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Analytic expressions for predictive distributions in

mixture autoregressive models

Georgi N. Boshnakov,a

aSchool of Mathematics, The University of Manchester, Oxford Road,
Manchester M13 9PL, UK

Abstract

We show that the distributions of the multi-step predictors in mixture au-
toregressive models are also mixtures and specify them analytically. In the
case of mixtures of Gaussian or stable distributions the multi-step distribu-
tions can be obtained by simple arithmetic manipulation on components’
parameters.

Key words: mixture autoregression, prediction, time series, stable
distributions

1. Introduction

Mixture autoregressive models are studied by Wong and Li (2000) and
Wong (1998). This is a relatively simple class of models having the attractive
property that the shape of the conditional distribution of a forecast depends
on the recent history of the process. In particular, it may have a varying
number of modes over time.

Wong and Li (2000) note that the multi-step conditional distributions of
predictors in MAR models are intractable analytically and resort to Monte
Carlo simulations. We show that the distributions of the multi-step predic-
tors in MAR models are also mixtures and specify them analytically.

We also demonstrate that (conditional) characteristic functions are the
natural tool for calculations in this type of model. Conditional means and
variances are not sufficient for prediction (even when they exist) in the pres-
ence of severe deviation from normality. Natural alternatives to them are
the conditional characteristic functions. A characteristic function contains
the entire distributional information. If needed, conditional mean, variance
or other moments can be obtained from it. Moreover, unlike variances and
means, characteristic functions always exist and hence provide more general
results. In the important class of α-stable distributions with 0 < α < 2,
moments of order greater than or equal to α do not exist (see Zolotarev
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(1986)). Time series models based on stable distributions are studied ac-
tively, see Samorodnitsky and Taqqu (1994), Rachev and Mittnik (2000) and
the references therein. Also, it is difficult to obtain manageable forms of the
probability densities of the stable distributions (except in some special cases).
On the other hand, their characteristic functions have a remarkably simple
form and thus are the natural tool to use. Some of the most efficient meth-
ods for simulation of α-stable distributions are based on their characteristic
functions, not densities.

2. The MAR model

Let π = (π1, . . . , πg) be a discrete distribution such that πk > 0 for
k = 1, . . . , g and

∑g
k=1 πk = 1. A process {y(t)} is said to be a mixture au-

toregressive process with g components if the conditional distribution func-
tion of y(t+1) given the information from the past of the process is a mixture
of the following form:

Ft+1|t(x) ≡ Pr(y(t+1) ≤ x|Ft)

=

g∑

k=1

πkFk

(
x− φk,0 −

∑pk
i=1 φk,iy(t+1−i)

σk

)
, (1)

where for each k = 1, . . . , g, Fk is a distribution function, σk > 0, and φk,i,
i = 0, 1, . . . , pk, are the autoregressive coefficients of the kth component. Ft
is the sigma field generated by the process {y(t)} up to and including time t.
It is convenient to set p = max1≤k≤g pk and φk,i = 0 for i > pk. We assume
also that t > p. We will denote by fk and ϕk the probability density function
and the characteristic function of Fk. The “location” and “scale” parameters
of Fk are assumed to be zero and one, respectively;

The conditional density corresponding to Ft+1|t(x) is

ft+1|t(x) =

g∑

k=1

πk
σk
fk

(
x− φk,0 −

∑pk
i=1 φk,iy(t+1−i)

σk

)
. (2)

For many applications it is sufficient to consider standard normal noise com-
ponents, where ϕk(s) = e−s

2/2. Another useful class is the class of α-stable
distributions, e.g., ϕk(s) = e−|s|

α
is the characteristic function of a symmetric

α-stable noise component.
At each time t + 1 one of g autoregressive-like equations is picked up at

random to generate y(t+1). So, an alternative description of the dynamics of
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{y(t)} is the following:

y(t+1) =





φ1,0 +
∑p1

i=1 φ1,iy(t+1−i) + σ1ε1(t+1), with probability π1,

φ2,0 +
∑p2

i=1 φ2,iy(t+1−i) + σ2ε2(t+1), with probability π2,

. . .

φg,0 +
∑pg

i=1 φg,iy(t+1−i) + σgεg(t+1), with probability πg,

(3)

where the distribution function of εk(t), the kth noise component, is Fk for
k = 1, . . . , g. With respect to the dependence structure we assume that εk(t)
are jointly independent and are also independent of past ys in the sense that
for each t the σ-field generated by the set of random variables {εk(t+n), n ≥
1, 1 ≤ k ≤ g} is independent of Ft. Further, we assume that the choice of the
component at time t does not depend on Ft−1 and {εk(t), t ≥ 1, 1 ≤ k ≤ g}.

Equation (3) can be written in a more compact form, useful for calcula-
tions. Let for k = 1, . . . , g,

µk(t+1) = φk,0 +

pk∑

i=1

φk,iy(t+1−i) and yk(t+1) = µk(t+1)+σkεk(t+1).

Let {zt} be an i.i.d. sequence of random variables with distribution π, such
that Pr{zt = k} = πk for k = 1, . . . , g. Then y(t) is given by component k in
Equation (3) if zt = k. Now Equation (3) can be written as

y(t+1) = φzt+1,0 +

p∑

i=1

φzt+1,iy(t+1−i) + σzt+1εzt+1(t+1) (4)

= µzt+1(t+ 1) + σzt+1εzt+1(t+1). (5)

3. Main Results

Equation (4) is well suited for one-step prediction since the random el-
ements in it are either in Ft or are independent of it. For longer horizons
Equation (4) can be applied recursively to eliminate unobserved values of
the process. The method is a natural extention of the similar procedure
for autoregressive models. For example, for an AR(2) model we might get
equations suitable for prediction two lags ahead by eliminating the unknown
value at time t+ 1 as follows:

x(t+ 2) = φ1x(t+ 1) + φ2x(t) + ε(t+ 2)

= φ1(φ1x(t) + φ2x(t− 1) + ε(t+ 1)) + φ2x(t) + ε(t+ 2)

= (φ2
1 + φ2)x(t) + φ1φ2x(t− 1) + ε(t+ 2) + φ1ε(t+ 1).

The computations for the MAR model are given in Appendix B. The result
is formulated in the following lemma.

3
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Lemma 1. The following representation holds for any h ≥ 1:

y(t+h) = µzt+h,...,zt+1(t+ h) +
h−1∑

i=0

θ
(zt+h,...,zt+1)
i εzt+h−i(t+h−i), (6)

where

µzt+h,...,zt+1(t+ h) = β
(zt+h,...,zt+1)
0 +

p∑

i=1

β
(zt+h,...,zt+1)
i y(t+1−i), (7)

with coefficients obtained from (4)–(5) for h = 1 and defined recursively for
h ≥ 2 by

β
(zt+h,...,zt)
i =





β
(zt+h,...,zt+1)
0 + β

(zt+h,...,zt+1)
1 φzt,0 for i = 0,

β
(zt+h,...,zt+1)
i+1 + β

(zt+h,...,zt+1)
1 φzt,i for i = 1, . . . , p− 1,

β
(zt+h,...,zt+1)
1 φzt,p for i = p.

(8)

θ
(zt+h,...,zt)
i =

{
θ

(zt+h,...,zt+1)
i for i = 0, . . . , h− 1,

β
(zt+h,...,zt+1)
1 σzt for i = h.

(9)

The coefficients θ
(zt+h,...,zt+1)
i and β

(zt+h,...,zt+1)
i are functions of zt+h, . . . , zt+1,

and the parameters φk,i and σk of the MAR model. For example, for h = 2
we have

β
(k,l)
i =





φk,0 + φk,1φl,0 for i = 0,

φk,i+1 + φk,1φl,i for 1 ≤ i ≤ p− 1,

φk,1φl,p for i = p,

θ
(k,l)
i =

{
σk for i = 0,

φk,1σl for i = 1.

(10)
The quantity µk(t + 1) has the meaning of a location parameter of the

(conditional) distribution of the kth component of the MAR model. In par-
ticular, µk(t + 1) = E(yk(t + 1)|Ft) when the mean E εk(t+1) exists (see Ap-
pendix A). The variables yk(t+ 1) are somewhat artificial but an important
consequence of the last equation is that µk(t + 1) = E(y(t+1)|Ft, zt+1 = k),
for k = 1, . . . , g. More generally, for any horizon h ≥ 1 and any h-tuple
k1, . . . , kh such that 1 ≤ ki ≤ g, for 1 ≤ i ≤ h,

µk1,...,kh(t+ h) = E(y(t+h)|Ft, zt+h = k1, zt+h−1 = k2, . . . , zt+1 = kh)

=

p∑

i=1

β
(k1,...,kh)
i y(t+h−i) + β

(k1,...,kh)
0 ,

when the means of the noise components exist but we should stress again
that our results do not rely on the existence of any moments.

4
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The (one-step) conditional characteristic function of y(t) is

ϕt+1|t(s) ≡ E(eisy(t+1)|Ft) =

g∑

k=1

πke
isµk(t+1)ϕk(σks). (11)

The conditional characteristic functions for longer horizons can be ob-
tained recursively using Equation (6), Lemma 1, and the iterated rule for
conditional expectations (see Appendix B)

ϕt+h|t(s) ≡ E(eisy(t+h)|Ft) = E(E(eisy(t+h)|Ft, zt+h, . . . , zt+1)|Ft−h)

=

g∑

k1,...,kh=1

(πk1 · · · πkh)eis(µk1,...,kh (t+h))

h−1∏

i=0

ϕkh−i(θ
(k1,...,kh)
h−i s), (12)

where

µk1,...,kh(t+ h) =

p∑

i=1

β
(k1,...,kh)
i y(t+1−i) + β

(k1,...,kh)
0 .

For h = 2 this gives

ϕt+2|t(s) =

g∑

k=1

g∑

l=1

πkπle
isµk,l(t+2)ϕk(σks)ϕl(φk,1σls), (13)

where µk,l(t+2) is a linear combination of y(t+2−i), i ≥ 2 (see Equation (20)).
Thus, the conditional distribution of y(t+2) given Ft is a mixture of g2 com-
ponents with mixing probabilities πkπl. For Gaussian noise components we
have

ϕk(σks)ϕl(σlφk,1s) = e−(σ2
k+σ

2
l φ

2
k,1)s2/2,

which together with Equation (13) shows that the conditional distribution
of the two-step predictor is a mixture of normal distributions with variances
σ2
k + σ2

l φ
2
k,1 and means µk,l(t+ 2).

It is worth noting that the calculations for the general case are not more
complicated than that for the Gaussian case. Joint conditional distributions
can be found using the same technique.

The above results are summarised in the following theorem. Its interpre-
tation and some corollaries are discussed in the remarks after it. Recall that
εk(t) and yk(t) are the kth noise component and the kth component of the
MAR model, respectively.

Theorem 1. For each h ≥ 1 the conditional characteristic function, ϕt+h|t(s) ≡
E(eisy(t+h)|Ft), of the h-step predictor at time t of the MAR process (3) is
given by Equation (12).

5
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Remark 1 The expression on the right-hand side of (12) represents a mix-
ture. Hence, the conditional distribution of the h-step predictor at time t
of the MAR process (3) is a mixture of gh components. The probability as-
sociated with the (k1, . . . , kh)th component is πk1 · · · πkh and its conditional

characteristic function is eisµk1,...,kh (t+h)

h−1∏

i=0

ϕkh−i(θ
(k1,...,kh)
h−i s).

Remark 2 The exponent, eis(...), is the only term in the characteristic func-
tion of the (k1, . . . , kh)th component that depends on the past of the process
{y(t)}. Since such a factor corresponds to a shift of the distribution, it fol-
lows that only the location parameter of the conditional distribution of the
(k1, . . . , kh)th component of the h-step predictor depends on the past of the
process {y(t)}.

It should be stressed however that this qualitative property holds for the
conditional distributions of the individual components, not for the condi-
tional distribution of y(t+h) itself. The shape and other properties of the
latter (such as Var(y(t+ h)|Ft)) do depend on y(t), y(t−1), etc.

Since we have assumed that the location parameters of the noise com-
ponents are zero, it is tempting to state that the location parameter of the
distribution of the (k1, . . . , kh)th component of the h-step predictor at time
t is µk1,...,kh(t + h), but this is not always the case (see Equation (15) below
for an example).
Remark 3 In general, the distributions of the components of the h-step
predictors depend both on h and on the noise distributions in the specifica-
tion of the MAR model and do not necessarily belong to a common class.
However, the product of the noise characteristic functions in Equation (12)
shows that if the components of the MAR model (3) are normal, then for each
h ≥ 1 the components of the h-step ahead predictor at time t are also nor-
mal. The conditional mean and variance of the (k1, . . . , kh)th component are

µk1,...,kh(t+h) and
∑h−1

i=0 (θ
(k1,...,kh)
h−i )2, respectively. For the two-step predictors

(i.e., for h = 2) these simplify to µk,l(t+ 2) and σ2
k + σ2

l φ
2
k,1, respectively.

Remark 4 If εk(t) are α-stable, Sα(1, βk, 0), k = 1, . . . , g, then the product∏h−1
i=0 ϕkh−i(θ

(k1,...,kh)
h−i s) is the characteristic function of an α-stable distribu-

tion. So, if the components of the MAR model (3) are α-stable, Sα(1, βi, 0),
i = 1, . . . , g, 0 < α ≤ 2, with characteristic functions (see e.g. Lukacs, 1979,
Theorem 5.7.3),

ϕk(s) = e−|s|
α(1−iβk sign(s)w(|s|,α)), where w(|s|, α) =

{
tan πα

2
, α 6= 1,

2
π

log|s|, α = 1,
(14)

then for each h ≥ 1 the components of the h-step ahead predictor at time t
are α-stable. The distribution of the (k1, . . . , kh)th component is Sα(σ, β, µ),

6
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where

µ =

{
µk1,...,kh(t+ h) if α 6= 1,

µk1,...,kh(t+ h) + 2
π

∑h−1
i=0 βkh−iθ

(k1,...,kh)
h−i log|θ(k1,...,kh)

h−i | if α = 1.
(15)

σ =

(
h−1∑

i=0

|θ(k1,...,kh)
h−i |α

)1/α

, β =

∑h−1
i=0 βkh−i|θ

(k1,...,kh)
h−i |α sign(θ

(k1,...,kh)
h−i )

∑h−1
i=0 |θ

(k1,...,kh)
h−i |α

.

(16)

4. Example

Wong and Li (2000) built a mixture autoregressive model for the daily
IBM stock closing price data (Box and Jenkins, 1976) with the following
parameters: g = 3; π = (0.5439, 0.4176, 0.0385); σ1 = 4.8227, σ2 = 6.0082,
σ3 = 18.1716; p1 = 2, p2 = 2, p3 = 1; φk,0 = 0, k = 1, 2, 3; φ1,1 = 0.6792,
φ1,2 = 0.3208, φ2,1 = 1.6711, φ2,2 = −0.6711, φ3,1 = 1. Putting these
parameters into (2) gives the one-step conditional density,

ft+1|t(x) = 0.000845235e−0.0015142(x−yt)2

+ 0.0449924e−0.0214976(x−0.6792yt−0.3208yt−1)2

+ 0.0277285e−0.013851(x−1.6711yt+0.6711yt−1)2 . (17)

From Theorem 1 (see also Equation (13)) the two step conditional density is

ft+2|t(x) = 0.0000230104e−0.000757101 (x−yt)2

+ 0.000530972e−0.00201992 (x−1. yt)
2

+ 0.000264531e−0.000850474 (x−1. yt)
2

+ 0.0104655e−0.00666972 (x−0.463911 yt−0.536089 yt−1)2

+ 0.000444341e−0.00141457 (x−0.6792 yt−0.3208 yt−1)2

+ 0.0188846e−0.0128023 (x−0.782113 yt−0.217887 yt−1)2

+ 0.0131094e−0.0104654 (x−1.45581 yt+0.455811 yt−1)2

+ 0.000335127e−0.00136498 (x−1.6711 yt+0.6711 yt−1)2

+ 0.00708503e−0.00518551 (x−2.12148 yt+1.12148 yt−1)2 .

(18)

As an illustration, for this series we have y(258) = 361, y(257) = 399 and
Table 4 gives the modes of the predictive densities, f258+h|258(x), for horizons
2–5 and the values (or “heights”) of the densities at the modes. The prefix

7
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Table 1: Modes of the predictive distributions discussed in the example. (M1, M2, M3)
and (WLM1, WLM2, WLM3) are modes obtained by the analytical formulae and the
Monte Carlo method of Wong-Li, respectively. “M1 height”, etc., stand for the values of
the predictive pdf’s at the corresponding modes.

Horizon 2 3 4 5
Number of Modes 3 2 2 1

M1 370.136 371.174 370.974 370.690
WLM1 370.089 371.495 372.399 369.426

M2 343.48 342.25 343.870
WLM2 342.994 342.238 343.048

M3 318.854
WLM3 317.728

M1 height 0.0260764 0.0208125 0.0180173 0.0162017
WLM1 height 0.0257348 0.0227771 0.0195596 0.0164599

M2 height 0.0158331 0.0119786 0.0111955
WLM2 height 0.0156722 0.0099772 0.0110598

M3 height 0.0062759
WLM3 height 0.0061026

WL is used for quantities derived from the approximate densities computed
by the method of Wong-Li based on 103 simulated values. In this example
the dominant mode remains quite stable for several prediction horizons. The
“weakest” mode (M3) disappears after h = 2 and the second mode after
h = 4. Obviously, the results from the Wong-Li method vary slightly from
run to run but they agree well with the exact results and increasing the
number of simulations to 105 gives predictive densities (not shown here)
essentially identical to the exact ones. The second mode, which is not very
well pronounced, was not present on some runs of the Wong-Li method.

5. Conclusion

We have shown that the multi-step predictors for a mixture autoregres-
sive model are mixtures. Moreover, when the noise components are normal
or stable the predictors remain mixtures of normal, respectively stable, dis-
tributions for all horizons. We have also demonstrated that the conditional
characteristic function is a useful and intuitive instrument for analysis of
MAR models.
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A. Derivation of the representation of y(t) given by Lemma 1

To clarify the ideas we start with the case h = 2. It is necessary to
eliminate y(t−1) from the expression for y(t). From Equations (4)-(5) we get

y(t) = µzt(t) + σztεzt(t)

= (µzt(t)− φzt,1y(t−1)) + φzt,1y(t−1) + σztεzt(t)

= µzt,zt−1(t) + φzt,1σzt−1εzt−1(t−1) + σztεzt(t), (19)

where

µk,l(t) ≡ µk(t)− φk,1y(t−1) + φk,1µl(t− 1)

= φk,0 + φk,1φl,0 +

p−1∑

i=1

(φk,i+1 + φk,1φl,i)y(t−1−i) + φk,1φl,py(t−1−p). (20)

Equations (19)-(20) provide the required representation of y(t) in the form (6)
with coefficients given by Equation (10).

For higher lags we continue by induction. Assume that y(t) is represented
in the form (6)–(7) for some h ≥ 2. From Equation (6) we get

y(t) = µzt:t−h+1
(t) +

h−1∑

i=0

θ
(zt:t−h+1)
i εzt−i(t−i)

= (µzt:t−h+1
(t)− β(zt:t−h+1)

1 y(t−h)) + β
(zt:t−h+1)
1 y(t−h)

+
h−1∑

i=0

θ
(zt:t−h+1)
i εzt−i(t−i)

= (µzt:t−h+1
(t)− β(zt:t−h+1)

1 y(t−h)) + β
(zt:t−h+1)
1 µzt−h(t− h)

+ β
(zt:t−h+1)
1 σzt−hεzt−h(t−h) +

h−1∑

i=0

θ
(zt:t−h+1)
i εzt−i(t−i). (21)

Our aim is to eliminate y(t−h). From Equation (7) we get

µzt:t−h+1
(t) − β

(zt:t−h+1)
1 y(t−h) = β

(zt:t−h+1)
0 +

p−1∑

i=1

β
(zt:t−h+1)
i+1 y(t−h−i). (22)

9
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From Equation (5) we get

β
(zt:t−h+1)
1 y(t−h) = β

(zt:t−h+1)
1 (µzt−h(t− h) + σzt−hεzt−h(t−h)) (23)

µzt−h(t− h) = φzt−h,0 +

p∑

i=1

φzt−h,iy(t−h−i). (24)

From Equation (21) we can now see that the required representation for y(t)
for lag h+ 1 is

y(t) = µzt,...,zt−h(t) + β
(zt:t−h+1)
1 σzt−hεzt−h(t−h) +

h−1∑

i=0

θ
(zt:t−h+1)
i εzt−i(t−i), (25)

where

µzt,...,zt−h(t) = (µzt,...,zt−h+1
(t)− β(zt:t−h+1)

1 y(t−h)) + β
(zt:t−h+1)
1 µzt−h(t− h),

since the last expression is a linear combination of y(t−i), i ≥ h + 1. To
obtain formulae (8)–(9) we use Equations (21), (23) and (24) to simplify the
last equation to

µzt,...,zt−h(t) = β
(zt:t−h+1)
0 +

p−1∑

i=1

β
(zt:t−h+1)
i+1 y(t−h−i) (26)

+ β
(zt:t−h+1)
1 φzt−h,0 +

p∑

i=1

β
(zt:t−h+1)
1 φzt−h,iy(t−h−i).

Comparing Equations (25) and (26) with (6)–(9) we get the desired result.
When the mean E εk(t) exists we have

E(yk(t)|Ft−1) = E(µk(t) + σkεk(t)|Ft−1) = µk(t).

B. Derivation of the conditional characteristic functions

Using Equation (6) we get for any h ≥ 2

ϕt|t−h(s) ≡ E(eisy(t)|Ft−h) = E(E(eisy(t)|Ft−h, zt, . . . , zt+1−h)|Ft−h)

= E(eisµzt:t+1−h (t) E(eis(
∑h−1
m=0 θ

(zt:t+1−h)

h−m εzt−m (t−m))|Ft−h, zt, . . . , zt+1−h)|Ft−h)

=

g∑

k1,...,kh=1

(πk1 · · · πkh)eisµk1:h (t)

h−1∏

m=0

ϕkh−m(θ
(k1:h)
h−m s).
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