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Weibull mixtures have been widely used in many applications, and they can be generalized by allowing negative mixing weights. In this note, we investigate constraints on the mixing weights and parameters of components under which the generalized mixture of Weibull distributions to be a valid probability model, including the cases of exponential or Rayleigh components. In addition, characterizations are shown for generalized mixtures of three or fewer Weibull components. We use an example of two-fold Weibull mixture model where negative weights are estimated, and the constraints are illustrated with a graphical example of three components.

Introduction

Weibull mixture models play a great role in reliability theory, since they exhibit a wide range of shapes for the density and failure rate functions, which makes them suitable for modelling complex survival or failure data sets. For instance, to the reliability modelling (e.g., see [START_REF] Patra | A multivariate mixture of Weibull distributions in reliability modeling[END_REF] and [START_REF] Bucar | Reliability approximation using finite Weibull mixture distributions[END_REF]), the Hang-Seng stock price index [START_REF] Tsionas | Bayesian analysis of finite mixtures of Weibull distributions[END_REF]), survival data [START_REF] Marín | Using Weibull mixture distributions to model heterogeneous survival data[END_REF]), automobile warranty data [START_REF] Attardi | A mixed-Weibull regression model for the analysis of automotive warranty data[END_REF]), and probabilistic behavior of wind speeds [START_REF] Carta | Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions[END_REF]).

A basic feature of the finite mixture models is that the mixing weights are positive, but
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this is not a necessary condition to be a valid probability model (e.g., [START_REF] Titterington | Statistical analysis of finite mixture distribution[END_REF]). The generalized mixtures extend the standard mixed models and provide more flexibility in their estimations allowing negative mixing weights.

In this context, [START_REF] Jiang | Weibull and inverse Weibull mixture models allowing negative weights[END_REF] derived generalized mixtures of Weibull distributions under the formation of series, parallel, k-out-of-n and consecutive k-out-of-n systems formed by Weibull components with the same shape parameter. In addition, some negative estimations for the weights of Weibull mixtures of three components with common shape parameter are obtained in three examples of [START_REF] Bucar | Reliability approximation using finite Weibull mixture distributions[END_REF], and they also pointed out it is crucial to be able to guarantee that these mixtures are valid models.

Thus, it seems reasonable to use generalized mixtures of Weibull components as underlying distributions to model heterogeneous survival data, and reliability of a system when its structure is unknown or partially known, since one cannot use component lifetime distributions to derive the system's lifetime distribution. In both cases, sub-populations and components very often have the same distribution type, and it is important to know what parametric constraints must be required to have a legitimate probability model. So, we will concentrate only on Weibull components with common shape parameter, which is habitual in several applications, and includes as special cases the exponential or Rayleigh components.

In the literature, some authors have studied generalized mixtures of exponential distributions and properties related with these generalized mixtures, also called generalized hyperexponential models. [START_REF] Steutel | Note on the infinity divisibility of exponential mixtures[END_REF] gave necessary conditions to be a valid probability model, and [START_REF] Bartholomew | Sufficient conditions for a mixture of exponentials to be a probability density function[END_REF] obtained sufficient conditions, which characterize the two exponential components case. Likewise, [START_REF] Baggs | Reliability properties of order statistics from bivariate exponential distributions[END_REF] showed the characterization of generalized mixtures of three exponential distributions, and their reliability properties are discussed in [START_REF] Baggs | Reliability properties of order statistics from bivariate exponential distributions[END_REF] and [START_REF] Franco | Reliability properties of series and parallel systems from bivariate exponential models[END_REF]. Furthermore, [START_REF] Franco | On Log-concavity of the extremes from Gumbel bivariate exponential distributions[END_REF] analyzed the four exponential components case, and [START_REF] Franco | Generalized mixtures of gamma and exponentials and reliability properties of the maximum from Friday and Patil bivariate exponential model[END_REF] studied the generalized mixtures of a gamma and one or two exponential distributions.

Note that analytical and graphical methods have been used to approximate Weibull mixture models. For instance, moments, maximum likelihood, least-square and WPP
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plot methods, and different numerical algorithms have been employed to approach the probabilistic behavior, among others quasi-Newton, Newton-Raphson, conjugate gradient and expectation-maximization algorithms. A brief review about these estimation methods and their applications to Weibull mixtures can be seen in [START_REF] Bucar | Reliability approximation using finite Weibull mixture distributions[END_REF], [START_REF] Murthy | Weibull models[END_REF] and [START_REF] Carta | Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions[END_REF]. Some of them may be applied to fit Weibull mixture models allowing negative mixing weights, which might yield a more suitable model by verifying its feasibility through determined restrictions. Therefore, we hope that the study of these constraints will attract its application.

The paper is organized as follows. In Section 2, we define a generalized mixture of Weibull distributions, and we discuss its necessary or sufficient conditions to be a valid probability model. In Section 3, the characterization of these mixtures of three or fewer Weibulls based on the mixing weights and the parameters of the components is deduced.

In the last section, Weibull mixtures with some negative weights and the same shape parameter are arisen in the reliability field, and in a particular case simulated times to failure data are fitted by 2-fold Weibull mixtures. Moreover, the obtained restrictions are also illustrated with a specific example, which shows the non-equivalence between the necessary and sufficient conditions when a generalized mixture of more than two Weibull components is considered.

Constraints for generalized mixtures of Weibulls

First, we give the concept of generalized mixture of Weibull distributions with common shape parameter, which includes as special cases the generalized mixtures of exponential or Rayleigh components.

Let (X 1 , X 2 , ..., X n ) be a random vector formed by Weibull components with common shape parameter c > 0 and density functions f i (x) = cb i x c-1 e -b i x c for all x > 0, and b i > 0, i = 1, ..., n. It is said that X is a generalized mixture of Weibull distributions with common shape parameter c > 0, if its density function (pdf) is given by

f (x) = n i=1 a i f i (x) (1) 
where a i ∈ R, i = 1, ..., n, such that n i=1 a i = 1.
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Evidently, this generalized mixture may be defined by its distribution and survival functions, respectively,

F (x) = 1 - n i=1 a i e -b i x c and S(x) = n i=1 a i e -b i x c .
Moreover, taking into account that each component of (1)

f i (x) is a pdf, it is clear that R f (x)dx = n i=1 a i = 1
, and consequently, f (x) is a pdf if and only if f (x) ≥ 0 for all x, i.e., a generalized mixture of Weibull distributions is a legitimate probability model if and only if f (x) is everywhere positive. In addition, if some of the a i 's are negative, f (x) could be negative for some values of x and so may not be a pdf.

Likewise, we can suppose that b i are different, i = 1, ..., n, because in otherwise, the number of components of the generalized mixture of Weibull distributions is reduced to the different scale parameters b i . For example, if we consider two identically distributed Weibull components, b 1 = b 2 = b, then their generalized mixture follows the same distribution than its components. So, without loss of generality, we may assume

0 < b 1 < b 2 < ... < b n .
Let us see now constraints for a generalized mixture of Weibull distributions with common shape parameter, which are based on their weights and parameters.

Theorem 2.1. Let f (x) in (1) be a generalized mixture of Weibull density functions with

common shape parameter c > 0, 0 < b 1 < b 2 < ... < b n and a i ∈ R, i = 1, ..., n, such that n i=1 a i = 1. If f (x) is a pdf then a 1 > 0 and n i=1 a i b i ≥ 0.
Proof. Firstly, in order to check f (x) ≥ 0, the function f (x) can be written as f (x) = cx c-1 e -bnx c g(x), where g(x) = n i=1 a i b i e (bn-b i )x c , and both f (x) and g(x) have the same sign.

If we suppose that a 1 < 0, then lim x→∞ g(x) = -∞, and consequently, there exits a x 0 such that g(x) < 0 for all x > x 0 , which contradicts that f (x) is a pdf. Therefore, a 1 > 0 is a necessary condition for f (x) ≥ 0 everywhere. Note that a 1 = 0 because a 1 represents the coefficient of the Weibull component with less parameter b i in the generalized mixture.
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Moreover, it is required that f (0) ≥ 0, and taking into account that lim

x→0 g(x) = n i=1 a i b i we obtain that n i=1 a i b i ≥ 0.
However, the conditions of Theorem 2.1 are not sufficient for a generalized mixture of Weibull distributions. So, the following result shows sufficient restrictions to ensure that 1) be a generalized mixture of Weibull density functions with

f (x) is a valid pdf. Theorem 2.2. Let f (x) in (
common shape parameter c > 0, 0 < b 1 < b 2 < ... < b n and a i ∈ R, i = 1, ..., n, such that n i=1 a i = 1. If i k=1 a k b k ≥ 0, for i = 1 , ..., n (2) 
then f (x) is a pdf.

Proof. Under the conditions of the statement, f (x) can be rewritten as

f (x) = cx c-1 e -b n x c n i=1 a i b i + cx c-1 n-1 i=1 e -b i x c 1 -e -(b i+1 -b i )x c i k=1 a k b k
where each term of f (x) is positive if (2) is satisfied, and hence, f (x) is a pdf.

Remark 2.3. Theorems 2.1 and 2.2 show necessary conditions and sufficient conditions

for a generalized mixture of exponential distributions when c = 1, which were given by [START_REF] Steutel | Note on the infinity divisibility of exponential mixtures[END_REF] and [START_REF] Bartholomew | Sufficient conditions for a mixture of exponentials to be a probability density function[END_REF], respectively. Moreover, when the shape parameter c = 2, the necessary or sufficient restrictions for a generalized mixture of Rayleigh components are also given by both theorems, respectively.

Characterizations with three or fewer components

In this section, we characterize a generalized mixture of two or three Weibull distributions based on the mixing weights and parametric restrictions of their components.

In the two components cases, it is immediate to check that the necessary conditions of Theorem 2.1 and the sufficient conditions of Theorem 2.2 are equivalent.

Theorem 3.1. Let f (x) = cx c-1 (a 1 b 1 e -b 1 x c + a 2 b 2 e -b 2 x c
) be a generalized mixture of two Weibull density functions with common shape parameter c > 0, 0

< b 1 < b 2 < ∞, a 1 > 0 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT and a 2 ∈ R such that a 1 + a 2 = 1. Then, f (x) is a pdf if and only if either a 2 > 0 or a 1 b 1 + a 2 b 2 ≥ 0.
Nevertheless, the sufficient conditions (2) given by Theorem 2.2 are not necessary conditions when a generalized mixture of more than two Weibull components is considered.

In this setting, the following result determines the constraints based on the mixing weights and parameters of a generalized mixture of three Weibull distributions to be a legitimate pdf.

Theorem 3.2. Let f (x) = cx c-1 (a 1 b 1 e -b 1 x c + a 2 b 2 e -b 2 x c + a 3 b 3 e -b 3 x c
) be a generalized mixture of three Weibull density functions with common shape parameter c > 0, 0

< b 1 < b 2 < b 3 < ∞, a 1 > 0 and a 2 , a 3 ∈ R such that a 1 + a 2 + a 3 = 1.
1. If a 2 > 0 and a 3 > 0, then f (x) is a pdf.

2. If a 2 ∈ R and a 3 < 0, then f (x) is a pdf if and only if

a 1 b 1 + a 2 b 2 + a 3 b 3 ≥ 0. (3) 
3. If a 2 < 0 and a 3 > 0. Then, f (x) is a pdf if and only if one of the following cases holds:

(a) m ≤ 1 and (3)

(b) m > 1 and log(m 1 ) ≥ (b 3 -b 1 )(b 2 -b 3 ) -1 log(m)
where

m = -a 3 b 3 (b 3 -b 1 ) a 2 b 2 (b 2 -b 1 )
and

m 1 = a 1 b 1 (b 2 -b 1 ) a 3 b 3 (b 3 -b 2 ) .
Proof. Taking into account that f (x) is a pdf if and only if f (x) is nonnegative, we develop the proof depending on the signs of the a i 's.

In the first place, if all weights are positive, a 1 > 0, a 2 > 0 and a 3 > 0, then f (x) is a convex mixture of Weibull distributions; therefore, f (x) is a true pdf.

In the case (2), a 3 < 0, we discuss the non-negativity of f (x) depending on the sign of a 2 .

If a 2 > 0, the function f (x) can be expressed as f (x) = cx c-1 e -b 3 x c g 1 (x), where

g 1 (x) = a 1 b 1 e (b 3 -b 1 )x c + a 2 b 2 e (b 3 -b 2 )x c + a 3 b 3 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
thus, f (x) and g 1 (x) have the same sign, and

g 1 (0) = a 1 b 1 + a 2 b 2 + a 3 b 3 . Moreover, g 1 (x)
is increasing in x > 0. So, if g 1 (0) ≥ 0, which is restriction (3), then g 1 (x) ≥ 0, and consequently, f (x) is a pdf.

Likewise, when a 2 < 0, the function f (x) has the same sign that the function g 2 (x),

where

g 2 (x) = a 1 b 1 + a 2 b 2 e -(b 2 -b 1 )x c + a 3 b 3 e -(b 3 -b 1 )x c since f (x) = cx c-1 e -b 1 x c g 2 (x).
Therefore, taking into account that g 2 (x) is increasing in

x and g 2 (0) = a 1 b 1 + a 2 b 2 + a 3 b 3 , if g 2 (0) ≥ 0 then g 2 (x) ≥ 0, and consequently, f (x) is a pdf.
Note that, in both cases a 2 > 0 and a 2 < 0, when (3) is not satisfied, then g i (x) changes of sign, i = 1, 2, and therefore, f (x) cannot be a pdf, which proves that (3) is necessary.

Finally, to prove case (3), a 1 > 0, a 2 < 0 and a 3 > 0, we remark that f (x) and g 2 (x)

have the same sign, and the first derivative of g 2 (x) is given by

g 2 (x) = -(b 2 -b 1 )cx c-1 a 2 b 2 e -(b 2 -b 1 )x c -(b 3 -b 1 )cx c-1 a 3 b 3 e -(b 3 -b 1 )x c = -cx c-1 (b 2 -b 1 )a 2 b 2 e -(b 2 -b 1 )x c + (b 3 -b 1 )a 3 b 3 e -(b 3 -b 1 )x c .
Thus, taking into account the above term between bracket for all x ∈ R, it is deduced that there exists x 0 such that g 2 (x) ≥ 0 for x ≥ x 0 and g 2 (x) < 0 for x < x 0 , where

x 0 = 1 b 3 -b 2 log m 1/c
and m = -

a 3 b 3 (b 3 -b 1 ) a 2 b 2 (b 2 -b 1 )
.

So, if m ≤ 1, then the function g 2 (x) is increasing for all x > 0, and hence g 2 (x) ≥ g 2 (0). Furthermore, under condition (3), the function f (x) is a pdf; and if (3) is not verified, then f (x) changes its sign.

Likewise, if m > 1, the function g 2 (x) changes its monotonicity from being decreasing to increasing for all x > 0, and consequently, g 2 (x) attains its minimum at x 0 , i.e., g 2 (x) ≥ g 2 (x 0 ). Therefore, f (x) changes its sign when g 2 (x 0 ) < 0, and it is a pdf when

g 2 (x 0 ) ≥ 0.
Besides, g 2 (x 0 ) can be rewritten as

g 2 (x 0 ) = a 1 b 1 + e -(b 3 -b 1 )x c 0 a 2 b 2 e -(b 2 -b 3 )x c 0 + a 3 b 3 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
thus, the condition g 2 (x 0 ) ≥ 0 can be expressed as

-a 1 b 1 ≤ m - b 3 -b 1 b 3 -b 2 (a 2 b 2 m + a 3 b 3 ) = a 3 b 3 m - b 3 -b 1 b 3 -b 2 b 3 -b 1 -(b 2 -b 1 ) + 1
or equivalently,

m 1 = a 1 b 1 (b 2 -b 1 ) a 3 b 3 (b 3 -b 2 ) ≥ m - b 3 -b 1 b 3 -b 2 ⇔ log (m 1 ) ≥ - b 3 -b 1 b 3 -b 2 log (m) .
Note that, when a 2 < 0 and a 3 > 0, the restrictions of (3b) imply the necessary condition (3).

Remark 3.3. When the shape parameter c = 1, Theorems 3.1 and 3.2 characterize generalized mixtures of two and three exponential components, which were obtained by [START_REF] Bartholomew | Sufficient conditions for a mixture of exponentials to be a probability density function[END_REF] and [START_REF] Baggs | Reliability properties of order statistics from bivariate exponential distributions[END_REF], respectively. In addition, when c = 2, the above theorems also establish the necessary and sufficient conditions for generalized mixtures of two and three Rayleigh components, respectively.

Remarks

As mentioned in Section 1, it is habitual to use Weibull components in numerous applications. Here, we give a small sample of cases in the reliability field, which evidently satisfy the parametric restrictions given by Theorems 3.1 and 3.2.

We need to use the next notation. Let X 1 and X 2 be two neither necessarily independent nor identically distributed random variables with survival functions S i (x), i = 1, 2, and joint survival function

S(x 1 , x 2 ) = Pr(X 1 > x 1 , X 2 > x 2 ). Let T 1 = min (X 1 , X 2 ) and T 2 = max (X 1 , X 2 )
denote their minimum and maximum order statistics, i.e., the lifetimes of the series and parallel systems, respectively; their survival functions are given by

S (1) (x) = S(x, x) and S (2) (x) = S 1 (x) + S 2 (x) -S (1) (x). (4) 
In this setting, the generalized mixtures arise from some bivariate Weibull models, most of them have been constructed as extensions of bivariate exponential models, an excellent review on this topic can be found in [START_REF] Kotz | Continuous multivariate distributions[END_REF] and [START_REF] Murthy | Weibull models[END_REF]. Thus, when marginals have a common shape parameter, their series and parallel systems are predominantly generalized mixtures of three or fewer Weibull components with the same shape parameter.
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Example 4.1. Let X 1 ∼ W (θ 1 , c) and X 2 ∼ W (θ 2 , c) be two independent Weibull components with (θ 1 , c) and (θ 2 , c) parameters, respectively. From (4), T 1 ∼ W (θ 1 + θ 2 , c), and its parallel system is a generalized mixture of three Weibull distributions with survival function S (2) (x) = e -θ 1 x c + e -θ 2 x ce -(θ 1 +θ 2 )x c , i.e. a 1 = a 2 = 1 and negative weight 

a 3 = -1. Moreover, if θ 1 = θ 2 then T 2 is
S(x 1 , x 2 ) = exp (-λ 1 x c 1 -λ 2 x c 2 -λ 12 max (x c 1 , x c 2 ))
for all x 1 , x 2 > 0, where λ 1 > 0, λ 2 > 0, λ 12 > 0 and c > 0. From ( 4), T 1 ∼ W (λ, c), and its parallel system has survival function

S (2) (x) = e -(λ 1 +λ 12 )x c + e -(λ 2 +λ 12 )x c -e -λx c where λ = λ 1 + λ 2 + λ 12 , i.e.
, a generalized mixture of three Weibull distributions with weights

a 1 = a 2 = 1 and a 3 = -1.
Other interesting application of generalized mixtures of Weibull distributions may be yielded in modelling occurrence of power system blackouts.

Example 4.3. Assuming independent Weibull distributions for the lifetimes X 1 of power system transmission lines and X 2 of power system protective relays, X 1 ∼ W (θ 1 , c) and

X 2 ∼ W (θ 2 , c) respectively, then the conditional random variable X = (X 1 |X 1 > X 2 )
is relevant to model blackouts when the protection system has failed, since power system blackouts due to the failure in transmission lines is related with hidden failure in protective relays. Thus, taking into account that P

(X 1 > X 2 ) = θ 2 (θ 1 + θ 2 ) -1 and P (X 1 > x, X 1 > X 2 ) = e -θ 1 x c -θ 1 (θ 1 + θ 2 ) -1 e -(θ 1 +θ 2 )
x c , it is easy to prove that X follows a generalized mixture of two Weibull components with survival function

S(x) = (θ 1 + θ 2 )θ -1 2 e -θ 1 x c -θ 1 θ -1 2 e -(θ 1 +θ 2 )x c .
where the mixing weights are

a 1 = (θ 1 + θ 2 )θ -1 2 > 1 and a 2 = -θ 1 θ -1 2 < 0.
In order to display a particular case where negative weights are estimated, we need to revisit the method of moments (MM), the least-square (LS) method and the maximum
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relative frequencies and those expected ones under the assumed model, or equivalently, between the empirical survival function S E (x) = n i=1 I(x > x i )/n and expected survival function of a generalized mixture of two Weibulls:

min n i=1 S E (x i ) -a 1 e -b 1 x c i -(1 -a 1 )e -b 2 x c i 2 subject to: a 1 > 0, 0 < b 1 < b 2 , a 1 ≤ b 2 /(b 2 -b 1 )
and c > 0 which can be numerically resolved by a quasi-Newton algorithm with exterior penalty functions (e.g., [START_REF] Bazaraa | Nonlinear Programming. Theory and Applications[END_REF]).

The ML estimation method consists of finding the values of the parameters, which maximize the likelihood function from a given data set and the pdf of the assumed model, or applying its logarithmic transformation, i.e.

max n i=1 log(cx c-1 i ) + log a 1 b 1 e -b 1 x c i -(1 -a 1 )b 2 e -b 2 x c i subject to: a 1 > 0, 0 < b 1 < b 2 , a 1 ≤ b 2 /(b 2 -b 1 )
and c > 0.

The above optimization problem also can be approximated by a quasi-Newton algorithm with exterior penalty functions for nonlinear constraints.

Let us see now a particular case where a negative weight is obtained. Although, prior identification of the sample components of the mixture is not required for modelling data sets, in order to simulate times of failure data, we assume that a power system transmission lines and a power protective relays have Weibull distributions, with common shape parameter c = 3 and scale parameters θ 1 = 0.5 and θ 2 = 5, respectively.

Based on the chosen parameters and Example 4.3, simulated failure data sets are generated with n = 50, 100, 200, 500 data points. The first four sample moments for each n are given in Table 1. The three above estimation methods have been applied to model the failure times by using a two Weibull mixture allowing negative weights. The nonlinear programming techniques used to estimate the parameters require a starting point. As starting point in the LS method, we have used the results obtained from the application of the MM, and in the ML method the results obtained from the LS method, the estimated parameters obtained for the proposed mixture model are listed in Table 1.
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No matter what kind of parameter estimation method is used, the selected mixture with the estimated parameters must be tested to determine whether it represents the existing data well. Therefore, the suitability of the fitted mixture models is judged from the Kolmogorov-Smirnov (KS) goodness-of-fit test, which are also listed in Table 1. Note that, in three fitted Weibull mixture models when n = 100, the estimated weight for the first component are closed to one. Nevertheless, from Table 1, the general conclusion is that Weibull mixture allowing negative weights should be considered, i.e.

a 2 = 1a 1 < 0, because the results of the KS test indicated that the fitted generalized mixtures could not be rejected as an acceptable fit to each simulated failure data.

On the other hand, as it has been carried out, the necessary conditions of Theorem 2.1 are not equivalent to the sufficient restrictions of Theorem 2.2 when more than two Weibull components are considered. This can be easily illustrated through some particular generalized mixtures of three Weibull distributions. For instance, Figure 1 Finally, we point out that Bucar et al. ( 2004) obtained generalized mixtures of three Weibull components with common shape parameter by applying the multivariate regression method, but only two of those approximations verify Theorem 3.2. So, the other one must be discarded in their example because it is not a feasible model.

4 ( 5 )Figure 1 :

 451 Figure 1: Pdf curves of generalized mixtures of three Weibulls with c = 1.5.

  a generalized mixture of two Weibull components with weights a 1 = 2 and a 2 = -1.

	Example 4.2. Let (X 1 , X 2 ) be a bivariate Weibull distribution of Marshall-Olkin, which
	joint survival function is given by

Table 1 :

 1 Estimated parameters obtained for the two Weibull mixture allowing negative weights

	n m 1	m 2	m 3	m 4	Method a 1	b 1	b 2	c	KS	P -value
	50 1.1630 1.4864 2.0518 3.0214	MM	1.09074 0.51407 4.98759 3.06955 0.1076 0.6088
					LS	1.21629 0.45307 1.62170 3.20419 0.0600 0.9938
					ML	1.42286 0.42569 0.77992 3.38895 0.0702 0.9663
	100 1.2093 1.5901 2.2336 3.3112	MM	1.00709 0.34681 46.4599 3.67983 0.0549 0.9238
					LS	0.99287 0.33012 7.11505 3.92043 0.0540 0.9322
					ML	1.05744 0.38210 2.43495 3.54033 0.0566 0.9059
	200 1.1593 1.4640 1.9872 2.8691	MM	1.12350 0.53860 4.68518 3.10493 0.0343 0.9724
					LS	1.13215 0.56203 4.51713 3.01633 0.0277 0.9980
					ML	1.14477 0.54383 3.74945 3.11516 0.0394 0.9151
	500 1.1921 1.5548 2.1850 3.2701	MM	1.07711 0.46268 6.11035 3.15325 0.0215 0.9751
					LS	1.14264 0.50950 3.48695 3.06687 0.0189 0.9942
					ML	1.27800 0.60092 2.69195 2.79064 0.0182 0.9965
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Firstly, the MM determines the parameters by solving the system of equations formed by sample moments equal to population moments, which can be expressed as

where k r (c) = (Γ(1 + r/c)) -1 n i=1 x r i /n is the sample moment m r of order r divided by the function Γ of Euler, and β j = b -1/c j with j = 1, 2. Thus, the solutions are restricted by the conditions of Theorem 3.1, or equivalently,

Remark that the above system of nonlinear equations can be simplified into one as follows.

The first equation r = 1 allows to find the weight of the positive component

. Substituting this expression for a 1 in the three remaining ones, it is easy to check that β 1 and β 2 are interchangeable in the second and third equations (r = 2, 3), and so they are reduce to a quadratic equation in β j with j = 1 or 2. Therefore, both parameters are determined by the roots of

and consequently, β j will be calculated for each c in according to the restrictions, i.e.

Likewise, taking into account that both are also interchangeable in the fourth equation r = 4, the system (5) of nonlinear equations is reduced to

which has to be resolved by numerical algorithms of nonlinear programming such as Newton-Raphson (e.g., [START_REF] Bazaraa | Nonlinear Programming. Theory and Applications[END_REF]) in order to determine the parameters using the MM. Unfortunately, this method could provide non-feasible solutions, and so the constraints must be checked to guarantee valid mixture models.

Second, the LS method estimates the parameters by looking for their numerical values, which minimize the sum of squares of the deviations between the experimental cumulative