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Abstract

Weibull mixtures have been widely used in many applications, and they can be generalized

by allowing negative mixing weights. In this note, we investigate constraints on the mixing

weights and parameters of components under which the generalized mixture of Weibull

distributions to be a valid probability model, including the cases of exponential or Rayleigh

components. In addition, characterizations are shown for generalized mixtures of three

or fewer Weibull components. We use an example of two-fold Weibull mixture model

where negative weights are estimated, and the constraints are illustrated with a graphical

example of three components.

Key words: Weibull mixtures, generalized mixtures, characterization

AMS 2000 subject classification: Primary 60E05, secondary 62E10

1. Introduction

Weibull mixture models play a great role in reliability theory, since they exhibit a wide

range of shapes for the density and failure rate functions, which makes them suitable for

modelling complex survival or failure data sets. For instance, to the reliability modelling

(e.g., see Patra and Dey (1999) and Bucar et al. (2004)), the Hang-Seng stock price index

(Tsionas ( 2002)), survival data (Marín et al. (2005)), automobile warranty data (Attardi

et al. (2005)), and probabilistic behavior of wind speeds (Carta and Ramírez (2007)).

A basic feature of the finite mixture models is that the mixing weights are positive, but
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this is not a necessary condition to be a valid probability model (e.g., Titterington et al.

(1985)). The generalized mixtures extend the standard mixed models and provide more

flexibility in their estimations allowing negative mixing weights.

In this context, Jiang et al. (1999) derived generalized mixtures of Weibull distribu-

tions under the formation of series, parallel, k-out-of-n and consecutive k-out-of-n systems

formed by Weibull components with the same shape parameter. In addition, some neg-

ative estimations for the weights of Weibull mixtures of three components with common

shape parameter are obtained in three examples of Bucar et al. (2004), and they also

pointed out it is crucial to be able to guarantee that these mixtures are valid models.

Thus, it seems reasonable to use generalized mixtures of Weibull components as underly-

ing distributions to model heterogeneous survival data, and reliability of a system when

its structure is unknown or partially known, since one cannot use component lifetime

distributions to derive the system’s lifetime distribution. In both cases, sub-populations

and components very often have the same distribution type, and it is important to know

what parametric constraints must be required to have a legitimate probability model. So,

we will concentrate only on Weibull components with common shape parameter, which is

habitual in several applications, and includes as special cases the exponential or Rayleigh

components.

In the literature, some authors have studied generalized mixtures of exponential dis-

tributions and properties related with these generalized mixtures, also called generalized

hyperexponential models. Steutel (1967) gave necessary conditions to be a valid proba-

bility model, and Bartholomew (1969) obtained sufficient conditions, which characterize

the two exponential components case. Likewise, Baggs and Nagaraja (1996) showed the

characterization of generalized mixtures of three exponential distributions, and their relia-

bility properties are discussed in Baggs and Nagaraja (1996) and Franco and Vivo (2002).

Furthermore, Franco and Vivo (2006) analyzed the four exponential components case,

and Franco and Vivo (2007) studied the generalized mixtures of a gamma and one or two

exponential distributions.

Note that analytical and graphical methods have been used to approximate Weibull

mixture models. For instance, moments, maximum likelihood, least-square and WPP
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plot methods, and different numerical algorithms have been employed to approach the

probabilistic behavior, among others quasi-Newton, Newton-Raphson, conjugate gradient

and expectation-maximization algorithms. A brief review about these estimation methods

and their applications to Weibull mixtures can be seen in Bucar et al. (2004), Murthy et

al. (2004) and Carta and Ramírez (2007). Some of them may be applied to fit Weibull

mixture models allowing negative mixing weights, which might yield a more suitable model

by verifying its feasibility through determined restrictions. Therefore, we hope that the

study of these constraints will attract its application.

The paper is organized as follows. In Section 2, we define a generalized mixture of

Weibull distributions, and we discuss its necessary or sufficient conditions to be a valid

probability model. In Section 3, the characterization of these mixtures of three or fewer

Weibulls based on the mixing weights and the parameters of the components is deduced.

In the last section, Weibull mixtures with some negative weights and the same shape

parameter are arisen in the reliability field, and in a particular case simulated times to

failure data are fitted by 2-fold Weibull mixtures. Moreover, the obtained restrictions

are also illustrated with a specific example, which shows the non-equivalence between the

necessary and sufficient conditions when a generalized mixture of more than two Weibull

components is considered.

2. Constraints for generalized mixtures of Weibulls

First, we give the concept of generalized mixture of Weibull distributions with common

shape parameter, which includes as special cases the generalized mixtures of exponential

or Rayleigh components.

Let (X1, X2, ..., Xn) be a random vector formed by Weibull components with common

shape parameter c > 0 and density functions fi(x) = cbix
c−1e−bix

c for all x > 0, and

bi > 0, i = 1, ..., n. It is said that X is a generalized mixture of Weibull distributions with

common shape parameter c > 0, if its density function (pdf) is given by

f(x) =
n∑

i=1

aifi(x) (1)

where ai ∈ R, i = 1, ..., n, such that
∑n

i=1 ai = 1.

3
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Evidently, this generalized mixture may be defined by its distribution and survival

functions, respectively,

F (x) = 1 −
n∑

i=1

aie
−bix

c

and S(x) =
n∑

i=1

aie
−bix

c

.

Moreover, taking into account that each component of (1) fi(x) is a pdf, it is clear

that
∫
R f(x)dx =

∑n
i=1 ai = 1, and consequently, f(x) is a pdf if and only if f(x) ≥ 0 for

all x, i.e., a generalized mixture of Weibull distributions is a legitimate probability model

if and only if f(x) is everywhere positive. In addition, if some of the ai’s are negative,

f(x) could be negative for some values of x and so may not be a pdf.

Likewise, we can suppose that bi are different, i = 1, ..., n, because in otherwise, the

number of components of the generalized mixture of Weibull distributions is reduced

to the different scale parameters bi. For example, if we consider two identically dis-

tributed Weibull components, b1 = b2 = b, then their generalized mixture follows the

same distribution than its components. So, without loss of generality, we may assume

0 < b1 < b2 < ... < bn.

Let us see now constraints for a generalized mixture of Weibull distributions with

common shape parameter, which are based on their weights and parameters.

Theorem 2.1. Let f(x) in (1) be a generalized mixture of Weibull density functions with

common shape parameter c > 0, 0 < b1 < b2 < ... < bn and ai ∈ R, i = 1, ..., n, such that
∑n

i=1 ai = 1. If f(x) is a pdf then a1 > 0 and

n∑

i=1

aibi ≥ 0.

Proof. Firstly, in order to check f(x) ≥ 0, the function f(x) can be written as f(x) =

cxc−1e−bnxc
g(x), where g(x) =

∑n
i=1 aibie

(bn−bi)x
c , and both f(x) and g(x) have the same

sign.

If we suppose that a1 < 0, then limx→∞ g(x) = −∞, and consequently, there exits a x0

such that g(x) < 0 for all x > x0, which contradicts that f(x) is a pdf. Therefore, a1 > 0

is a necessary condition for f(x) ≥ 0 everywhere. Note that a1 6= 0 because a1 represents

the coefficient of the Weibull component with less parameter bi in the generalized mixture.
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Moreover, it is required that f(0) ≥ 0, and taking into account that limx→0 g(x) =
∑n

i=1 aibi we obtain that
∑n

i=1 aibi ≥ 0.

However, the conditions of Theorem 2.1 are not sufficient for a generalized mixture of

Weibull distributions. So, the following result shows sufficient restrictions to ensure that

f(x) is a valid pdf.

Theorem 2.2. Let f(x) in (1) be a generalized mixture of Weibull density functions with

common shape parameter c > 0, 0 < b1 < b2 < ... < bn and ai ∈ R, i = 1, ..., n, such that
∑n

i=1 ai = 1. If
i∑

k=1

akbk ≥ 0, for i = 1 , ..., n (2)

then f(x) is a pdf.

Proof. Under the conditions of the statement, f(x) can be rewritten as

f(x) = cxc−1e−bnxc
n∑

i=1

aibi + cxc−1

n−1∑

i=1

e−bix
c (

1 − e−(bi+1−bi)x
c) i∑

k=1

akbk

where each term of f(x) is positive if (2) is satisfied, and hence, f(x) is a pdf.

Remark 2.3. Theorems 2.1 and 2.2 show necessary conditions and sufficient conditions

for a generalized mixture of exponential distributions when c = 1, which were given by

Steutel (1967) and Bartholomew (1969), respectively. Moreover, when the shape param-

eter c = 2, the necessary or sufficient restrictions for a generalized mixture of Rayleigh

components are also given by both theorems, respectively.

3. Characterizations with three or fewer components

In this section, we characterize a generalized mixture of two or three Weibull distri-

butions based on the mixing weights and parametric restrictions of their components.

In the two components cases, it is immediate to check that the necessary conditions

of Theorem 2.1 and the sufficient conditions of Theorem 2.2 are equivalent.

Theorem 3.1. Let f(x) = cxc−1(a1b1e
−b1xc

+ a2b2e
−b2xc

) be a generalized mixture of two

Weibull density functions with common shape parameter c > 0, 0 < b1 < b2 < ∞, a1 > 0

5
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and a2 ∈ R such that a1 + a2 = 1. Then, f(x) is a pdf if and only if either a2 > 0 or

a1b1 + a2b2 ≥ 0.

Nevertheless, the sufficient conditions (2) given by Theorem 2.2 are not necessary

conditions when a generalized mixture of more than twoWeibull components is considered.

In this setting, the following result determines the constraints based on the mixing weights

and parameters of a generalized mixture of three Weibull distributions to be a legitimate

pdf.

Theorem 3.2. Let f(x) = cxc−1(a1b1e
−b1xc

+ a2b2e
−b2xc

+ a3b3e
−b3xc

) be a generalized

mixture of three Weibull density functions with common shape parameter c > 0, 0 < b1 <

b2 < b3 < ∞, a1 > 0 and a2, a3 ∈ R such that a1 + a2 + a3 = 1.

1. If a2 > 0 and a3 > 0, then f(x) is a pdf.

2. If a2 ∈ R and a3 < 0, then f(x) is a pdf if and only if

a1b1 + a2b2 + a3b3 ≥ 0. (3)

3. If a2 < 0 and a3 > 0. Then, f(x) is a pdf if and only if one of the following cases

holds:

(a) m ≤ 1 and (3)

(b) m > 1 and log(m1) ≥ (b3 − b1)(b2 − b3)
−1 log(m)

where

m =
−a3b3(b3 − b1)

a2b2(b2 − b1)
and m1 =

a1b1(b2 − b1)

a3b3(b3 − b2)
.

Proof. Taking into account that f(x) is a pdf if and only if f(x) is nonnegative, we develop

the proof depending on the signs of the ai’s.

In the first place, if all weights are positive, a1 > 0, a2 > 0 and a3 > 0, then f(x) is a

convex mixture of Weibull distributions; therefore, f(x) is a true pdf.

In the case (2), a3 < 0, we discuss the non-negativity of f(x) depending on the sign

of a2.

If a2 > 0, the function f(x) can be expressed as f(x) = cxc−1e−b3xc
g1(x), where

g1(x) = a1b1e
(b3−b1)xc

+ a2b2e
(b3−b2)xc

+ a3b3

6
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thus, f(x) and g1(x) have the same sign, and g1(0) = a1b1 + a2b2 + a3b3. Moreover, g1(x)

is increasing in x > 0. So, if g1(0) ≥ 0, which is restriction (3), then g1(x) ≥ 0, and

consequently, f(x) is a pdf.

Likewise, when a2 < 0, the function f(x) has the same sign that the function g2(x),

where

g2(x) = a1b1 + a2b2e
−(b2−b1)xc

+ a3b3e
−(b3−b1)xc

since f(x) = cxc−1e−b1xc
g2(x). Therefore, taking into account that g2(x) is increasing in

x and g2(0) = a1b1 + a2b2 + a3b3, if g2(0) ≥ 0 then g2(x) ≥ 0, and consequently, f(x) is a

pdf.

Note that, in both cases a2 > 0 and a2 < 0, when (3) is not satisfied, then gi(x)

changes of sign, i = 1, 2, and therefore, f(x) cannot be a pdf, which proves that (3) is

necessary.

Finally, to prove case (3), a1 > 0, a2 < 0 and a3 > 0, we remark that f(x) and g2(x)

have the same sign, and the first derivative of g2(x) is given by

g′
2(x) = −(b2 − b1)cx

c−1a2b2e
−(b2−b1)xc − (b3 − b1)cx

c−1a3b3e
−(b3−b1)xc

= −cxc−1
[
(b2 − b1)a2b2e

−(b2−b1)xc

+ (b3 − b1)a3b3e
−(b3−b1)xc]

.

Thus, taking into account the above term between bracket for all x ∈ R, it is deduced
that there exists x0 such that g′

2(x) ≥ 0 for x ≥ x0 and g′
2(x) < 0 for x < x0, where

x0 =

(
1

b3 − b2

log m

)1/c

and m = − a3b3(b3 − b1)

a2b2(b2 − b1)
.

So, if m ≤ 1, then the function g2(x) is increasing for all x > 0, and hence g2(x) ≥
g2(0). Furthermore, under condition (3), the function f(x) is a pdf; and if (3) is not

verified, then f(x) changes its sign.

Likewise, if m > 1, the function g2(x) changes its monotonicity from being decreasing

to increasing for all x > 0, and consequently, g2(x) attains its minimum at x0, i.e.,

g2(x) ≥ g2(x0). Therefore, f(x) changes its sign when g2(x0) < 0, and it is a pdf when

g2(x0) ≥ 0.

Besides, g2(x0) can be rewritten as

g2(x0) = a1b1 + e−(b3−b1)xc
0
(
a2b2e

−(b2−b3)xc
0 + a3b3

)

7
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thus, the condition g2(x0) ≥ 0 can be expressed as

−a1b1 ≤ m
− b3−b1

b3−b2 (a2b2m + a3b3) = a3b3m
− b3−b1

b3−b2

(
b3 − b1

− (b2 − b1)
+ 1

)

or equivalently,

m1 =
a1b1(b2 − b1)

a3b3(b3 − b2)
≥ m

− b3−b1
b3−b2 ⇔ log (m1) ≥ − b3 − b1

b3 − b2

log (m) .

Note that, when a2 < 0 and a3 > 0, the restrictions of (3b) imply the necessary

condition (3).

Remark 3.3. When the shape parameter c = 1, Theorems 3.1 and 3.2 characterize

generalized mixtures of two and three exponential components, which were obtained by

Bartholomew (1969) and Baggs and Nagaraja (1996), respectively. In addition, when c =

2, the above theorems also establish the necessary and sufficient conditions for generalized

mixtures of two and three Rayleigh components, respectively.

4. Remarks

As mentioned in Section 1, it is habitual to use Weibull components in numerous

applications. Here, we give a small sample of cases in the reliability field, which evidently

satisfy the parametric restrictions given by Theorems 3.1 and 3.2.

We need to use the next notation. Let X1 and X2 be two neither necessarily indepen-

dent nor identically distributed random variables with survival functions Si(x), i = 1, 2,

and joint survival function S(x1, x2) = Pr(X1 > x1, X2 > x2). Let T1 = min (X1, X2) and

T2 = max (X1, X2) denote their minimum and maximum order statistics, i.e., the lifetimes

of the series and parallel systems, respectively; their survival functions are given by

S(1)(x) = S(x, x) and S(2)(x) = S1(x) + S2(x) − S(1)(x). (4)

In this setting, the generalized mixtures arise from some bivariate Weibull models,

most of them have been constructed as extensions of bivariate exponential models, an

excellent review on this topic can be found in Kotz et al. (2000) and Murthy et al.

(2004). Thus, when marginals have a common shape parameter, their series and parallel

systems are predominantly generalized mixtures of three or fewer Weibull components

with the same shape parameter.

8
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Example 4.1. Let X1 ∼ W (θ1, c) and X2 ∼ W (θ2, c) be two independent Weibull com-

ponents with (θ1, c) and (θ2, c) parameters, respectively. From (4), T1 ∼ W (θ1 + θ2, c),

and its parallel system is a generalized mixture of three Weibull distributions with survival

function S(2)(x) = e−θ1xc
+ e−θ2xc − e−(θ1+θ2)xc, i.e. a1 = a2 = 1 and negative weight

a3 = −1. Moreover, if θ1 = θ2 then T2 is a generalized mixture of two Weibull components

with weights a1 = 2 and a2 = −1.

Example 4.2. Let (X1, X2) be a bivariate Weibull distribution of Marshall-Olkin, which

joint survival function is given by

S(x1, x2) = exp (−λ1x
c
1 − λ2x

c
2 − λ12 max (xc

1, x
c
2))

for all x1, x2 > 0, where λ1 > 0, λ2 > 0, λ12 > 0 and c > 0. From (4), T1 ∼ W (λ, c), and

its parallel system has survival function S(2)(x) = e−(λ1+λ12)xc
+ e−(λ2+λ12)xc − e−λxc where

λ = λ1 + λ2 + λ12, i.e., a generalized mixture of three Weibull distributions with weights

a1 = a2 = 1 and a3 = −1.

Other interesting application of generalized mixtures of Weibull distributions may be

yielded in modelling occurrence of power system blackouts.

Example 4.3. Assuming independent Weibull distributions for the lifetimes X1 of power

system transmission lines and X2 of power system protective relays, X1 ∼ W (θ1, c) and

X2 ∼ W (θ2, c) respectively, then the conditional random variable X = (X1|X1 > X2)

is relevant to model blackouts when the protection system has failed, since power system

blackouts due to the failure in transmission lines is related with hidden failure in protective

relays. Thus, taking into account that P (X1 > X2) = θ2(θ1 + θ2)
−1 and P (X1 > x,X1 >

X2) = e−θ1xc − θ1(θ1 + θ2)
−1e−(θ1+θ2)xc, it is easy to prove that X follows a generalized

mixture of two Weibull components with survival function

S(x) = (θ1 + θ2)θ
−1
2 e−θ1xc − θ1θ

−1
2 e−(θ1+θ2)xc

.

where the mixing weights are a1 = (θ1 + θ2)θ
−1
2 > 1 and a2 = −θ1θ

−1
2 < 0.

In order to display a particular case where negative weights are estimated, we need to

revisit the method of moments (MM), the least-square (LS) method and the maximum

9
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likelihood (ML) method in the context of generalized mixtures of two Weibull distribution

with common shape parameter.

Firstly, the MM determines the parameters by solving the system of equations formed

by sample moments equal to population moments, which can be expressed as

kr(c) = a1β
r
1 + (1 − a1)β

r
2 , for r = 1, 2, 3, 4 (5)

where kr(c) = (Γ(1 + r/c))−1
∑n

i=1 xr
i /n is the sample moment mr of order r divided by

the function Γ of Euler, and βj = b
−1/c
j with j = 1, 2. Thus, the solutions are restricted

by the conditions of Theorem 3.1, or equivalently,

a1 > 0, β1 > β2 > 0, a1 ≤ βc
1(β

c
1 − βc

2)
−1 and c > 0.

Remark that the above system of nonlinear equations can be simplified into one as follows.

The first equation r = 1 allows to find the weight of the positive component a1 = (k1(c) −
β2)/(β1 − β2). Substituting this expression for a1 in the three remaining ones, it is easy

to check that β1 and β2 are interchangeable in the second and third equations (r = 2, 3),

and so they are reduce to a quadratic equation in βj with j = 1 or 2. Therefore, both

parameters are determined by the roots of

(k2(c) − k2
1(c))β

2 + (k1(c)k2(c) − k3(c))β + (k1(c)k3(c) − k2
2(c)) = 0

and consequently, βj will be calculated for each c in according to the restrictions, i.e.

β1 > β2. Likewise, taking into account that both are also interchangeable in the fourth

equation r = 4, the system (5) of nonlinear equations is reduced to

k4(c)(k2(c) − k2
1(c)) − k3

2(c) + 2k1(c)k2(c)k3(c) − k2
3(c) = 0

which has to be resolved by numerical algorithms of nonlinear programming such as

Newton-Raphson (e.g., Bazaraa et al. (1993)) in order to determine the parameters using

the MM. Unfortunately, this method could provide non-feasible solutions, and so the

constraints must be checked to guarantee valid mixture models.

Second, the LS method estimates the parameters by looking for their numerical values,

which minimize the sum of squares of the deviations between the experimental cumulative

10
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relative frequencies and those expected ones under the assumed model, or equivalently,

between the empirical survival function SE(x) =
∑n

i=1 I(x > xi)/n and expected survival

function of a generalized mixture of two Weibulls:

min
n∑

i=1

(
SE(xi) − a1e

−b1xc
i − (1 − a1)e

−b2xc
i
)2

subject to: a1 > 0, 0 < b1 < b2, a1 ≤ b2/(b2 − b1) and c > 0

which can be numerically resolved by a quasi-Newton algorithm with exterior penalty

functions (e.g., Bazaraa et al. (1993)).

The ML estimation method consists of finding the values of the parameters, which

maximize the likelihood function from a given data set and the pdf of the assumed model,

or applying its logarithmic transformation, i.e.

max
n∑

i=1

(
log(cxc−1

i ) + log
(
a1b1e

−b1xc
i − (1 − a1)b2e

−b2xc
i
))

subject to: a1 > 0, 0 < b1 < b2, a1 ≤ b2/(b2 − b1) and c > 0.

The above optimization problem also can be approximated by a quasi-Newton algorithm

with exterior penalty functions for nonlinear constraints.

Let us see now a particular case where a negative weight is obtained. Although,

prior identification of the sample components of the mixture is not required for modelling

data sets, in order to simulate times of failure data, we assume that a power system

transmission lines and a power protective relays have Weibull distributions, with common

shape parameter c = 3 and scale parameters θ1 = 0.5 and θ2 = 5, respectively.

Based on the chosen parameters and Example 4.3, simulated failure data sets are

generated with n = 50, 100, 200, 500 data points. The first four sample moments for

each n are given in Table 1. The three above estimation methods have been applied to

model the failure times by using a two Weibull mixture allowing negative weights. The

nonlinear programming techniques used to estimate the parameters require a starting

point. As starting point in the LS method, we have used the results obtained from the

application of the MM, and in the ML method the results obtained from the LS method,

the estimated parameters obtained for the proposed mixture model are listed in Table 1.

11
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No matter what kind of parameter estimation method is used, the selected mixture

with the estimated parameters must be tested to determine whether it represents the

existing data well. Therefore, the suitability of the fitted mixture models is judged from

the Kolmogorov-Smirnov (KS) goodness-of-fit test, which are also listed in Table 1.

Table 1: Estimated parameters obtained for the two Weibull mixture allowing negative weights
n m1 m2 m3 m4 Method a1 b1 b2 c KS P -value
50 1.1630 1.4864 2.0518 3.0214 MM 1.09074 0.51407 4.98759 3.06955 0.1076 0.6088

LS 1.21629 0.45307 1.62170 3.20419 0.0600 0.9938
ML 1.42286 0.42569 0.77992 3.38895 0.0702 0.9663

100 1.2093 1.5901 2.2336 3.3112 MM 1.00709 0.34681 46.4599 3.67983 0.0549 0.9238
LS 0.99287 0.33012 7.11505 3.92043 0.0540 0.9322
ML 1.05744 0.38210 2.43495 3.54033 0.0566 0.9059

200 1.1593 1.4640 1.9872 2.8691 MM 1.12350 0.53860 4.68518 3.10493 0.0343 0.9724
LS 1.13215 0.56203 4.51713 3.01633 0.0277 0.9980
ML 1.14477 0.54383 3.74945 3.11516 0.0394 0.9151

500 1.1921 1.5548 2.1850 3.2701 MM 1.07711 0.46268 6.11035 3.15325 0.0215 0.9751
LS 1.14264 0.50950 3.48695 3.06687 0.0189 0.9942
ML 1.27800 0.60092 2.69195 2.79064 0.0182 0.9965

Note that, in three fitted Weibull mixture models when n = 100, the estimated

weight for the first component are closed to one. Nevertheless, from Table 1, the general

conclusion is that Weibull mixture allowing negative weights should be considered, i.e.

a2 = 1 − a1 < 0, because the results of the KS test indicated that the fitted generalized

mixtures could not be rejected as an acceptable fit to each simulated failure data.

On the other hand, as it has been carried out, the necessary conditions of Theorem

2.1 are not equivalent to the sufficient restrictions of Theorem 2.2 when more than two

Weibull components are considered. This can be easily illustrated through some particular

generalized mixtures of three Weibull distributions. For instance, Figure 1 displays some

pdf’s of generalized mixtures of three Weibull components with shape parameter c = 1.5

and for varying values of the mixing weights and scale parameters, the solid line (a1 = 1,

a2 = −1.15 = −a3, b1 = 0.5, b2 = 1.25, b3 = 3.5), the dashed line (a1 = 2.5 = −a2, a3 = 1,

b1 = 1.75, b2 = 2.5, b3 = 3), the dotted line (a1 = 1.5, a2 = −1.25, a3 = 0.75, b1 = 0.5,

b2 = 1.5, b3 = 2.5), and the dashed-dotted line (a1 = 2, a2 = −1.5, a3 = 0.5, b1 = 0.75,

b2 = 2, b3 = 3), respectively. In the four cases, a1b1 + a2b2 < 0, and so (2) is not satisfied

for i = 2. However, these four generalized mixtures of three Weibull distributions are

12
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legitimate probability models, as they satisfy (3) of Theorem 3.2.
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1.4

(a1,a2,a3,b1,b2,b3)=(2,-1.5,0.5,0.75,2,3)

(a1,a2,a3,b1,b2,b3)=(1.5,-1.25,0.75,0.5,1.5,2.5)

(a1,a2,a3,b1,b2,b3)=(2.5,-2.5,1,1.75,2.5,3)

(a1,a2,a3,b1,b2,b3)=(1,-1.15,1.15,0.5,1.25,3.5)

Mixing weights and scale parameters

Figure 1: Pdf curves of generalized mixtures of three Weibulls with c = 1.5.

Finally, we point out that Bucar et al. (2004) obtained generalized mixtures of three

Weibull components with common shape parameter by applying the multivariate regres-

sion method, but only two of those approximations verify Theorem 3.2. So, the other one

must be discarded in their example because it is not a feasible model.
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