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Abstract: 

The Glottal Source is an important component of voice as it can be considered as the 

excitation signal to the voice apparatus. The use of the Glottal Source for pathology 

detection or the biometric characterization of the speaker are important objectives in the 

acoustic study of the voice nowadays. Through the present work a biometric signature 

based on the speaker’s power spectral density of the Glottal Source is presented. It may be 
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shown that this spectral density is related to the vocal fold cover biomechanics, and from 

literature it is well known that certain speaker’s features as gender, age or pathologic 

condition leave changes in it. The paper describes the methodology to estimate the 

biometric signature from the power spectral density of the mucosal wave correlate, which 

after normalization can be used in pathology detection experiments. Linear Discriminant 

Analysis is used to confront the detection capability of the parameters defined on this 

glottal signature among themselves and compared to classical perturbation parameters. A 

database of 100 normal and 100 pathologic subjects equally balanced in gender and age is 

used to derive the best parameter cocktails for pathology detection and quantification 

purposes to validate this methodology in voice evaluation tests. In a study case presented to 

illustrate the detection capability of the methodology exposed a control subset of 24+24 

subjects is used to determine a subject’s voice condition in a pre- and post-surgical 

evaluation. Possible applications of the study can be found in pathology detection and 

grading and in rehabilitation assessment after treatment. 

Keywords: 

Voice Biometry, Speaker’s Identification, Speaker Biometrical Characterization, Voice 

Pathology Detection, Glottal Source 

1. Introduction 

The issue of pathology detection from audio recordings of a subject’s phonation is one of 

the most promising technologies in the care of voice. This technique may be helpful in 

pathology pre-screening and as a complementary inspection routine to detect pathology 
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before it has fully developed when the first alterations of vocal folds do not yet show 

physiological visible clues but slight perturbations from normal voicing are already present. 

Besides, a sensitive pathology detection methodology could help in maintaining good 

preventive practices for voice health care. Traditionally voice pathology detection has been 

mainly based on the estimation and monitoring of certain perturbation parameters which are 

well known correlates to pathology. These can be included in one of the following 

categories: 

• Parameters obtained from the original voice (taken as a whole signal with no other pre-

processing than a pre-emphasis enhancement, preserving the resonances imposed by the 

vocal tract). Typical perturbation parameters are jitter, shimmer and harmonics-to-noise 

ratios in their different interpretations. This has been the traditional approach and is 

well documented in the works of different researchers [1][2][3][4][5]. The main 

objection to this methodology is that the original voice signal is contaminated by 

phonetic-acoustic information related to specific articulation features, and therefore 

perturbation parameters derived from this signal are influenced by articulation, making 

it difficult to grant new advances towards pathology classification. 

• Spectral domain parameters derived from the voice signal. Specific correlates among 

the original voice spectral profile and certain pathologies have been proposed in the 

literature [6][7]. Although pathology is detectable using specific correlates between 

harmonics and formants, the acoustic-phonetic contamination poses important 

limitations to this methodology for the same reasons exposed in the previous point, 

blurring the observations to a certain extent, making it difficult to improve detection 
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sensitivity. 

• Glottal Source1 time-domain parameters. Recognizing the difficulties encountered when 

dealing with spectral estimates the from original voice signal several researchers 

[8][9][10] have proposed the use of the glottal source parameterization in the time 

domain for pathology characterization studies, after removing the vocal tract from 

voice. This line seems to offer rather promising results, especially in improving the 

capability of detecting pathology at an earlier stage. 

• Glottal Source frequency-domain parameters. An alternative methodology is based on 

the use of glottal source spectral correlates for pathology characterization, these having 

already been found of interest in voice characterization, as in the detection of gender 

[11][12]. 

The present work is oriented to formalize the use of the glottal source power spectral 

density, adding estimates of the vocal fold biomechanics by model inversion [13][14] to 

define a glottal source signature for pathology studies. The substantial improvements of this 

work with respect to the last ones is to be found in the Linear Discriminant Analysis (LDA) 

used to detect the most relevant parameters in the study, in the detection technique used 

which is based on Gaussian Mixture Models, in the database selected, consisting in 200 

speakers equally balanced by gender and non-pathological/pathological condition and in the 

presentation of a study case to visualize the potential use of the methodology proposed in a 

real situation. 

                                                 

1 In what follows the Glottal Flow Derivative will be addressed as Glottal Source following the source-filter model of G. Fant 
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A comprehensive review of the characterization of voice pathology from acoustic analysis 

may be found in [1]. Holmberg et al. using estimates of the L coefficient (energy difference 

between the first two harmonics H1-H2 found in the power spectral density of voice), the 

ratio between the first and third formant harmonics A1-A3, and the cross ratios H1-A1 and 

H1-A3, reported interesting findings correlating these parameters with certain specific 

pathologies [6][7]. Studies in the time domain using the Return Quotient (RQ), the Open 

Quotient (OQ), the Closed Quotient (CQ) the Closing Quotient (ClQ) or the Normalized 

Amplitude Quotient (NAQ) offered similar results [8][9]. These last works show the way to 

establish a more structured study regarding pathology characterization. On one side they 

point out to the use of time or frequency domain parameters as the basis of the study. On 

the other side, they deal either with voice or with the Glottal Source as the basic signals for 

the study. In the present approach the Glottal Source has been selected as the object of the 

research. Although time and frequency domain studies are related in some way, the work 

has been carried out to the frequency domain. Taking relations H1-H2, A1-A3, H1-A1 and H1-

A3, as good correlates to pathology availed by other researchers’ results, a generalized 

signature is proposed on singularities detected on the Glottal Source spectral envelope 

(peaks and troughs). This generalization is based on the biomechanical dynamics of the 

vocal folds found on the Glottal Source spectral envelope [15], whose singularities may be 

shown to be strongly determined by the relations among parameters in well-known k-mass 

models [16][17] once the influence of the vocal tract has been removed. Having this 

perspective into account these are some relevant questions to be answered by the present 

study: 

a) Is the envelope of the Glottal Source spectral profile a good generalization of partial 
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relations as H1-H2, A1-A3, H1-A1 and H1-A3 used in pathology studies? 

b) How this spectral profile can be parameterized to provide an accurate and compact 

description of the speaker’s glottal features?  

c) Are parameter distributions sensitive to gender bias effects? 

d) If so, which are the most relevant ones by gender groups concerning pathology 

detection? 

The paper is organized as follows: Section 2 is devoted to establish the framework for 

splitting voice into glottal and vocal components. The estimation of the glottal source and 

other dynamic correlates used in the study is given in section 3. Questions a) and b) are 

answered in detail in section 4 where a complete description of the parameterization 

procedure of the glottal source spectral envelope is given. Questions c) and d) are treated in 

section 5, where Principal Component Analysis is proposed to offer more compact data sets 

which can be used in different detection and classification problems, accordingly with 

voice-pathology related features, and Gaussian Mixture Models are proposed for the 

separation of non-pathologic samples from pathologic ones. In section 6 the results derived 

from PCA dimensionality reduction, LDA parameter discrimination and GMM detection 

are briefly commented. A specific study case selected among others is presented in section 

7 to illustrate the capabilities of the methodology exposed as far as pathology detection and 

grading is concerned. Section 8 is devoted to extract conclusions from the results presented 

and give hints on future research on the topic. 

2. Structured parameterization of voice 
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Considering the classical source-filter model for the generation of voice composed by an 

excitation (Glottal Source) and a modulating filter (Vocal Tract) as proposed by Fant [18], 

it may be expected that the excitation will depend on the less-varying biometric 

characteristics of the speaker (lungs, larynx and naso-pharynx cavities, etc.) being weakly 

influenced by the message (text), but strongly conditioned by the production process 

(physiological and emotional conditions, prosody, tonal height, production gesture, 

pathology, etc.). Under the methodological point of view it seems that in treating the voice 

signal following a deconstructive way independent features could be observed. This means 

that vocal and glottal parameters have to be treated separately with methods more 

specifically oriented to their respective nature (accordingly to their statistical inter-speaker 

and intra-speaker characteristic distributions). Voice parameterization procedures should 

have these specific facts into account, as the parameters estimated on one or the other 

context will be later subject to evaluation, analysis and classification under clearly different 

paradigms. The parameterization of voice may be carried out using estimates of one of the 

following main categories: 

• The Voice Power Spectral Density (VPSD), estimated either using traditional FFT or by 

LPC. The short-time power spectrum is usually coded as Mel-Frequency Cepstral 

Coefficients (MFCC) by well-known methods [19]. Up to recently this has been the 

only description used in applications as Pathology Detection [20] or Speaker 

Identification [21]. Classically pitch, jitter, shimmer, harmonics-noise ratios, or energy 

may be evaluated on a pitch-synchronous or asynchronous basis to produce a rich 

parameter description. Other parameters as the ratios H1-H2, A1-A3, H1-A1 and H1-A3, or 

the OQ, CQ, ClQ and NAQ have also be included in these studies.  
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• The Vocal Tract Transfer Function Modulus (VTTFM). The VPSD reflects the 

influence of the Glottal Source spectral envelope as a 1/f spectral tilt, which distorts 

Vocal Tract Transfer Function estimates. A decoupling between Vocal Tract and 

Glottal Source could render better results both in decoding the message (Speech 

Recognition) as well as in the characterization of the source (Pathology Detection). The 

accurate estimation of the VTTFM is of interest to grant the careful removal of its 

influence from voice and to produce reliable estimates of the Glottal Source. It is also 

useful in certain speaker characterization studies, as age or gender [22]. 

• The Glottal Source Power Spectral Density (GSPSD). The Glottal Source can be 

parameterized in the time or in the frequency domain. Time domain methods are based 

in the well-known Liljiencrants-Fant model [23]. The time domain parameterization is 

oriented to the estimation of OC, SC, ClQ, RQ and NAQ (Open, Speed, Closing, 

Return and Normalized Amplitude Quotients). The frequency domain is oriented to the 

estimation of the ratio H1-H2 (which is known to be related to the CQ - Close Quotient), 

and to the Maximum Flow Declination Rate (MFDR) and the Spectral Slope [12]. 

Other possible parameterization methods for the Glottal Source in the frequency 

domain may be based on MFCC or LPCC parameters from the power spectral density 

of the glottal signals (Glottal Flow derivative, Glottal Source derivative, etc.) similarly 

to the methodology used to parameterize the VTTFM. Another line of study is related 

with the establishment of correlates among the Glottal Source frequency envelope and 

the biomechanical parameters of a k-mass vocal fold model by model inversion as 

suggested by the authors in previous work [13]. 
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3. Estimation of the Glottal Source  

The methodology proposed in the present work may be seen as a frequency domain 

parameterization of the glottal source power spectral density, with the following distinctive 

characteristics: 

• It is carried out either on the Glottal Source or on the Mucosal Wave Correlate (MWC), 

which is a signal derived from the Glottal Source removing the Acoustic Average Wave 

(AAW) from it [24]. The AAW, as it will be later explained, can be seen as the Body 

Dynamic Component, because it may be associated to the one-mass/one-spring 

equivalent model of the vocal fold body. The residual left when removing the AAW 

from the Glottal Source signal is designed as the Mucosal Wave Correlate (also the 

Cover Dynamic Component or CDC), as it can be associated to higher-order oscillation 

modes of the vocal folds related mainly with the dynamic behaviour of the fold cover. 

Both signals can be considered correlates to the body and cover dynamics, and will be 

referred as such. 

• It estimates the singularities of the power spectral density of the Glottal Source or the 

MWC as a series of peaks and notches in amplitude and frequency relative to the 

fundamental frequency of voice F0. Therefore it can be considered as a generalization 

of the parameters used in [8] and [9], because the ratio H1-H2 and the Spectral Slope are 

part of the parameterization proposed. 

The character of this parameterization is typically biometrical, as its inter-speaker statistical 

variability is mainly conditioned by the personal characteristics of each speaker (gender, 

age, tension, glottal gesture, pathology, etc). An added value is that its frequency-domain 
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character may be more robust to estimation errors than other time-domain techniques, as 

those based on the L-F model in the time-domain. The argument in favour of this assertion 

resides in that the estimates of OC, SC, ClQ, RQ and NAQ are based on fitting real glottal 

source patterns against the well-known L-F model. This model is an idealized version of 

the resulting glottal source behaviour in a standard vocal fold system. Indeed male voice 

adheres better to the L-F paradigm than female voice, and both deviate from it even when  

mild pathology (functional, non-organic) is present. In the presence of strong pathology 

curve fitting of a real Glottal Source estimate to the L-F pattern is not straight forward. 

Even in the presence of normal real glottal signals standard deviations in time-domain 

parameters as strong as a 20% over the mean estimate have been reported [25]. If airy or 

breathy voice is present an added perturbation factor may induce even more intra-speaker 

variability, rendering less robust estimates. The glottal source spectral features of interest 

for pathology detection are to be found in the lowest part of the spectrum of the glottal 

source (usually below 2000 Hz, see the singularity points labelled as rhombi and stars in 

Figure 2). This part of the spectrum is less exposed to airy or breathy noise corruption as 

this concentrates mainly in high frequencies. Therefore frequency-domain estimates of the 

glottal source spectral profile show standard deviations under 10% with respect to their 

means (for the same vowel and same speaker in sustained phonations of non-pathologic 

voicing up to 300 msec. long).  

In what follows a brief description of the methodology used for both the Glottal Source 

extraction and inversion will be given for the interested reader. The methodology used for 

the estimation of the Glottal Source is based on the elimination of the vocal tract influence 

by inverse filtering using an iterative implementation of well-known methods [26][27], and 
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the biomechanical estimations are based on the separation of the Glottal Source into the two 

referred components (AAW and MWC). The background details to produce the results used 

in the present study may be found in [14]. An example of the glottal signal estimation 

results from inverse filtering may be seen in Figure 1. These are obtained from quasi-

stationary utterances of the vowel /a/ by typical male and female speakers (those closest to 

the centroids of the respective normal male and female clusters). The presence of specific 

point-like negative spikes in the glottal source associated with the instant where vocal folds 

initiate the closed phase (closure spikes) can be clearly appreciated. 

The reconstruction of the glottal source is very much inspired in the adaptive version of the 

iterative inverse filtering developed by Alku et al. [26] where the LPC filters have been 

implemented by adaptive lattice filters as shown in Figure 3. A brief description of the 

extraction technique used is as follows: 

1. The radiation effects in input voice is first removed by a radiation cancelling filter 

H(z). The resulting voice sl(n) will in this way be equalized to inside-lip conditions, 

and will be referred to as the Radiation-Compensated Voice (RCV). This signal is 

filtered by a Glottal Pulse Inverse Model Hg(z), which for the first iteration will 

consist in a K1-order prediction-error adaptive lattice filter (usually of order 1, 2 or 3 

as will be discussed later). This filter will roughly remove the strong glottal formant 

spectral envelope by placing one, two or three zeroes on the real axis of the unity 

circle (see Figure 4 and the sequel for a wider explanation). Special care has to be 

put for it not affecting or cancelling the first true formant of voice. The residual of 

the filtering sv(n) is the so-called De-Glottalized Voice (DGV), where the spectral 
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tilt due to the glottal profile has been removed. 

2. This signal is the base for the estimation of the Vocal Tract Transfer Function 

(VTTF), which is carried out by another prediction-error adaptive master lattice 

filter Fv(z) of order K2 (in this case the filter order should be scaled accordingly with 

the sampling frequency being used; as a reference, for sampling frequencies of 

16,000 Hz suitable order filters may be within the range of 12-18). 

3. A subordinate paired lattice Hv(z) fed with the filter parameters of Fv(z) will now be 

used to remove the VTTF from the RCV, thus producing a first estimate of the 

glottal pulse sg(n) (or Glottal Source as is designated by G. Fant in his classical 

source-filter model [18]). 

4. The glottal pulse is modelled by another prediction-error adaptive master lattice 

filter Fg(z) which places a small number of zeroes on the real axis to cancel the 

rough spectral envelope of the glottal pulse. 

5. Another iteration is started using a subordinate lattice filter Hg(z) loaded by Fg(z), 

and the cycle is repeated. Some 2-3 iterations are usually enough to obtain a good 

estimate of the glottal source. 

The prediction-error filters used in cancelling the glottal tilt must be of low order to 

implement the removal of the rough glottal source spectral envelope (low resolution) as 

over-sizing will produce interference with the estimation of the VTTF low formants 

(crosstalk). This effect may be appreciated in the results given in Figure 4, where two 

estimates of the glottal source for a specific speaker are produced for two values of  K1=3 

and 4. The estimates for K1=3 show that the filter zeroes align on the real axis and help in 
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cancelling the glottal formant and the spectral tilt resulting from it without affecting the low 

formants in the VTTF. The results for K1=4, on the contrary, show that the resulting 

cancelling zeroes appear as complex pairs and interfere with the lowest formants capturing 

some of their power spectral density, which produces a certain crosstalk on the 

reconstructed glottal source (see Figure 4 bottom right). The VTTF, on its turn has to be 

estimated with enough resolution to accurately determine its formants, but higher orders are 

not desirable as oversized filter orders will start picking up harmonics. Other possible 

strategies to model the spectral envelope of the glottal pulse are bi-spectrum joint 

estimation and ARMA methods [28][29][30], which can be used in step 4 to obtain a 

description of the zeroes and poles of the glottal pulse spectral profile (peaks and troughs) 

because these are good descriptors of the glottal source biometry as will be addressed in the 

sequel, but special care has to be used in discriminating pole-zero behaviour in the glottal 

source vs that in the vocal tract transfer function, this study being an open line. The 

estimation of the glottal source produced by any of these methods is to be used in step 5 to 

accurately remove glottal influence from RCV and produce good estimates of the VTTF. 

Another important issue to be considered is the selection of the best time interval for the 

estimation of the VTTF, as in modal phonation the vocal folds close the vocal tract during 

part of the phonation cycle (close phase) and leave it open during the remnant part of the 

cycle (open phase). In the present study the restrictions posed by the open/close conditions 

of the vocal tract have been overcome by using lattices in the inverse estimation of the 

vocal tract, as under certain hypotheses these have the property of not only encoding the 

tube section profile in the estimated reflection coefficients but of reconstructing the forward 

and backward propagating waves as in a transmission line [19]. Once the forward and 
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backward components are known, the flow and pressure waves in a given point may be 

estimated by imposing a termination condition at that point (in our case the tube section 

where the vocal folds are assumed to be located) and a more precise reconstruction of the 

glottal source can be achieved. The adaptive implementation of the lattices grants a more 

accurate temporal estimation under the changing conditions of the system, including 

changes in the vibration conditions of the vocal fold or phonation gesture (time variance), 

detected in a phonation-cycle basis. The algorithmic variant used for adaptation in the 

present study is the one based on the Least Mean Square Error (LMS) [19]. Similar 

strategies to the one described have been applied showing accurate results [27]. 

Once the Glottal Source has been reconstructed using the above mentioned procedures its 

dynamics may be compared with estimations derived from vocal fold modelling [25] by 

means of a convenient fitting of its power spectral density, as it may be shown that the 

power spectral density of the Glottal Source is strongly conditioned by the biomechanical 

parameters of the vocal fold models [15]. This finding may be used in the characterization 

of the pathologic behaviour of a specific speaker’s voice or in the biometric 

characterization of the speaker. For such, the Glottal Source is decomposed in two parts, 

one mainly influenced by the low-order vibration of the vocal folds, integrated by the 

Average Acoustic Wave (AAW) and the second one based on the higher-order vibration 

modes of the vocal folds, integrated by the Mucosal Wave Correlate (MWC). The AAW is 

a term coined by Titze [24] (pg. 16, exp. 21-22) to refer to the low-frequency contents of 

the signal under analysis. In the present case as by [14] (exp. 1-2) the Average Acoustic 

Wave is defined as a sinusoid 
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of optimal amplitude y0k evaluated adaptively by minimizing the energy of the difference 

between the AAW and the glottal source ygk(n) over a generic k-th time window given as 
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where �k=�/Tk is the angular frequency associated to double the period of the cycle under 

study Tk, n is the time index and � is the sampling period. In this way the AAW would 

represent a second order system response (one mass + one spring) associated to the vocal 

fold body. Therefore the AAW is dominated by the dynamics of the vocal fold body, and 

MWC is mainly contributed by the dynamics of the vocal fold cover. This study is 

developed in detail in [13]-[15]. Incidentally it may be said that in tense voicing the decay 

of the glottal source during the closing phase will mimic the shape defined by (1) very 

closely as it is shown in Figure 12 (bottom-left), demonstrating that the definition of the 

AAW in (1)-(3) possesses a rich semantics by itself which can be exploited for the 

interpretation of the nature of the pathologic behaviour expressed in the glottal source, as 

will be discussed in the sequel. Additional details to produce the results shown in the 

present study may be found in [28][32].  
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4. Biometric signature based on the Glottal Source 

Power Spectral Signature 

Through the present approach a methodology to derive biometrical parameters of the 

Glottal Source in the frequency domain is proposed. The biometrical parameters may be 

estimated on the power spectral density of either the Glottal Source or the Mucosal Wave 

Correlate. The signature obtained from the Mucosal Wave Correlate is more specifically 

related to the biomechanics of the vocal fold cover, while that from the Glottal Source 

includes the biomechanics of both the body and the cover of the vocal fold. The estimates 

based on this last approach are more suitable for biometric applications, the estimates from 

the Mucosal Wave Correlate are more suitable for studies in vocal fold pathology. In both 

cases the parameter estimation methodology to be applied similar. The power spectral 

densities shown in Figure 2 correspond to the Glottal Source from prototype male and 

female voices. It may be seen that in both cases a common behaviour is observed in the 

envelopes of the power spectral densities: a fast raise from low frequencies to a maximum, 

followed by a decay towards higher frequencies at a rate around 12 dB/oct in male voice, 

(which may be a little less in female voice). In between, a series of valleys or local minima 

may be appreciated surrounded by peaks. These “V” grooves (notches or troughs) are 

strongly related to the biomechanics of the vocal folds. Notches are explained by the anti-

resonances in the tissues of the vocal fold structures behaving as systems of lumped masses 

and springs [15]. In general, the slenderer the notch, the smaller the value of mass-linking 

springs in k-mass vocal fold models (see [17] for an explanation of the biomechanical 

foundations of this effect). 
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In Figure 5 the envelope of the glottal source power spectral density of the male prototype 

has been extracted for clarity. The behaviour detected in the mentioned case may be 

summarized as a fast raise from low frequencies to a first maximum of amplitude TM1 found 

at a frequency fM1 which is followed by a descent to a minimum Tm1 in fm1 and to a new 

maximum TM2 at a frequency fM2. This first notch is a very important one, as if the Glottal 

Source has been used in the estimations it gives a picture of the coupling between the fold 

body and cover structures. In case that the signal under analysis was the MWC a 

description of the coupling between the two lips (subglottal and supraglottal) of the vocal 

fold would be obtained. This type of notch may appear several more times along the decay 

of the power spectral density. These troughs are present in all the speakers: in normal ones 

their shape shows a certain sharpness, in over-tense pathologic notch sharpness it 

diminishes, in certain pathologies as Reinke’s Edema it may be even augmented, therefore 

sharpness deviation from the normal pattern may be associated to pathology. Taking all 

these facts into consideration a glottal signature of voice may be established detecting each 

notch by estimating the amplitude and position of its singularity points and its slenderness 

factor. This signature may be used in voice pathology studies, in speaker’s identification 

and characterization tasks as well as in forensic studies. For the present paper the first two 

notches will be included in the biomechanical signature. The estimations of the singularities 

on the power spectral density of the MWC for the first notch are normalized to the first 

maximum found {TM1, fM1} as 

M1

m1
m1M1m1m1 f

f
;TT� =−= ϕ   (4) 
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M1

M2
M2M1M2M2 f

f
;TT� =−= ϕ   (5) 

The definitions for the first notch may be extended to any other one in the spectral profile 

of Figure 5 provided that each minimum at fmq follows a maximum at fMq<fmq as given by 
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where q is the notch index and Q is the number of notches included in the study, therefore 

implicitly τM1=0 and �M1=1. This normalization in amplitude and frequency is a guarantee 

to small intra-speaker variability. Correspondingly, the slenderness factor of the notch may 

be defined as 

( )
( ) Qq1;

ff2

TT2Tf
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Mq1Mq

Mq1MqmqMq
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+

+   (8) 

The slenderness is strongly related with the value of the springs linking the corresponding 

masses on the k-mass equivalent biomechanical model originating the peaks and notches, 

and is a measure of the general tension in voicing. 

Biomechanical Signature 

It has been shown in previous work [13] that reliable estimates of the relative values of fold 

body masses and tensions could be obtained from the power spectral density of the average 

acoustic waveform. The estimation technique used was the adaptive fitting of the AAW 
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power spectral density against the transfer function of the 1-mass model as explained 

before. The work hypothesis is based on the assumption that the AAW is determined by the 

fold body dynamic component, therefore the power spectral density of the AAW is directly 

related with the square modulus of the input admittance derived from the 1-mass model as 

( )[ ] 1
221

2
2 −

− +−=== bbb
x

x
bb RKM

)(F
)(V

Y)(T ωω
ω
ωω   (9) 

where � is the angular frequency in rad/sec given as �=2�f and Mb, Kb and Rb are 

respectively the parameters associated with the lumped mass, elasticity and losses of the 1-

mass model when only the body of the vocal fold is taken into account following the 

dimensional reduction of the Story-Titze model [25]. 

The robust estimation of the model parameters is based in the selection of two points on the 

power spectral density of the AAW, these being {Tb1, ω1} and {Tb2, ω2}. The lumped body 

mass may be estimated then as 

21

21
2
1

2
2

2

bb

bb
b TT

TT
M

−
−

=
ωω

ω
  (10) 

The selection of the most adequate points for {Tb1, ω1} and {Tb2, ω2} is highly related with 

the accuracy and robustness of the estimation procedure. A good candidate for {Tb1, ω1} is 

the position of the main (resonant) peak in the amplitude of the power spectral density of 

the dynamic correlate. A good candidate for {Tb2, ω2} is the position of the third harmonic 

from the peak position, as the time series shows odd symmetry. These two points have 

shown to be robust enough in all the cases studied, some data on intra-speaker variability 

having been supplied in Table 3. 
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Once the mass has been estimated, the elastic parameter (body stiffness) Kb may be 

obtained from the precise determination of the position of the maximum associated to the 

resonant peak, this being {Tr, ωr} 

2
rbb MK ω=   (11) 

The parameter of body losses can be estimated (but for a scale factor Gb) as 

r

b
b

T

G
R =   (12) 

where Tr stands for the value of the square modulus of the input admittance in eq. (9) at the 

frequency of resonance ωr associated to the first maximum in the Glottal Source power 

spectral density. 

Similar derivations may be defined for the biomechanical parameters of the vocal fold 

cover using in its case the spectral density of the MWC, as the influence of the body 

dynamics has been removed implicitly on separating the AAW from the Glottal Source, 

reducing the problem to a single mass model. In this way the application of the same 

methodology to the cover biomechanics may follow essentially the same steps in a similar 

way. Estimates of the biomechanical parameters for the body and cover structures are given 

in Figure 6 and Figure 7 from the reference male and female speakers. 

Other strategies for the estimation of biomechanical parameters by spectral matching are 

also possible, as functional approximations [33] or adaptive curve fitting [14], and are 

currently under study. 

Biomechanical parameter unbalance 



 

 

 

ACCEPTED MANUSCRIPT 

 

 21 

It has been considered for the purpose of spectral estimation and fitting that both vocal 

folds were symmetric. This assumption does not stand in most of the cases either if 

dysphonic or non-dysphonic voice is involved. Asymmetry will result in the unbalance of 

the biomechanical parameters estimated for neighbour phonation cycles. It seems 

reasonable to think that this unbalance will be larger in cases where vocal fold pathology is 

present than in normal cases. Unbalance in vocal fold vibration will leave an effect on 

biomechanical parameter estimations from a given subject when comparing results between 

neighbour cycles. It is generally accepted that the presence of unbalance is a correlate to 

vocal fold pathology (as unbalance is related in a certain way with jitter and shimmer). 

Unbalance between neighbour phonation cycles may be appreciated in Figure 6 and Figure 

7 where the cycle-synchronous estimates show variations which may be around 10% for 

that specific male subject and under 2% for the female one. As the estimations of mass, 

stiffness and losses are produced on a phonation cycle-frame basis, the (intra-speaker) 

unbalance of these parameters (�b: Body Mass Unbalance; �b: Body Losses Unbalance; �b: 

Body Stiffness Unbalance) may be defined as 

( ) ( )
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  (13) 

where 1≤k≤K is the index of the phonation cycle window and bkbkbk KandRM ˆ,ˆ,ˆ  are the k-

th cycle estimates of mass, losses and stiffness on a given voice sample (for a single 

specific subject, i. e., intra-speaker). 

Definition of the complete glottal signature for pathology detection 
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The estimation of the spectral profile singularity parameters may be carried out in different 

ways for a given frame. One possibility would be using specific frames of Nf samples each 

sliding a given time interval (every Ns samples) estimating the power spectral density by 

FFT on the sliding windows as already mentioned. Another possible parameterization 

strategy would be clipping voicing frames pitch-synchronously in segments aligned with 

the pitch cycle, from one closing point (closure spike) to the next one as shown for example 

in Figure 4 (top and bottom right). In this way a different estimation would be produced for 

each phonation-cycle frame. In the present study voice segment durations of 0.2 sec. long 

are used, which will include different numbers of phonation-cycle frames for male and 

female voice (typically 20 for a male voice with F0=100 Hz and 40 for a female voice with 

F0=200 Hz). The number of pitch cycles being used is designated generically as Nk, which 

will vary from speech segment to speech segment depending on pitch as said.  

In a practical case the biometrical signature is estimated from the FFT power spectral 

density of both dynamic correlates: the AAW and the MWC defined in (1)-(3) to obtain the 

envelope singularities in the following steps:  

• The corresponding dynamic correlate (AAW or MWC) is windowed in specific Nk-

sample frames and the power spectral density of each window is estimated by FFT in 

dB for prototype male and female voice. 

• The envelopes of the power spectral densities of these short-time power spectra are 

estimated. 

• The maxima (*) and minima (�) found on the respective envelopes are detected and 

their amplitudes and frequencies collected as two lists of ordered pairs: {TMq, fMa} and 
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{Tmq, fmq}, with q the singularity ordering index. 

• The first (and usually the largest of all maxima: TM1, fM1) is used as a normalization 

reference both in amplitude and in frequency as given by (4)-(7). 

• The reference points in the dynamic correlate power spectral density {Tb1, ω1} and {Tb2, 

ω2} are estimated. 

• The mass, stiffness and losses for the body and cover are estimated following 

expressions (10)-(12). 

• The biomechanical unbalances are estimated according to expressions (13). 

The complete biometric signature for pathology detection is composed with the different 

parameter estimates as follows: 

• Pitch, which is assigned to p1. 

• Classical perturbation estimates are assigned to the signature parameters as p2 (jitter, 

estimated as the ratio of the difference between neighbour periods with respect to its 

average value for the voice segment), p3 (amplitude shimmer estimated as the ratio of 

the difference between neighbour maximum amplitudes with respect to their average 

value for the voice segment), p4 (slenderness shimmer estimated as the ratio of the 

difference between the acuteness of neighbour closure spikes with respect to their 

average value for the voice segment), p5 (area shimmer estimated as the ratio of the 

difference between neighbour glottal source areas with respect to their average value for 

the voice segment), p6 (ratio of the difference between the closure spike amplitude of 

neighbour cycles with respect to their average value for the voice segment), p7 (ratio of 



 

 

 

ACCEPTED MANUSCRIPT 

 

 24 

the difference between the slenderness of neighbour closure spikes with respect to their 

average value for the voice segment), p8 (ratio between the energy of the MWC with 

respect to the AAW), p9 (ratio between the frequency position of the MWC second 

harmonic and the fundamental frequency), p10 (ratio between the amplitude of the 

second harmonic of the MWC relative to the amplitude of the first harmonic). 

• Glottal Source spectral parameters, including the maxima and minima of the two first 

V-troughs and their frequency positions, and the value and position its upper limit, 

which are assigned to variables p18, p19, p21, p22, p23, p27, p28, p30, p31 and p32, plus the 

notch slenderness parameters assigned to p33 and p34 as 
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• Biomechanical parameters from the Vocal Fold Body and Cover dynamic correlates 

(AAW and MWC), consisting in estimations of the body dynamic mass, losses and 

tensions, assigned to p35, p36 and p37, the cover equivalent parameters assigned to p41, 

p42 and p43, and their respective unbalances evaluated cycle by cycle, assigned to p38, 

p39 and p40 (body), and p44, p45 and p46 (cover) as 
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As each parameter was estimated on a phonation-cycle basis, for a prototype male voice 



 

 

 

ACCEPTED MANUSCRIPT 

 

 25 

(with pitch around 100 Hz) an average of N=20 values was obtained, which for a prototype 

female voice (with a typical pitch of 200 Hz) should be around N=40. In this way J=46 

means and standard deviations of each observation parameter pin over 1�k�K phonation 

cycles following (6) can be estimated  as 

�
=

=
K

1k
ijkij p

K
1

x   (16) 
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where 1�j�J and 1�i�I are respectively the parameter and speaker indices assuming 

reasonable stationary conditions along the frame duration (considering that a stable vowel 

is being produced). The biometric signature used in the study is summarized in Table 1. 

The calibration of the estimation algorithmics has been carried out on two speakers, one 

male (#536) and one female (#452) selected by their stable phonation characteristics, which 

are given in Table 2. Both speakers were inspected by video-endoscopy to disregard any 

organic anomaly, and GRBAS evaluated [36]. Their phonation stability was evaluated on 

phonation-cycle estimates of pitch, this being around ±0.101 Hz in an average of 202.74 Hz 

for the female speaker and ±0.097 Hz in 106.49 Hz for the male speaker over a 60-200 

msec frame battery of estimation experiments in increments of 20 msec (for frame sizes of 

60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 and 300 msec, which included 

between 12-40 and 6-20 phonation cycles, respectively). Average estimations of the jitter 

were under 0.5% with standard deviations of 0.36% and 0.31%. Shimmer was lower for the 

male (average: 0.97%, std. dev.: 0.85%) than for the female speaker (average: 2.62%, std. 

dev.: 1.94%). The Noise to Harmonics Ratio was smaller for the female voice (average: 
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5.03%, std. dev.: 0.36%) than for the male voice (average: 6.50%, std. dev.: 0.26%). The 

calibration results for the most relevant spectral parameters (x19-x22) and the body (x35-37) 

and cover (x41-43) biomechanical parameters accordingly to the experimental battery 

explained before are given in Table 3. It may be seen that the estimates of the 

biomechanical parameters behave much better than those of the glottal spectral profile in 

general, with the exception of x43, which exhibits the strongest variability among the 

biomechanical ones. In general the standard deviation of biomechanical parameters is under 

1%, which is the variability supposedly introduced by the estimation method, as the 

deviations strictly imputable to true intra-speaker variability as assessed from the pitch 

estimates is well under that figure (around 0.1%) for the same set of experiments. This 

allows to conclude that biomechanical estimates following (9)-(12) are much more robust 

than time-domain or spectral profile estimates, and may be doubly useful as they convey 

important semantics regarding biomechanical alterations of the vocal fold system. 

5. Materials and Methods 

The methodology proposed for pathology detection from voice recordings was intended to 

increase specificity and reliability in speaker recruiting (collecting general data bases 

separating patients by groups of gender and age) as well as in signal processing (using 

separate glottal correlates as the glottal source, the AAW and the MWC instead of the 

original voice signal). The strategy for separating glottal correlates into the AAW and 

MWC has been fully justified by the need to obtain body and cover biomechanical 

estimates. The need for gender-specific recordings is justified as well in the differences 

observed between the glottal correlates detected for both genders. A similar assertion 
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should stand as far as age is concerned, although the present study is concentrated in adult 

voice only. It is well established through medical literature that gender-sensitive issues 

have to be taken into account when creating databases for medical applicability [34], as the 

biological differences between male and female subjects result in differentiations of 

physiological structures and functions of body organs. The case of voice is not an 

exception, therefore, methodologically speaking, subjects under test should be evaluated 

against control groups carefully selected by gender. This is also true when age is 

considered: children voice is completely different from adult voice and databases should be 

captured and modelled having this fact into account [22]. 

Based on these considerations a corpus of 200 equally distributed normal and pathologic 

subjects of both genders was randomly selected from a wider database recorded during the 

lifetime of project MAPACI [35] oriented to the study of speech pathology. The corpus 

contained 50 normal (FN) and 50 pathologic (FP) female cases and 50 normal (MN) and 50 

pathologic (MP) male cases. Speaker ages ranged from 19 to 56, with an average of 30.02 

years and a standard deviation of 9.94 years. The normal phonation condition of speakers 

was determined by electroglottography, video-endoscopy and GRBAS evaluation [36]. 

Pathologic sets comprised approximately the same amounts of mild (functional) and mid-

severe cases, ranging from defective closure to polyps, nodules and Reinke´s Edemae. The 

recordings consisted in three utterances of the vowel /a/ of about 3 sec per record. A 0.2 sec 

frame from the record centre was used in the estimations. 

Two related studies were conducted using this database. In the first study a control set of 

100 cases equally balanced by gender and pathology condition (25 FN + 25 FP + 25 MN + 

25 MP) referred as Sc was selected. It was further decomposed into a male (25 MN + 25 
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MP) and a female (25 FN + 25 FP) control set, respectively designated as Scm and Scf, to 

take into account gender influence on pathology condition assessment. These sets were 

used to determine the best parameters for pathology detection using Linear Discriminant 

Analysis based on Fisher’s Discriminant Ratio  

( )
Jj1;

��

xx
fdr 2

fj
2
mj

2
fjmj

j ≤≤
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−
=   (18) 

where (xmj, �mj) and (xfj, �fj) are the means and standard deviations of Scm and Scf 

distributions for parameter j. The results of the comparison studies are given in Figure 8 

and Figure 9 and will be discussed in the sequel. 

A second study was carried out using the remnant 100 cases to test the discrimination 

capability of the detection algorithms. These cases, organized as well as (25 MN + 25 MP) 

and (25 FM + 25 FP) will be referred to as Stm and Stf. The detection algorithms are based 

on Principal Component Analysis [37][38] for dimensional reduction and Gaussian Mixture 

Models (GMM’s) [28] for detection in itself. The methodology used in this case is based on 

the following steps: 

1. Estimates of observation parameter j for the respective speakers 1�i�I in the sets Scm 

and Scf are stacked as a column vector from (16) 

[ ] cm
T

Ijijjjcmj Si;x,xx,x ∈∀= ��21x   (19) 

[ ] cf
T

Ijijjjcfj Si;x,xx,x ∈∀= ��21x   (20) 

2. The estimations for the whole set of parameters 1�j�J are piled as two observations 

matrices 
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[ ]cmJcmjcm1cm , , xxxX ��=   (21) 

[ ]cfJcfjcf1cf , , xxxX ��=   (22) 

3. Principal Component Analysis is applied to this dataset as described in [38]. The set 

of eigenvalues and eigenvectors {λi, ei} of the covariance matrices Ccm and Ccf of Xcm 

and Xcf are estimated. The sets of observation parameters are re-evaluated in terms of 

principal components as 

Jj1;mjcmcmj ≤≤= eXy   (23) 

Jj1;fjcfcfj ≤≤= eXy   (24) 

where the column vectors ymfj and ycfj contain the new parameters (principal 

components) for each speaker in the list 1�i�I their variance diminishing with 

component order, according to their respective eigenvalues {λi}, provided that λi	 

λi+1. This means that after a certain point, let’s suppose it be j=r«J, the residual 

variance contained in the remaining components can be considered negligible, which 

allows truncating the component set to the first r column vectors, thus reducing the 

size of the data set substantially. In this practical case r=12 grants that at least 99% of 

the variability of Sc is represented within the reduced component matrix Yc formed 

piling up the component vectors as in (23). 

4. The reduced component matrices Ycm and Ycf are modeled by a GMM system 

following [19]. Each model will be referred as 

{ } Gi,,w iiii ≤≤=Γ 1C�   (25) 
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where wi, �i and Ci are respectively the weight with which that specific model 

contributes to the global probability model, the centroid of the model and the 

covariance matrix of the set used for modelling. G is the number of Gaussians used in 

the modelling. The index i is used to label each specific Gaussian distribution used in 

a particular modelling. In our case, a specific distribution will model the set of male 

non-pathologic sample group, another distribution will model the female non-

pathologic group, and for pathology classification other similar distributions could 

model pathologic sample groups (according to each specific pathology), either as 

single distributions or as a combination of them. In the present case, where the 

objective is detection the use of two Gaussian distributions for male and female non-

pathologic sample grouping is enough to grant good detection scores. 

5. Steps 1 and 2 are also repeated with the speaker set St. Two reduced component 

matrices Ytm and Ytf are produced. 

6. The log-likelihood of each speaker’s template is then evaluated as 

[ ] [ ] Ii)/(plog)/(plog)(
 mntminmtmitmi ≤≤Γ−Γ= 1yyy  (26) 

[ ] [ ] Ii)/(plog)/(plog)(
 fntfinftfitfi ≤≤Γ−Γ= 1yyy  (27) 

where n and n  are referring to normal (non-pathologic) and non-normal (pathologic) 

labels, therefore nm, nf, mn  and fn  refer respectively to the normal male, normal 

female, pathologic male and pathologic female distributions. In the present case 

specific models are produced for normal voice for each gender, these being �nm and 

�nf, therefore the generation probability of pathologic voice is defined by the 

complementary probability of normal voice. The generation probability for a given 
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template from the test sets Stf and Stm will then be evaluated as 
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7. The log-likelihood ratio is compared with a threshold �. Depending if 
(ytmi/�nm)>� 

or 
(ytfi/�nf)<� the voice of the subject whose template under test is considered 

normal or pathological. The same decision is taken with the female test set. The 

decision threshold is then set to adjust the trade-off between labelling pathological 

voices as normal (False Rejection Rate or FRR) or accepting normal voices as 

pathological (False Acceptance Rate or FAR). The threshold used is the same for 

both genders, and results are given in Figure 11 in terms of the number of False 

Detections as a function of the threshold �. In the top template the False Negatives 

(FRR: �) and False Positives (FAR: �) are plotted vs �. It may be seen that as the rate 

of False Negatives descends the rate of False Positives ascends up to a point where 

both rates come even. This is the Equal Error Rate (ERR) point, which for our case is 

around 3% for a Normalized Threshold value of 71. This means that one out of 33 

pathologic cases would be labelled normal at the same time that the same ratio of 

normal samples is labelled as pathologic. Usually there are other two ways for giving 

detection results: in terms of the Receiver’s Operating Characteristic curve (ROC), 

which is produced plotting the True Positives vs the False Positives (see the curve 

labelled with rhombi in the middle template of Figure 11: �) or as the Detection-Error 

Trade-off curve plotting the False Negatives vs the False Positives (see the cuve 
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labelled with circles in the same template: �). The smaller the area enclosed by the 

DET curve against the x-y axes, the better the detection process. Finally, in the 

bottom template of Figure 11 the ROC and DET curves are given for the detection 

experiment if male and female samples were treated as a single set, i. e. when gender 

is not taken into account. It may be seen that the EER is around 11%, which means 

that almost 1/9 pathologic cases will be labelled as normals if 1/9 normal cases are 

labelled as pathologic. It can be concluded that the gender-sensitive methodology 

renders much better results in this case. 

6. Results and discussion 

From the results presented in Figure 8 and Figure 9 it may be seen that the most resolving 

parameters as far as pathology is concerned are in order of relevance x22, x21, x45 and x19 for 

the female set, whereas these come to be x22, x19, x42, and x45 for the male set as given in 

Table 4. A first inspection of the results tabulated show that albeit some parameters are 

present in both male and female groups discriminating pathologic from normal cases, their 

relevance are different, and some of the most important parameters are not shared by both 

sets. In general the discrimination capability is larger for female than for male cases. This 

may be due to the larger statistical dispersion shown by female glottal parameters already 

detected in earlier gender studies [32]. The most resolving parameter for both genders, x22 

is the height of the third maximum relative to the first one, and therefore is related to mass 

alterations on the vocal fold cover, whereas x19 is a similar parameter related with mass 

alterations in the fold body, and x45 is related with the unbalance in energy losses between 

consecutive phonation cycles. Parameter x22 is generally associated to harmonics ranging 



 

 

 

ACCEPTED MANUSCRIPT 

 

 33 

from 5-10, which correspond to vibration modes appearing on the glottal source revealing 

an anomalous behaviour of the fold cover, and are well in agreement with perturbations in 

the A1-A3 ratio. A similar explanation could be found for x19, responsible in this case for 

harmonics in the glottal source ranging from 3-6 although this parameter seems to be less 

significant. The meaning associated to x42 and x45 has to see with the presence and 

unbalance of energy losses on the fold cover. This will indicate that vocal folds with 

anomalous losses of energy and unbalance are being affected by some pathological process. 

Another complementary view pointing to this conclusion can be extracted from 3D plots of 

the data sets displayed in terms of the three most relevant parameters after LDA analysis, as 

in Figure 10 for sets Stm (top) and Stf (bottom) showing the 12-to-3 down-dimensional 

projection of the statistical sample distributions of the average template matrices Xcm and 

Xcf. A careful analysis of the distributions for male subjects shows that normal case 

groupings are associated with low-valued 2nd and 3rd maxima (x19 and x22) and low cover 

losses (x42), while for female subjects the 3rd maximum and the 2nd minimum (x22 and x21) 

as well as cover losses unbalance (x45) are the most relevant parameters to separate 

pathology when their values are above certain limits. In general it may be said that normal 

cases tend to cluster near small values of the discriminating parameters, the pathologic ones 

spreading over larger areas far from the clusters of normals. Interesting conclusions can be 

derived also from the analysis of Figure 11 (top) where false detections are plotted vs the 

discrimination threshold �. The existence of a given value (near 71) for which the number 

of false acceptances (o) and false rejections (� ) come to a minimum indicate the possibility 

of a very acute detection rates around 97% and above (at a cost of some increment in the 

FAR). This is better clarified in Figure 11 (middle) where the equivalent ROC and DET 
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curves for separate-gender pathology detection are given. As a contrast ROC and DET 

curves for joint-gender pathology detection are also given using the same cohorts of 

speakers for both training and testing. It must be emphasized in Figure 11 (top) that the 

distribution of normal speakers is more tightly packed than the distribution of pathologic 

ones, as indicated by the gracious sloping down of the False Rejection Rate (Pathologics 

detected as Normals) which degrades smoothly to the right. This is due to the balance 

between mild and severe pathological cases included the study, which reveals the 

sensitivity of the methodology to detect even mild pathology. This is especially important 

for the early detection of pathology before it could develop into a serious problem, and 

reinforces the pre-screening potential of the methodology proposed. The contrast between 

separate and joint gender detection curves in Figure 11 (middle) and (bottom) shows that 

the detection capability of gender-splitting methods can be larger than methodologies based 

on joint distributions. This result is coherent with the strong differences in larynx 

physiology and biomechanics found between both genders. This research was conducted on 

adult persons, leaving the study of children and the elderly for a future study. 

7. A study case 

To further illustrate the potential use of the methodology presented in the detection of 

normality and pathology, a specific study case has been taken from the bench test. It is 

based on data from a 34-year old female, non-smoker, theatre actress, reporting chronic 

dysphonia, vocal fatigue, changes in loudness and soaring during speaking or singing as a 

result of a polyp on the right vocal fold as shown in Figure 12 (top). The acoustic analysis 

of the Glottal Source showed normal ratios for jitter (under 2%), shimmer (under 2%) and 
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HNR (under 6%). The Glottal Source, AAW and MWC extracted from voice recordings of 

the patient before and after  surgical removal of the polyp (3 months later) are given in the 

bottom (left and right) templates of the same figure respectively. It may be seen from 

comparing both figures that the time-domain glottal coefficients CQ, ClQ and SQ (speed 

coefficient, see [8]) seem to be closer to normal condition after treatment than before as 

given in Table 5, and that the high-frequency ringing present in the Glottal Source have 

almost disappeared. Especially important is the study of the MWC, as before surgery the 

behaviour of the Glottal Source during the Closing Phase showed a tendency to neatly 

follow the AAW (the vocal fold was so tense that it behaved as a single body-cover 

structure), therefore the MWC almost disappeared between 3.2 and 4.9 msec (see Figure 12 

bottom-left). On its turn, after surgery the MWC during the Closing Phase was clearly 

restored (see Figure 12 bottom right). 

In a further step ahead to check the capability of the classification method proposed, the 

respective Glottal Signatures before (labelled as #0E8) and after treatment (labelled as 

#2DC) were introduced in the database as if produced by two different speakers for their 

comparison against normal and pathological cases as shown in Figure 13. For the sake of 

clarity the control set was reduced to 24 FN + 24 FP. The consequence of the comparison is 

rather interesting (see Figure 13–bottom). The glottal signature labelled as #0E8 extracted 

from pre-surgery data (encircled in dash line) was labelled by the clustering algorithm as 

member of the subset of mild pathological cases (�). After surgery the situation changed 

essentially, as the glottal signature #2DC associated to post-surgery data was clearly 

allocated inside the group of normal phonation subjects, labelled as (�). The arrow shows 

the change in the patient’s condition from the pathologic to the normal groups. This was 
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confirmed by the by the strong changes observed on the respective spectral signatures of 

the glottal source as derived from pre- and post-surgery voice records, given in Figure 14.a 

and b. It may be appreciated there that the spectral contents of the glottal source changed 

drastically from before to after surgery conditions. In Figure 14.a the harmonic structure of 

the glottal source between 1500 and 3200 Hz is almost inexistent, whereas this band has 

been completely restored in Figure 14.b. This experiment shows that the proposed 

methodology may detect and describe pathology, this capability to be extended to objective 

pathology level grading in further studies. 

8. Conclusions 

First of all a consideration on the technique used to extract the glottal source by model 

inversion is due at this point. A discussion in full on the existence and uniqueness of the 

solutions found for glottal source reconstruction would take the issue far beyond the scope 

of this work, which is intended to offer some semantics to parameters used in pathology 

detection by connecting them with vocal fold dynamics that classical perturbation 

parameters as jitter, shimmer and other observables do also convey, although less 

explicitly. Briefly it may be felt that this issue is linked to an inverse problem with two 

parts: on one hand the precise estimation of the vocal tract and its decoupling from the 

glottal source, rendering an estimation of the vocal tract transfer function and an estimate 

for the glottal source free from formant cross-talk; on the other hand the estimation of vocal 

fold biomechanical parameters from the recovered glottal source. Neither the first inversion 

problem solution, nor the second can be granted to be accurate and unique by formal 

modelling. As the emphasis of the present paper is placed on pathology detection the issue 
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of the accuracy and uniqueness of the solutions contributed is left open. This does not mean 

that the problem is ignored, but on the contrary that the consistency of the solutions is 

assessed by evaluating the accuracy and stability of the estimates obtained under statistical 

coherence criteria. The first criterion to check the validity of the results is that the estimates 

of the glottal source shows the benchmarks of vocal fold dynamics on its spectral 

behaviour, in that specific troughs or zeroes produced by anti-resonances of multiple mass-

spring dynamical equivalents to the body and cover subsystems are present on it. Apart 

from glottal biomechanical studies [16][17] this assert is very much availed by direct 

measurements of vocal fold dynamics shown in [39]. The second criterion means that if the 

calibration procedures of the method render stable and reliable results showing a degree of 

intra-speaker variability well below inter-speaker variability for stable and reliable voice 

samples, these estimates may be found reasonably acceptable and put to indirect validation 

by other means. That is precisely the reason to introduce intra- and inter-speaker 

consistency tests as Fisher’s Discriminant Ratio. Another indirect test regarding the 

uniqueness of the solution is based in checking if there is proportionality and linearity in 

the estimates produced from the same speakers under the same and different conditions. 

This fact is related as well with the biometric identity of the speaker, and can be formulated 

in statistical terms of estimate means and confidence intervals. 

To summarize, a good model inversion method to estimate the glottal source must jointly 

determine the VTTF, and the separation lines must meet these criteria: 

• The glottal source reproduced from normal voice should show the main patterns of the 

LF model: a sharp closing spike, a recovery phase, a closed phase, and an open phase. 
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• The estimation of the zeroes of the vocal tract must not crosstalk with the zeroes of the 

glottal source (as these are biomechanical and are to be expected in all cases, except in 

pathologically over-tense voicing). 

• Statistical stability and low dispersion (intra-speaker variability) should be observed 

both in the spectral profiles of the glottal source and the vocal tract as well as in the 

time-domain parameters estimated on the glottal source when stable segments of 

sustained vowels under modal phonation produced by healthy subjects are used (i. e. 

when using test frames ranging from 50-250 msec. of stable voice small dispersion with 

standard deviation under 1% could be observed). 

Secondly a reflection on the use of spectral and biomechanical parameters proposed by the 

present study is needed. It may seem that what is proposed here is that biometrical should 

override classical perturbation parameters as jitter, shimmer or HNR, but indeed this is not 

the intention of the work presented. What is proposed is to combine both kinds of 

parameters to improve detection scores, and what is even more important, to provide 

pathology classification. Essentially classical perturbation parameters are observables 

which may serve as indices to abnormal vocal fold behaviour, but not always. Jitter in its 

first definition may be seen as a change in the timing conditions of vibration between 

neighbour cycles, affecting mainly each of two of them (most commonly), and in case of 

strong pathology distorting completely the pseudo-periodicity of phonation. Jitter is mainly 

associated with pathologies compromising both vocal folds asymmetrically, for example in 

case of cysts, polyps, or unilateral vocal fold paralysis. But many other pathologies, as 

Reinke’s Edema or nodules may not manifest by strong jitter as far as the balance between 

both vocal folds can be forced by the speaker or when a strong control of phonation is 
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exerted by the patient [40][41] as in the study case presented. Regarding shimmer the same 

situation holds, one can expect strong deviations from normality when asymmetry is 

present, but not if the pathology affects both folds and the speaker knows how to control 

voice production. HNR is associated with defective closure, the patient does not succeed in 

producing a complete closure and some air can escape during the moments where a 

complete stop should be expected. This can be manifested as an increment in the turbulence 

during the pseudo-closing phase due to gas escape, or as a modulation of the glottal source 

at a frequency in the 4-10 harmonic expressing the successive approximations to 

unsuccessful closure, and by a reduction in the amplitude and slenderness of the closing 

spike. But turbulence and low-order modulations may also be present in breathy voice near 

to whispering, and spike amplitude and slenderness may be affected by non-modal 

phonation. Therefore classical perturbation parameters can not be always associated to 

pathology. This means that certain pathologies may show high jitter, shimmer and HNR 

and others not, whereas non pathologic voice can exhibit HNR and low-order modulations. 

Needless to say this means that there is not a bi-univocal relation among these indices and 

the presence of pathology. Or to put it otherwise there will be pathologies capable of 

disguising under the scope of these indices. Glottal spectral profile and biomechanical 

parameters convey a completely different semantics, which can complement classical 

acoustic indices. Evidence tells that if the Glottal Source is carefully extracted the peaks 

and troughs in its spectral profile can be associated to the dynamic behaviour of the vocal 

folds acting as masses linked by springs (the k-mass models). Model-based curve fitting 

may be used in inverting the system and offering a method for the estimation of the 

biomechanical parameters associated (masses and springs). Although the problem of 
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uniqueness is still present, it is clear that the alterations and unbalance of masses and 

tension can be related to distortions in the depth and position of troughs, and vice-versa, as 

that can be taken for granted. Therefore non-asymmetric pathologies as nodules, edemae, 

etc will leave their influence in the glottal signature derived from biomechanical estimates. 

A reduction in the springs linking cover masses will result in deepening the troughs, and 

vice-versa, an increment in fold tension will reduce trough depth. Incidentally many non-

asymmetric pathologies produce a reduction in the tension (for instance edemae) and others 

produce an increment, as nodules, polyps, cysts, etc. Other pathologies as sulci will result 

in a lack of linking among masses, producing even deeper troughs. Another interesting 

biomechanical parameter is the factor of losses which is associated with an inefficient use 

of energy. This is the case with edemae or sulci. The presence of losses can be associated 

with a widening of peaks and troughs, therefore these pathologies can not escape to the 

glottal spectral signature going unnoticed. The combination of spectral and biomechanical 

parameters may offer a deeper insight into pathology than perturbation parameters alone by 

adding a semantics which classical perturbation parameters do not offer. The the presence 

of some unbalance parameters as x39, x44 or x45 among the most relevant ones after LDA is 

not coincidental (see Figure 8 and Figure 9), but expressing a kind of actual meaning worth 

of being further interpreted. Incidentally it may be seen that jitter is also considered a 

relevant parameter in the detection experiments presented, contrary to shimmer, which does 

not appear to be that conclusive. 

Coming back now to the questions posed in section 1 the study presented can offer the 

following answers to them: 

• The short-time period-synchronous power spectral density of the Glottal Source can be 
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parameterized to give a general description of specific harmonic-harmonic relations as 

H1-H2, A1-A3, H1-A1 and H1-A3 in a more consistent and formal way (Power Spectral 

Signature). 

• The parameterization of the envelope of the glottal source or mucosal wave correlate 

power spectral densities retains the basic ratios between harmonics found in the glottal 

signals when the vocal tract influence has been removed. Moreover one can associate 

peaks in the power spectral density with specific vibration modes of the vocal fold 

cover and body, therefore generalizing the concept of harmonic-formant relations. The 

ratios expressed in the glottal signature are of the type Hm-H1, where Hm is any 

harmonic corresponding to a peak or a trough, and H1 is the harmonic associated to the 

first peak, both in dB. 

• The general relations between the maximum H1 to the valleys Gm, reveal the coupling 

between different cover masses, and are a good indicator to pathology when differences 

of the kind H1-Gm are small due to excessive cover stiffness. For such reason first and 

second notch slenderness parameters x33 and x34 have been added, although their 

relevance is lower than the relative notch values in themselves. It must be observed that 

x19, x21, x22, x42 and x45 are among the parameters most sensitive to pathology.  

• Genders show different parameter dispersions, these being larger in female voice, 

which bay be a beneficial factor for specific classification studies. Having confirmed 

that the sets of most sensitive parameters to pathology are different for the sets of male 

and female voice it may be concluded that parameter distributions are sensitive to 

Gender Bias, and that this fact has to be taken into account when dealing with 
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pathology detection. Besides, it has been confirmed that provided that Gender Bias has 

been taken into account, pathology detection can be thesholded using a common 

criterion, which is equally sensitive for both genders. 

• PCA is useful in helping to implement pathology detection based on Gaussian 

generative models and in visualizing general results when used to reduce the 

dimensionality of the data sets. 

As a general conclusion it may be said that a structured treatment of voice is a real need for 

pathology detection, as specific and clearly differentiated information is present in the 

glottal components of voice, independently from features observed in vocal tract features. 

Therefore splitting voice into vocal and glottal components is a reasonable technique to be 

used when articulation and pathology are two different objectives, as is the case in 

pathology detection. It may be also concluded that the glottal signature is sensitive to 

certain biometric features of the speaker as gender, other issues as age pending on a further 

study. Voice pathology has to take this conclusion into account, implementing detection 

and classification methodologies accordingly to the patient’s gender. This is especially 

important as far as the False Acceptance Rates in pathology detection applications are 

critical to determine the suitability of voice screening in e-health environments. The 

methodology presented may be generalized to the study of other speaker features as age, 

voice profile, emotional features and others alike. It also could be of high interest in other 

areas, as for example in the production and care of the singing voice. Another important 

study pending is related to the inclusion of the time-domain parameters corresponding to 

OQ, CQ, ClQ and NAQ within the present methodology. 
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Figure Captions 

Figure 1. Examples of reconstructed glottal signals from vowel /a/ for typical male and 

female normal speakers. In each four templates from top to bottom: input voice, glottal 

residual, source and flow (four top templates: male prototype; four bottom templates: 

female prototype). Horizontal axes are given in sec. for a sampling frequency of 11,050 Hz. 

Figure 2. Power spectral density of the glottal source from vowel /a/ for the male and 

female speakers in Figure 1The spectral singularities are labelled as: *-maxima; �-minima. 

Relative amplitudes are given in dB. Horizontal axes are given in Hz for a 512-samples 

window and sampling frequency of 11,050 Hz. 

Figure 3 a). Iterative estimation of the vocal tract transfer function Fv(z) and the glottal 

pulse residual sg(n). Blocks Fg(z), Hg(z), Fv(z) and Hv(z) are implemented by successive 

chains of adaptive paired-lattice filters. b) Paired lattice. A chain of K of these structures 

will result in a K-th master prediction-error filter (upper part of the structure), and in a K-th 

order subordinate FIR filter (lower part of the structure), f, g, p and q being the forward and 

backward propagation signals in the filter (see [19] for a general explanation). The 

reflection coefficient ck is evaluated adaptively in the master lattice and used by itself and 

by the subordinate one to implement cross-counter blocks as Fg(z)�Hg(z) or Fv(z)�Hv(z). 

Figure 4. Top (left): polar plots for the Glottal Source (*) and Vocal Tract (x) Inverse 

Models Hg(z) and Hv(z) derived for K1=3 and K2=24. Top (right): associated Glottal 

Source, AAW and MWC. The 3 zeroes of Hg(z) are aligned on the real axis (as well as a 

zero from Hv(z)). Bottom (left and right): Similar results for K1=4 and K2=24. The 4 zeroes 

of Hg(z) are arranged as complex pairs between zeroes 1-2 and 3-4 of Hv(z). It may be seen 
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that in this last case a certain crosstalk from the first four formants has been introduced into 

the glottal source estimate. 

Figure 5. Power spectral density envelope of the glottal source for speaker #185 showing 

the first notch profile {TM1, fM1}, {Tm1, fm1} and {TM2, fM2}, and the meaning of 10 of the 

singularity parameters used in the study {p17, p18, p19, p21, p22, p27, p28, p30, p31 and p32}. 

Relative amplitude is given in dB. Horizontal axes are given in Hz. 

Figure 6. Phonation Cycle-Synchronous Estimates of the Biomechanical Parameters of the 

Vocal Fold Body for subject #185 (male prototype). The estimates for each phonation cycle 

are given on the left hand column. On the right their respective statistical distributions for 

the frame are plotted. It may be seen that the dynamic mass involved in the phonation 

oscillates between 6.4 and 7.9 mg, and the average tension is below 2,800 dyn.cm-2 A slight 

unbalance between vocal folds marked by oscillations between neighbour phonation cycles 

may also be appreciated. 

Figure 7. Phonation Cycle-Synchronous Estimates of the Biomechanical Parameters of the 

Vocal Fold Body for subject #158 (female prototype) on the same basis as the ones given in 

Figure 6. The dynamic mass involved in the phonation oscillates in this case between 5.1 

and 5.6 mg while the average tension is around 9,400 dyn.cm-1. Fold unbalance can also be 

appreciated. 

Figure 8. Top: Statistical distribution of normal against pathologic female samples. Normal 

cases present lower-valued and less disperse z-scored parameter values. The distributions in 

pathologic cases tend to be more skewed than in normal cases. It may be seen that the 

statistical overlap is low in parameters x19, x21, x22 and x45. Bottom: The values of Fisher’s 
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Discriminant Ratio for the same parameters confirm the observations in the top template. 

Figure 9. Top: Statistical distribution of normal against pathologic male samples. Normal 

cases present lower-valued and less disperse z-scored parameter values. The distributions in 

pathologic cases tend to be more skewed than in normal cases. It may be seen that the 

statistical overlap is low in parameters x19, x22, x41, x42 and x45. Bottom: The values of 

Fisher’s Discriminant Ratio for the same parameters confirm the observations in the top 

template. 

Figure 10. 3D plot of the statistical dispersion of normal (o) vs pathologic (� ) samples in 

terms of the 3 most relevant parameters after LDA (different for each gender). Top: Male 

set Stm plotted vs x19, x22 and x42. Bottom: Female set Stf plotted vs x21, x22 and x45. Normal 

subjects are related to low values of the parameters detected by LDA (left hand side of both 

plots), pathologic ones spreading over larger values of the discriminating parameters. 

Figure 11. Top: Pathology Detection Performance of the method proposed showing the 

percentage of False Detections (False Rejection Ratio: o - Pathologics detected as Normals 

and False Acceptance Ratio: � - Normals detected as Patologics). The threshold has been 

nonlinearly expanded to better show the crossing point (Equal Error Rate) and to illustrate 

the smooth degradation affecting to False Rejection: cases showing strong pathology have 

been grouped to the left hand side whilst mild pathological (usually detected as functional 

or pre-physiological) are clearly spread over between threshold values ranging from 10 to 

70. Middle: Receiver Operating Characteristic (ROC) and Detection-Error Trade-Off  

(DET) curves for separate gender distribution detection showing an Equal Error Rate 

around a 3%. Bottom: ROC and DET curves for the joint gender distribution detection 
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showing an EER of around 11%. The same sets of samples were used in both cluster 

formation and detection experiments. 

Figure 12. Study case. Top: The left and right templates show images of pre- and post-

surgery vocal folds in removing a gelatine-type polyp (pointed by arrows). Bottom: The left 

and right templates show the glottal source and mucosal wave analysis corresponding to the 

same pre- and post- surgery case. The main differences between both profiles are that the 

pre-surgery is more noisy and close to the prediction of a one-mass model (the glottal 

source sticks to the AAW during the closing phase, therefore the MWC is very small during 

this phase indicating that the body and cover masses stick tightly together by more tense 

cover springs). On the contrary the post-surgery shows a much smoother behaviour and the 

MWC during the closing phase is restored. The comparison of the MWC during the 

recovery and close phase shows an agreement in the average pattern, altered by the noisy 

behaviour of the pre-surgery case. 

Figure 13. Top: Clustering results of the case study (pre: #0E8 and post: #2DC) against a 

group control of 24 FN + 24 FP in terms of three perturbation parameters (x2: jitter, x21: 

second trough minimum, x42: cover losses). Normal phonation is clustered in the left lower 

hand side corner (minimum jitter, depth and losses). Bottom: Close-up view showing the 

re-settling effect of surgery (labelled by dot circles and arrow) restoring the pathological 

case to the cluster of normal cases. 

Figure 14. Glottal Source Power Spectral Signature for a pathological case. Top: pre-

surgery. The harmonic structure between 1500 and 3000 Hz is completely altered. Bottom: 

post-surgery. The harmonic structure between 1500 and 3000 Hz is clearly restored. 
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Horizontal axes given in Hz. 
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Tables 

Table 1. Phonation-cycle average parameters used as biometric signature for the study. 

Param. Description 
x1 Pitch 
x2 Jitter 
x3-5 3 different estimations of shimmer 
x6-7 parameters related with glottal closure 
x8-10 3 parameters related with HNR 
x11-14 MWC power spectral density in 4 bins  
x15-23 Amplitude of the MWC PSD singularities as described in (14) 
x24-32 Position of the MWC PSD singularities as described in (14) 
x33-34 Slenderness of the first and second “V” notches as described in (14) 
x35-37 Estimations of the vocal fold body biomechanical parameters as described in (15) 
x38-40 Estimations of the vocal fold cover biomechanical parameters as described in (15) 
x41-43 Vocal fold body biomechanical parameter unbalance as described in (15) 
x44-46 Vocal fold cover biomechanical parameter unbalance as described in (15) 
 
 
 
 
 

Table 2. Main features of reference speakers. Average values for pitch, jitter, shimmer and 
HNR are derived from the analysis of a 200 msec. modal phonation frame of a sustained 
/a/. Standard deviations are given between parenthesis. 

Speaker Age Gender Pitch (Hz) Jitter (%) Shim. (%) HNR (%) GRBAS 
#452 47 Female 202.74 

(0.101) 
0.42 (0.36) 2.62 (1.94) 5.03 (0.36) 00000 

#536 35 Male 106.49 
(0.097) 

0.45 (0.31) 0.97 (0.85) 6.50 (0.26) 00000 
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Table 3. Average estimations and standard deviations for spectral (x19, x21 and x22) and 
biomechanical parameters (body: x35-37; cover: x41-43). Percent of std. dev./average ratios are 
given between parenthesis. The estimates are drawn from processing a set of variable-size 
frames (60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 and 300 msec. long) 
centered around 1.15 sec. after the voice onset from female (#452) and male (#536) non-
pathologic subjects. 

Speaker #452 #536 
Parameter Average Std. Dev. (%) Average Std. Dev. (%) 

x19 (dB) -30.23 1.53 5.05 -31.43 1.74 5.52 
x21 (dB) -40.98 1.19 2.90 -41.88 1.82 4.35 
x22 (dB) -32.54 0.79 2.42 -34.99 1.21 3.45 
x35 (g) 0.0120 0.0001 0.73 0.0231 0.0002 0.82 

x36 (g.sec-1) 4.64 0.02 0.40 4.63 0.03 0.70 
x37 (g.sec-2) 19,544 154 0.79 10,331 88 0.85 

x41 (g) 0.0099 0.0001 0.85 0.0153 0.0001 0.83 
x42 (g.sec-1) 16.250 0.1243 0.76 13.956 0.0878 0.63 
x43 (g.sec-2) 23,971 490 2.05 10,868 448 4.12 
 
 

Table 4. Most relevant parameters from FDR (male: left; female: right) 
Parameter index and name Relevance Parameter index and name Relevance 
22. GS PSD 3rd. Max. Rel. 1.3439 22. GS PSD 3rd. Max. Rel. 2.3629 
19. GS PSD 2nd. Max. Rel. 1.1928 21. GS PSD 2nd. Min. Rel. 1.8862 
42. Cover Losses 0.7187 45. Cover Losses Unbalance 1.4950 
45. Cover Losses Unbalance        0.6891 19. GS PSD 3nd. Max. Rel.        1.4325 

 

Table 5. Time-domain glottal coefficients before and after treatment 
Case/Coefficient CQ ClQ SQ 

#0E8 (before) 0.57 0.30 0.43 
#2DC (after) 0.46 0.18 2.00 
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Figure-1-bottom
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Figure-9
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Figure-10-top
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Figure-10-bottom
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Figure-11-bottom
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Figure-13-bottom
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