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 which focus on first-order autocorrelations and/or pure ARCH processes only. An application to the S&P500 index illustrates the results.

Introduction

The time-series dependencies of financial volatility are frequently studied by means of the autocorrelation function (ACF) of power-transformed absolute (demeaned) returns, r t , i.e., ρ δ (τ ) := Corr(|r t-τ | δ , |r t | δ ), δ > 0. In this regard, it was observed by [START_REF] Taylor | Modelling Financial Time Series[END_REF] that, for stock returns, the ACF of the absolute returns tends to be higher than that of the squares.

A generalized version of this observation has been identified by [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] and [START_REF] Ding | Modeling volatility persistence of speculative returns: a new approach[END_REF] and termed the Taylor effect by [START_REF] Granger | Some properties of absolute return, an alternative measure of risk[END_REF], namely that one "almost invariably" (Franses and van Dijk, 2000, p. 30) finds that, for given τ , ρ δ (τ ) is maximized for δ close to unity. [START_REF] Granger | The past and future of empirical finance: some personal comments[END_REF] adds this effect to the list of stylized facts that characterize stock return dynamics. 1In view of this evidence, several authors have investigated whether popular volatility models are capable of reproducing the Taylor effect. [START_REF] He | Properties of moments of a family of GARCH processes[END_REF] consider the absolute value GARCH(1,1) (AVGARCH(1,1)) process driven by Gaussian innovations and, for analytical tractability, concentrate on what they dub the Taylor property, namely ρ 1 (1) > ρ 2 (1).

They find that the model incorporates this property only for extremely large values of unconditional kurtosis, and even then the difference ρ 1 (1)ρ 2 (1) is very small. Recently, in the context of pure AVARCH(1) processes, [START_REF] Gonçalves | A mathematical approach to detect the Taylor property in TARCH processes[END_REF] extended this finding by allowing for fat-tailed innovations and find that "high values of kurtosis of the generating white noise favor the appearance of the Taylor property".2 However, apart from the limitation to the empirically less important ARCH specification, their focus is still on first-order autocorrelations. This is an undesirable restriction as the behavior of the autocorrelations at higher lags characterizes the persistence of the different measures of volatility. In this note, we propose a simple methodology for identifying the Taylor property in AVGARCH(1,1) models at all lags and for a wide variety of conditional distributions. It turns out that rather generally the "first-order" Taylor property ρ 1 (1) > ρ 2 (1) implies ρ 1 (τ ) > ρ 2 (τ ) for all τ . The role of conditional kurtosis appears to be even more prominent in the AVGARCH(1,1) than in the AVARCH(1) model.

The absolute value GARCH(1,1) (AVGARCH(1,1)) Process

Consider the absolute value GARCH(1,1) process introduced by [START_REF] Taylor | Modelling Financial Time Series[END_REF],

ǫ t = σ t η t , (1) 
where {η t } is iid with zero mean and unit variance, and

σ t = ω + α|ǫ t-1 | + βσ t-1 = ω + (α|η t-1 | + β)σ t-1 , ω > 0, α, β ≥ 0. ( 2 
)
Following [START_REF] Gonçalves | A mathematical approach to detect the Taylor property in TARCH processes[END_REF], we concentrate on innovation distributions satisfying Assumption 2.1 The innovations η t have a symmetric density with κ 1 > κ

-1/4 4
, where

κ r := E(|η t | r )
is the rth absolute moment of η t .

In the AVARCH(1) process, where β = 0 in (2), the restriction κ 1 > κ -1/4 4 was shown by [START_REF] Gonçalves | A mathematical approach to detect the Taylor property in TARCH processes[END_REF] to guarantee the first-order Taylor effect for a subset of the admissible α-values. In subsequent calculations, we consider two popular distributions for η t , both satisfying Assumption 2.1, namely Student's t with ν degrees of freedom and density

f (η t ; ν) = Γ ν+1 2 Γ(ν/2) (ν -2)π 1 + η 2 t ν -2 -(ν+1)/2 , ν > 2, (3) 
and the generalized exponential distribution (GED) with density

f (η t ; p) = λp 2 1/p+1 Γ(1/p) exp - |λη t | p 2 , λ = 2 1/p Γ(3/p) Γ(1/p) , p > 0, (4) 
for which we have

κ r := E(|η t | r ) =      Γ r+1 p Γ(1/p) Γ(1/p) Γ(3/p) r/2 , if η t ∼ GED(p) (ν -2) r/2 Γ( r+1 2 )Γ( ν-r 2 ) √ πΓ(ν/2) , r < ν, if η t ∼ t(ν).
(5)

The distributions have unit variance, so κ 2 = 1, and κ 4 is the conditional kurtosis.

In view of the evidence concerning the role of conditional kurtosis reported in [START_REF] Gonçalves | A mathematical approach to detect the Taylor property in TARCH processes[END_REF], density (4) is particularly useful as it nests both leptokurtic (p < 2) as well as platykurtic (p > 2) distributions, and p = 2 gives normality. Moreover, as p → ∞, the GED converges to the zero-mean and unit-variance uniform distribution on (-√ 3, √ 3) with κ r = (r + 1) -1 3 r/2 [START_REF] Box | A Note on regions for tests of kurtosis[END_REF]. From the Gauss-Winckler inequality (cf. von Mises, 1931;[START_REF] Beesack | Inequalities for absolute moments of a distribution: From Laplace to Von Mises[END_REF][START_REF] Avkhadiev | A simple proof of the Gauss-Winckler inequality[END_REF], stating that, for (zero-mean) symmetric unimodal will be satisfied for practically any distribution one can anticipate in the context of GARCH models. 3

The moment structure of model ( 1)-( 2) has been investigated by [START_REF] He | Properties of moments of a family of GARCH processes[END_REF], [START_REF] Ling | Stationarity and the existence of moments of a family of GARCH processes[END_REF], and [START_REF] Hwang | Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes[END_REF]. 4 To summarize their results relevant for the subsequent discussion, we define, for m ∈ N,

c mm = E[(α|η t-1 | + β) m ] = m i=0 m i κ m-i α m-i β i . ( 6 
)
Proposition 1 (He and Teräsvirta, 1999, Theorem 1;Ling and McAleer, 2002, Theorem 2.2)

The AVGARCH(1,1) process ( 1)-( 2) has a strictly stationary solution with finite mth-order absolute moment, E(|ǫ t | m ), m ∈ N, if and only if c mm < 1, and, in this case, the moment can be calculated recursively via

E(|ǫ t | m ) = κ m 1 -c mm m-1 i=0 m i ω m-i (c ii /κ i )E(|ǫ t | i ). ( 7 
)
We shall thus assume in the following that c 44 < 1, i.e., E(ǫ 4 t ) < ∞ and the ACFs of |ǫ t | and ǫ 2 t exist.

Autocorrelation Structure

The ACF of the absolute values, ρ 1 (τ ) = Corr(|ǫ t |, |ǫ t-τ |), is (cf. He and Teräsvirta, 1999, Theorem 5)

ρ 1 (τ ) = c τ -1 11 a 1 , a 1 = κ 1 α(1 -κ 1 αβ -β 2 ) 1 -2κ 1 αβ -β 2 , τ ≥ 1, (8) 
and exhibits an exponential decay at rate c 11 . He and Teräsvirta (1999, Theorem 4) also derive ρ 2 (τ ) = Corr(ǫ 2 t , ǫ 2 t-τ ). However, the following simple lemma provides a more straightforward calculation which directly leads to a more explicit expression for the ACF than the recursive relation given in [START_REF] He | Properties of moments of a family of GARCH processes[END_REF] and is thus more suitable for our purposes.

3 However, unit-variance distributions exist where κ1κ 1/4 4 < 1. For example, for the two-sided gamma distribution with density f

(x) = λ θ |x| θ-1 exp{-λ|x|}/(2Γ(θ)), -∞ < x < ∞, where θ > 0 and λ = Ô θ(θ + 1) (to have κ2 = 1), which is unimodal for θ < 1, we have κr = λ -r Γ(θ + r)/Γ(θ), and calculations show that κ1 < κ -1/4 4 for θ < (-3 + √ 17)/4 ≈ 0.281.
In fact, two-sided gamma densities have been sporadically used in GARCH models (Shaun and Satchell, 2006a,b). It is also possible to construct Gaussian mixtures with κ1κ 1/4 4 < 1. In general, it appears that distributions exhibiting this property are characterized by an extreme (and unrealistic) degree of peakedness.

Lemma 2 Assume c 11 = c 22 . Then

ρ 2 (τ ) = ã1 c τ -1 11 + (ã 2 -ã1 )c τ -1 22 , τ ≥ 1, (9) 
where

ã1 = c 21 E(σ 2 t )(ω -E(σ t )) + E(σ 3 t )(ακ 3 + β) (c 11 -c 22 )(E(ǫ 4 t ) -E 2 (ǫ 2 t ))
, and

ã2 = E(σ 2 t )(ω 2 -E(σ 2 t )) + 2ωE(σ 3 t )(ακ 3 + β) + E(σ 4 t )(α 2 κ 4 + β 2 + 2αβκ 3 ) E(ǫ 4 t ) -E 2 (ǫ 2 t ) . ( 10 
)
Observe that, just as in a 1 in (8), ω cancels out both in ã1 and ã2 . Also, in the AVARCH(1,1) case, where

β = 0, E(ǫ 4 t ) → ∞ as α → κ -1/4 4
, and so lim α→κ -1/4

4 ρ 2 (1) = lim α→κ -1/4 4 ã2 = κ -1/2 4 .
Proof. Let Ψ t be the σ-algebra generated by {η s : s ≤ t}. We have

E(ǫ 2 t-τ ǫ 2 t ) = E[η 2 t-τ σ 2 t-τ E(η 2 t σ 2 t |Ψ t-τ )] = E[η 2 t-τ σ 2 t-τ E(σ 2 t |Ψ t-τ )]. ( 11 
)
To conveniently calculate E(σ 2 t |Ψ t-τ ), define

X t =   σ t σ 2 t   , ω =   ω ω 2   , C =   c 11 0 c 21 c 22   ,
where c 21 = 2ωc 11 . This gives

E(X t |Ψ t-2 ) = ω + CX t-1 . (12) 
Recursively substituting in (12) we obtain

E(X t |Ψ t-τ ) = τ -2 i=0 C i ω + C τ -1 X t-τ +1 = E(X t ) + C τ -1 (X t-τ +1 -E(X t )) = E(X t ) + C τ -1 (ω + C t-τ X t-τ -E(X t )), (13) 
where E(X t ) = (I 2 -C) -1 ω, I 2 is the two-dimensional identity matrix, and

C t =   c t 0 2ωc t c 2 t   , c t = α|η t | + β. (14) 
We note that, provided c 11 = c 22 ,

C τ =    c τ 11 0 c 21 τ -1 i=0 c τ -1-i 11 c i 22 c τ 22    =   c τ 11 0 c 21 c τ 11 -c τ 22 c11-c22 c τ 22   . (15) 
Substituting ( 14) and ( 15) into (13), we obtain an expression for E(σ 2 t |Ψ t-τ ) in terms of σ t-τ and σ 2 t-τ , which can in turn be plugged into (11), and after some algebra the final result is (9).

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Equation ( 9) shows that the decay of ρ 2 (τ ) is described by a mixture of two exponentials with rates c 11 and c 22 . As E(σ t ) = ω(1c 11 ) -1 , the factor in brackets in the numerator of ã1 can be written as (ακ

3 + β)E(σ 3 t ) -(ακ 1 + β)E(σ 2 t )E(σ t )
and is positive by Lyapunov's inequality. Thus ã1 > 0 if c 11 > c 22 , and a comparison with (8) shows that the Taylor property will not materialize in the sense that ρ 1 (τ ) decreases to zero slower than ρ 2 (τ ). But may it happen that both c 44 < 1 and c 22 > c 11 , implying a reverse Taylor property (at least) at higher lags? On the other hand, suppose that c 44 < 1 implies c 11 > c 22 , which will turn out to be the "regular" situation.

Corollary 3 If c 11 > c 22 , then ρ 1 (τ ) ρ 2 (τ ) ∀τ ⇔ a 1            > max{ã 1 , ã2 } = ã1 = ã2 < min{ã 1 , ã2 } Proof. Inspection of (9).
Let us first consider the AVARCH(1) process, where β = 0 in (2).

The AVARCH(1) process

Proposition 1 shows that, for E(ǫ 4 t ) < ∞, we require α < κ

-1/4 4
, and hence c 44 < 1 and Assumption 2.1 are sufficient for c 11 > c 22 . gives rise to the following result.

Proposition 4 In the AVARCH(1) process with finite fourth moment and an innovation distribution satisfying Assumption 2.1, we have

ρ 1 (1) ρ 2 (1) ⇒ ρ 1 (τ ) ρ 2 (τ ) for all τ . ( 16 
)
Proof. show that

a 1 ã2 ⇔ a 1 ã1 ⇔ P (α) 0, α ∈ (0, κ -1/4 4 ), (17) 
where P (α) is the sixth-order polynomial given by 4) with p = 1.5, the left plot shows a 1 -ã2 = ρ 1 (1)-ρ 2 (1) (solid line) and a 1 -ã1 (dashed line) as a function of parameter α for the absolute value ARCH(1) process, i.e., (1)-( 2) with β = 0. Quantities a 1 , ã1 , and ã2 are defined in ( 8) and ( 10). The right plot repeats this, but for p = 2 (i.e., the normal distribution).

P (α) = (2κ 3 κ 4 -4κ 2 1 κ 3 κ 4 + 2κ 1 κ 4 )α 6 + (4κ 4 -4κ 2 1 κ 4 -κ 1 κ 3 κ 4 + κ 1 κ 3 )α 5 (18) +(3κ 3 -6κ 1 κ 4 -κ 3 κ 4 -κ 2 1 κ 3 + 5κ 2 1 κ 3 κ 4 )α 4 + (3κ 1 κ 3 κ 4 + κ 1 κ 3 -4κ 4 )α 3 +(κ 1 κ 4 + κ 1 -2κ 3 )α 2 + (1 -4κ 1 κ 3 + κ 2 1 + 3κ 2 1 κ 4 -κ 4 )α + κ 1 + κ 1 κ 4 -2κ 3 . A C C E P T E D M A N U S C
Remark 1 Gonçalves et al. ( 2009) and (implicitly) [START_REF] He | Properties of moments of a family of GARCH processes[END_REF] observed that

κ 1 > κ -1/4 4 guarantees the existence of α < κ -1/4 4 such that ρ 1 (1) > ρ 2 (1) for α ∈ (α, κ -1/4 4 ).
This can also be arrived at by means of (18). In fact, putting α = κ -1/4 4 and bearing in mind that κ 4 > 1, we obtain

P (κ -1/4 4 ) = (κ 1 -κ -1/4 4 ) 3(κ 3/4 4 -κ -1/4 4 ) κ 1 - 10 -2κ 4 -8κ 1/2 4 6(κ 3/4 4 -κ -1/4 4 ) + κ 3 (5 -4κ -1/2 4 -κ -1 4 ) κ 1 - 6(κ -3/4 4 -κ 1/4 4 ) 10 -8κ -1/2 4 -2κ -1 4 0 ⇔ κ 1 κ -1/4 4 .
(18) also shows that, if κ 1 + κ 1 κ 4 -2κ 3 > 0, there will be α such that ρ 1 (τ ) > ρ 2 (τ ) for α ∈ (0, α). The GED distribution satisfies this condition for p < 2. For the normal, κ 1 + κ 1 κ 4 -2κ 3 = 0, and then 1 -

4κ 1 κ 3 + κ 2 1 + 3κ 2 1 κ 4 -κ 4 = 2(2/π -1) < 0 implies that such an α
does not exist. Moreover, as illustrated in the left panel of Figure 1, even for p < 2 the Taylor property is quantitatively negligible as long as α is small.

The AVGARCH(1,1) process

For the full model ( 1)-( 2), solving c 22c 11 = α 2 + 2κ 1 αβ + β 2κ 1 αβ = 0 shows that, in (α, β)-space, c 22 > c 11 for all parameter combinations to the right of the line described by5 

β =      1-2ακ1+ √ 1-4α 2 (1-κ 2 1 ) 2 , 0 < α ≤ (<)κ 1 , if κ 1 ≥ (<) 1 √ 2 1-2ακ1± √ 1-4α 2 (1-κ 2 1 ) 2 , κ 1 ≤ α ≤ 1 2 √ 1-κ 2 1 , if κ 1 < 1 √ 2 , (19) 
whereas parameter constellations admitting a finite fourth moment, i.e., c 44 < 1, are between the axes and the line β = f (α), where β is the unique positive solution of

P (β; α) = β 4 + 4κ 1 αβ 3 + 6α 2 β 2 + 4κ 3 α 3 β -(1 -κ 4 α 4 ) = 0, 0 < α < 1 4 √ κ 4 . ( 20 
)
The region where the variance is finite (c 22 < 1) is also of interest, and is between the axes and the line β = -κ 1 α + 1α 2 (1κ 2 1 ), 0 α < 1. Now c 11 > c 22 for any parameter combination such that c 44 < 1 requires β < β for

α < κ -1/4 4 . In a neighborhood of α = κ -1/4 4 , β < β is a consequence of Assumption 2.1,
whereas for α-values in a neighborhood of zero it can be deduced by differentiating both relations twice (implicitly so in case of ( 20)),

d β dα α=0 = d β dα α=0 = -κ 1 , d 2 β dα 2 α=0 = -2(1 -κ 2 1 ) > -3(1 -κ 2 1 ) = d 2 β dα 2 α=0 .
Similar to the approach in [START_REF] Gonçalves | A mathematical approach to detect the Taylor property in TARCH processes[END_REF], for a given distribution, the entire shape of the lines defined by ( 19) and ( 20) can be elucidated graphically. This is done in Figure 2 for four different members of (3) and (4), namely Student's t with ν = 4.5 (with kurtosis κ 4 = 3(ν -2)/(ν -4) = 15) and the GED with p = 1, 2, and ∞, corresponding to the Laplace (κ 4 = 6), Gaussian (κ 4 = 3) and uniform (κ 4 = 9/5), respectively. The fourthmoment condition is satisfied by all parameter constellations to the left of the dashed line, whereas c 22 > c 11 for all those to the right of the dash-dotted line. Although these lines converge somewhat as the kurtosis decreases, the region where 1 > c 22 > c 11 (Region R 3 ) is, in all cases, entirely to the right of that where E(ǫ 4 t ) exists (Region R 1 ), so there is no pair (α, β) where both c 22 > c 11 and c 44 < 1. As the distributions in Figure 2 range from rather leptokurtic to extremely platykurtic, we expect that this is true for most of the densities that one would reasonably use in GARCH models. Thus, in case of existence, both ( 8) and ( 9) will be dominated by an exponential decay at rate c 11 . 

A C C E P T E D M

R 1 R 2 R 3 R 4 β α R 2 R 2
Figure 2: For each distribution, the dash-dotted and dashed lines represent relationships ( 19) and ( 20), respectively, and the solid line indicates the region of covariance stationarity, where E(ǫ 2 t ) < ∞. Thus, the regions R i , i = 1, 2, 3, 4, are characterized as follows:

R 1 = {(α, β) : α, β ≥ 0, c 22 < c 11 < 1, c 44 < 1} , R 2 = {(α, β) : α, β ≥ 0, c 22 < c 11 < 1 < c 44 } , R 3 = {(α, β) : α, β ≥ 0, c 11 < c 22 < 1 < c 44 } , R 4 = {(α, β) : α, β ≥ 0, 1 < c 22 } ,
where c mm , m ∈ N, is defined in (6).

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

In view of these results, we shall now, for a variety of distributions, classify all parameter combinations in (α, β)-space such that c 44 < 1 according to their implied ordering of the coefficients a 1 , ã1 , and ã2 , as indicated in Corollary 3. We do so in Figure 3, where for illustration we consider the GED with p ∈ {1, 1.25, 1.5, 2, ∞}. First observe that a 1 > ã2 implies a 1 > ã1 in all cases, that is, the first-order Taylor property implies the Taylor property for all τ (Region R1 ). Obviously, conditional kurtosis is crucial for this to show up. It is thoroughly present for the Laplace (Panel (a)), whereas the relevant area shrinks (in a complex manner) as conditional kurtosis decreases. For the uniform (Panels (e) and (f)), there is still a tiny region where the Taylor property holds (as revealed in Panel (f)), but numerical calculations show it being quantitatively negligible. Figure 3, of course, tells us nothing magnitude of the effect, and even for leptokurtic densities it tends to be small as long as α is small. We also mention a fact that is not easily discernible in Panel (d) (Gaussian) of Figure 3, namely that even for higher values of β there is a very narrow strip between Regions R2 and R4 where the Taylor property holds; e.g., if β = 0.9, it is there for 0.1132 < α < 0.1158, with unconditional kurtosis greater than 18.

In Region R2 we have ã1 < a 1 < ã2 (this cannot occur in the AVARCH(1) process due to Proposition 4), so

ρ 1 (1) < ρ 2 (1) but ρ 1 (τ ) > ρ 2 (τ ) for τ > τ ⋆ := log ã2-ã1 a1-ã1 log c11 c22 + 1. (21) 
Finally, in Region R3 , where a 1 < min{ã 1 , ã2 }, ρ 2 (τ ) > ρ 1 (τ ) for all τ . There is no region where ã1 > a 1 > ã2 . Thus, ρ 1 (1) > ρ 2 (1) ⇒ ρ 1 (τ ) > ρ 2 (τ ) ∀τ for these distributions.

Empirical Example

We consider daily log-returns, r t , of the S&P500 price index (obtained from Datastream) over the period from January 2000 to December 2007 (T = 1998 observations), i.e., r t = 100 × log(I t /I t-1 ), where I t is the index level at time t. Maximum likelihood estimation results for three different AVGARCH(1,1) processes are reported in Table 1. As c 44 < 1 for all models, the ACFs are well-defined. Interestingly, the models with GED and Student's t innovations achieve approximately the same log-likelihood, log L, but both clearly dominate the Gaussian model. This is also reflected in the values of the estimated shape parameters (p/ν) and the associated conditional kurtosis (κ 4 ).

To illustrate the results of Section 3, we note that the models based on the GED or Student's t both feature the Taylor property (a 1 > ã2 ), it is rather moderate for the GED. 

R1 = {(α, β) : α, β ≥ 0, c 44 < 1, a 1 > max{ã 1 , ã2 }} , R2 = {(α, β) : α, β ≥ 0, c 44 < 1, ã1 < a 1 < ã2 } , R3 = {(α, β) : α, β ≥ 0, c 44 < 1, a 1 < min{ã 1 , ã2 }} , R4 = {(α, β) : α, β ≥ 0, c 44 > 1} ,
where a 1 , ã1 , and ã2 are defined in ( 8) and (10). -2756.6

a Reported are estimation results for AVGARCH(1,1) models ( 1)-( 2) fitted to the S&P500 returns. cii, i ∈ {1, 2, 4}, is defined in (6). a1, ã1 and ã2 are as in ( 8) and ( 10), and τ ⋆ is defined in (21). κi denotes the ith absolute moment of the innovations defined in (5), and p and ν are the estimated shape parameters of the GED and Student's t, respectively, with standard errors in parentheses. log L is the value of the maximized log-likelihood function.

On the other hand, for the Gaussian AVGARCH(1,1) process, ã2 > a 1 > ã1 (Region R2 in

Figure 3), so there is no Taylor property at lower lags.

The top and center panels of Figure 4 show the sample autocorrelations of the S&P500 returns along with their theoretical counterparts implied by the fitted models. The Taylor property is clearly visible in the autocorrelations. The most pronounced difference between the models is the higher ACF of the absolute values implied by the Student's t process, whereas the GED is close to the Gaussian. The fact that the Taylor property is rather weak for the GED is also reflected in the bottom panel of Figure 4, where for each model both ρ 1 (τ ) and ρ 2 (τ ) are pictured in the same graph.

5 The Taylor Property and "Outliers"

Recently, [START_REF] Teräsvirta | Stylized facts of return series, robust estimates, and three popular models of volatility[END_REF] argue that the Taylor effect may be due to "outliers" and show that it "vanishes when standard estimates of autocorrelation are replaced with robust ones", where the robust measures applied by these authors attach a lower weight to observations relatively far from the mean. These results are in in accordance with those of the present paper, as both indicate that the Taylor effect is actually an accompaniment of conditional leptokurtosis. The question is whether robust measures of autocorrelation are the appropriate tool to deal with this issue. This is in no way to be taken for granted, as it may be argued that "extraordinary price changes [...] are something that should be expected to occur occasionally in a speculative market, and such events are merely an outcome of the generating mechanism and not a break-down of the usual mechanism" [START_REF] Granger | Some properties of absolute return, an alternative measure of risk[END_REF], see also [START_REF] Stanley | Statistical physics and economic fluctuations: do outliers exist?[END_REF] for discussion.

We finally note that the present analysis could be extended to compare the ACFs of power-transformed absolute returns, i.e., ρ δ (τ ) = Corr(|r t-τ | δ , |r t | δ ), for different δ > 0 in the more general power GARCH(1,1) processes as considered in [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF], [START_REF] Hwang | Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes[END_REF][START_REF] Hwang | Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes[END_REF][START_REF] Liu | On the tail behaviors of Box-Cox transformed threshold GARCH(1,1) process[END_REF]. The extension to AVGARCH(p, q) models would be much more cumbersome due to the complicated nature of the associated moments, which are less amenable to analytical investigation. However, as the first-order GARCH model is by far the most commonly employed in empirical studies, a rather large part of the situations of practical interest is covered by an analysis of this specification.

Figure 1 :

 1 Figure1: For the GED distribution (4) with p = 1.5, the left plot shows a 1 -ã2 = ρ 1 (1)-ρ 2 (1) (solid line) and a 1 -ã1 (dashed line) as a function of parameter α for the absolute value ARCH(1) process, i.e., (1)-(2) with β = 0. Quantities a 1 , ã1 , and ã2 are defined in (8) and (10). The right plot repeats this, but for p = 2 (i.e., the normal distribution).

  Student´s t with ν = 4.5

Figure 3 :

 3 Figure 3: Parameter p is the shape parameter of the GED density (4). The regions Ri , i = 1, 2, 3, 4, are characterized as follows:

Figure 4 :

 4 Figure4: The top and center plots show the empirical autocorrelations of absolute and squared (demeaned) S&P500 returns, respectively, along with their theoretical counterparts implied by the fitted AVGARCH(1,1) models. For each model, the bottom panel compares the autocorrelations of the absolute and squared values in order to highlight the presence/magnitude or absence of the Taylor property.

Table 1 :

 1 Estimation results for the S&P 500 returns

	distribution Gaussian	c 11 0.989 0.981 0.971 0.200 0.190 0.214 103 3.00 c 22 c 44 a 1 ã1 ã2 κ 4 ⌈τ ⋆ ⌉	p/ν p = 2	log L -2781.0
	GED	0.990 0.982 0.975 0.190 0.158 0.185	-	3.83 p = 1.47 (0.07)	-2756.9
	Student's t 0.992 0.986 0.983 0.224 0.157 0.195	-	4.08 ν = 9.54 (1.86)

For further discussion and evidence, see, for example,[START_REF] Fornari | A stochastic variance model for absolute returns[END_REF],[START_REF] Ryden | Stylized facts of daily return series and the hidden Markov model[END_REF],[START_REF] Brooks | A Multi-Country Study of Power ARCH Models and National Stock Market Returns[END_REF],[START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF],[START_REF] Kilic | On the long memory properties of emerging capital markets: evidence from Istanbul stock exchange[END_REF],[START_REF] Malmsten | Stylized facts of financial time series and three popular models of volatility[END_REF],[START_REF] Bulla | Stylized facts of financial time series and hidden semi-Markov models[END_REF][START_REF] Bulla | Stylized facts of financial time series and hidden semi-Markov models[END_REF][START_REF] Yoon | Long memory in volatility[END_REF].

For stochastic volatility models, Mora-Galán et al. (2004),Ruiz and[START_REF] Ruiz | Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH[END_REF][START_REF] Veiga | Financial stylized facts and the Taylor-effect in stochastic volatility models[END_REF] come to similar conclusions.
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Note that the case κ1 < 1/ √ 2 is of little practical relevance. For the t and GED distributions, κ1 < 1/ √ 2 if ν < 4 (so that ρ2(τ ) is not defined) and p < 1, respectively.