm`

(Jp ,np ),`= 1,2, . . . ,K
}
. Define the

stochasticity hypercube associated with the samples of
texture m on basis B by

H m
L =

L∏
p=1

[
κmin

m (Jp ,np ),κmax
m (Jp ,np )

]
.

The CBSR principle considered in this section is
the following: a query sample admitting stochastic-
ity parameters κ(J1,n1),κ(J2,n2), . . . ,κ(JL ,nL) on basis
B is decided to belong to class m if the vector
(κ(J1,n1),κ(J2,n2), . . . ,κ(JL ,nL)) ∈H m

L .
In this respect, a texture can be characterized by the

hypercube defined from the lower and upper bounds of
the stochasticity parameters of its sample coefficients on
the basis B. This hypercube defines the semantic class of
the texture.

Assume that a new sample of the texture is available.
Then we can re-evaluate the stochasticity bounds when
some of the additional stochasticity parameters of this
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TABLE VII
TRUE POSITIVE RATE ( TPR) AND FALSE ALARM RATE (FAR) FOR CBRS BY

LEARNING THE STOCHASTICITY BOUNDS. DICTIONARY D IS USED FOR

STOCHASTICITY MEASUREMENTS.

Texture TPR FAR

Bark.00 62.50 08.97
Bark.06 37.50 07.69
Bark.08 62.50 00.80
Bark.09 75.00 10.58
Bric.01 31.25 01.44
Bric.04 37.50 02.56
Bric.05 50.00 06.89
Buil.09 37.50 00.96
Fabr.00 43.75 01.92
Fabr.04 50.00 07.05
Fabr.07 62.50 01.12
Fabr.09 37.50 00.48
Fabr.11 56.25 01.44
Fabr.14 50.00 0
Fabr.15 68.75 00.80
Fabr.17 56.25 01.12
Fabr.18 68.75 00.48
Flow.05 31.25 07.21
Food.00 62.50 01.92
Food.05 31.25 03.21

Texture TPR FAR

Food.08 56.25 0
Grass.01 37.50 04.81
Leav.08 68.75 12.66
Leav.10 43.75 09.13
Leav.11 56.25 04.65
Leav.12 43.75 04.65
Leav.16 62.50 01.92
Meta.00 50.00 01.92
Meta.02 68.75 00.32
Misc.02 62.50 00.64
Sand.00 31.25 02.24
Ston.01 56.25 08.01
Ston.04 62.50 01.92
Terr.10 50.00 08.01
Tile.01 31.25 02.40
Tile.04 37.50 00.96
Tile.07 25.00 0
Wate.05 62.50 02.40
Wood.01 56.25 12.18
Wood.02 56.25 09.29

TABLE VIII
TRUE POSITIVE RATE ( TPR) AND FALSE ALARM RATE (FAR) FOR CBRS BY

LEARNING THE STOCHASTICITY BOUNDS. THE GG FAMILY IS USED FOR

STOCHASTICITY MEASUREMENTS.

Texture TPR FAR

Bark.00 100 18.27
Bark.06 75.00 13.78
Bark.08 68.75 03.37
Bark.09 75.00 20.83
Bric.01 62.50 03.85
Bric.04 68.75 04.01
Bric.05 75.00 08.97
Buil.09 56.25 02.56
Fabr.00 62.50 02.88
Fabr.04 50.00 13.62
Fabr.07 81.25 01.44
Fabr.09 75.00 00.64
Fabr.11 81.25 02.40
Fabr.14 87.50 00.16
Fabr.15 87.50 02.08
Fabr.17 87.50 03.05
Fabr.18 81.25 01.12
Flow.05 56.25 11.06
Food.00 93.75 02.56
Food.05 50.00 04.17

Texture TPR FAR

Food.08 75.00 00.48
Grass.01 50.00 07.85
Leav.08 75.00 16.03
Leav.10 56.25 14.58
Leav.11 62.50 06.89
Leav.12 43.75 04.81
Leav.16 75.00 02.56
Meta.00 68.75 02.72
Meta.02 87.50 00.64
Misc.02 68.75 00.96
Sand.00 62.50 03.37
Ston.01 62.50 13.94
Ston.04 68.75 03.53
Terr.10 68.75 16.35
Tile.01 37.50 04.17
Tile.04 68.75 02.08
Tile.07 31.25 0
Wate.05 81.25 07.69
Wood.01 93.75 24.20
Wood.02 75.00 15.22

“Tile.0001” “Tile.0007” “Wood.0001”

Fig. 9. Textures “Tile.0001”, “Tile.0007”, “Wood.0001” from the VisTeX
album.

sample are out of the texture stochasticity hypercube. In
addition, depending on the distribution of the stochasticity
parameters, the user can discard those behaving as outliers
in order to tighten the stochasticity hypercube and avoid
overlapping with stochasticity hypercubes associated to
other semantic classes. This re-evaluation is known to be

useful in integrated CBIR systems [42].
The following provides CBSR experimental results ob-

tained for M = 40 textures from the VisTeX database. The
experimental setup used is described below:

• First, we construct the learning database by using
the top-half of the images: each top-half image is
splited into K = 8 non-overlapping subimages (128
× 128 pixels per subimage). These K subimages are
used to compute the stochasticity hypercube H m

L for
m = 1,2, . . . ,40.

• Then, we constitute the test database by using the
down-half of the images: each down-half image is
splited into 8 non-overlapping subimages. Thus, the
test database is composed of 8×M subimages.

• In order to increase the number of experiments, we
have also permutated the roles played by the learning
and the test database (top-half becomes down-half and
vice-versa).

We run this procedure when the decomposition is per-
formed by using a wavelet basis with J∗ = 2. The stochas-
ticity is measured with respect to dictionary D (Table
VII) and with respect to a single distribution family: the
GG distributions (Table VIII). Specifically, in these tables,
we have that 2 stochasticity coordinates out of H m

L are
tolerated, that is, 2 stochasticity parameters out-of-bounds
are tolerated among a set of 3 ∗ J∗ + 1 = 7 stochasticity
parameters κ(J1,n1),κ(J2,n2), . . . ,κ(JL ,nL) with L = 7. In
Tables VII and VIII, TPR denotes the True Positive Rate
defined as the ratio (fraction relevant queries per class):

TPR[m] =
Number of admissible subimages that

are issued from texture m

Total number of relevant subimages,

and FAR denotes the False Alarm Rate per class:

FAR[m] =
Number of admissible subimages that

are not issued from texture m
Total number of subimages that are

not issued from texture m

As it can be seen in these tables, stochasticity based
retrieval is relevant for most textures given in this database.
Low TPRs occur when texture is very regular (Example:
“Tile.0001”, “Tile.0007”), see Figure 9. High FARs occur
when texture have non-homogeneous subimages (Example:
“Wood.0001”): the bounds define a large interval which is
expected to contain stochasticity values related to many
other textures, see Figure 9.

Experiments on the Brodatz album yield approximately
the same results. The global TPR is 69% for the Brodatz al-
bum (resp. 70% for the VisTeX album) and the global FAR is
10% for the Brodatz album (resp. 7% for the VisTeX album),
when GG modeling is used for stochasticity measurements.
Tables concerning Brodatz album are omitted because 111
textures are concerned by the tests.

VI. CONCLUSION

The paper has provided algorithmic tools for best basis
selection with respect to stochasticity criterion. When reg-
ularity fail to be relevant because measuring low regularity
is intricate, stochasticity can be used efficiently.
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The framework used for measuring stochasticity is that
of the dictionary of wavelet packet bases because of their
suitable algebraic and statistical properties. The order struc-
ture involved in wavelet packet bases makes it possible
to define the infimum and supremum bases among a set
a best stochastic bases. The relevance of the stochasticity
analysis through wavelet packet tree has proven efficiency
in classification and content-based stochasticity retrieval.
The best stochastic basis selection can be extended straight-
forwardly to larger dictionaries of functional bases or when
considering union of several dictionaries with the same
order structure. Further prospects concerning this work are
related to replacing the stochasticity hypercubes by smooth
manifolds in order to limit miss-classifications. Finally, a
question that arises is: up to what extent can we guess a
duality between the notions stochasticity and regularity?
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