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Abstract  
 

The limitation in performance of current speech synthesis and speech recognition systems 

may result from the fact that these systems are not designed with respect to the human neural 

processes of speech production and perception. A neurocomputational model of speech pro-

duction and perception is introduced which is organized with respect to human neural 

processes of speech production and perception. The production-perception model comprises 

an artificial computer-implemented vocal tract as a front-end module, which is capable of 

generating articulatory speech movements and acoustic speech signals. The structure of the 

production-perception model comprises motor and sensory processing pathways. Speech 

knowledge is collected during training stages which imitate early stages of speech acquisition. 

This knowledge is stored in artificial self-organizing maps. The current neurocomputational 

model is capable of producing and perceiving vowels, VC-, and CV-syllables (V = vowels 

and C = voiced plosives). Basic features of natural speech production and perception are 

predicted from this model in a straight forward way: Production of speech items is feedfor-

ward and feedback controlled and phoneme realizations vary within perceptually defined 

regions. Perception is less categorical in the case of vowels in comparison to consonants. Due 

to its human-like production-perception processing the model should be discussed as a basic 

module for more technical relevant approaches for high quality speech synthesis and for high 

performance speech recognition.  
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1 Introduction 

Current speech recognition systems are easily outperformed in the case of (i) non-restricted 

vocabulary, (ii) if the speaker in not well-known by the system and (iii) if noise reduces the 

speech signal quality (e.g. Benzeghiba et al. 2007, Scharenborg 2007). Current corpus-based 

speech synthesis systems are limited as well, especially concerning (i) flexibility in modeling 

different speaker and voice characteristics and concerning (ii) segmental as well as prosodic 

naturalness (e.g. Clark et al. 2007, Latorre et al. 2006). These limitations may be attributed to 

the fact that speech recognition as well as speech synthesis systems currently are not modeled 

with respect to the basic human neural processes of speech production and speech perception.  

A variety of brain imaging studies clarify the role of different subcortical and cortical 

brain regions for speech production (e.g. Murphy et al. 1997, Kuriki et al. 1999, Wise et al. 

1999, Bookheimer et al. 2000, Rosen et al. 2000, Scott et al. 2000, Benson et al. 2001, Huang 

et al. 2001, Blank et al. 2002, Vanlancker-Sidtis et al. 2003, Ackerman and Riecker 2003, 

Hillis et al. 2004, Shuster and Lemieux 2005, Kemeny et al. 2005, Riecker et al. 2006, Sörös 

et al. 2006) as well as for speech perception (e.g. Binder et al. 2000, Hickok and Poeppel 

2000, Fadiga et al. 2002, Wilson et al. 2004, Boatman 2004, Poeppel et al. 2004, Rimol et al. 

2005, Liebenthal et al. 2005, Uppenkamp et al. 2006, Zekveld et al. 2006, Obleser et al. 2006 

and 2007). Other studies focus on the interplay of speech production and perception (Heim et 

al. 2003, Okada and Hickok 2006, Callan et al. 2006, and Jardri et al. 2007) but only few 

among them introduce functional neural models which explain and emulate (i) the complex 

neural sensorimotor processes of speech production (Bailly 1997, Guenther 1994, 1995, 2006, 

Guenther et al. 2006) and (ii) the complex neural processes of speech perception including 

comprehension (McClelland and Elman 1986, Gaskell and Marslen-Wilson 1997, Luce et al. 

2000, Grossberg 2003, Norris et al. 2006, Hickok and Poeppel 2004 and 2007).  

It is the aim of this paper to introduce a biologically motivated approach for speech 

recognition and synthesis, i.e. a computer-implemented neural model using artificial neural 

networks, capable of imitating human processes of speech production and speech perception. 

This production-perception model is based on neurophysiological and neuropsychological 

knowledge of speech processing (Kröger et al. 2008). The structure of the model and the 

process of collecting speech knowledge during speech acquisition training stages are 

described in detail in this paper. Furthermore it is described how the model is capable of 

producing vowels and CV-syllables and why the model is capable of perceiving vowels and 

consonants categorically. 
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2 The Structure of the Neurocomputational Model 

While the structure of this neurocomputational model is based on neurophysiological and 

neuropsychological facts (Kröger et al. 2008), the speech knowledge itself is gathered by 

training artificial neural networks which are part of this model (Kröger et al. 2006a and 

2006b). The organization of the model is given in Fig. 1. It comprises a cortical and a 

subcortical-peripheral part. The cortical part is subdivided with respect to neural processing 

within the frontal, the temporal, and the parietal cortical lobe. Functionally the model 

comprises a production and a perception part. In its current state the model excludes linguistic 

processing (mental grammar, mental lexicon, comprehension, conceptualization) but focuses 

on sensorimotor processes of speech production and on sublexical speech perception, i.e. 

sound and syllable identification and discrimination.  

The production part is divided into feedforward and feedback control (see also Guen-

ther 2006). It starts with the phonemic representation of a speech item (speech sound, 

syllable, word, or utterance) and generates the appropriate time course of articulatory move-

ments and the appropriate acoustic speech signal. The phonemic representation of a speech 

item is generated by higher level linguistic modules (Levelt et al. 1999, Dell et al. 1999, 

Indefrey and Levelt 2004) subsumed as widely distributed frontal-temporal procedural and 

declarative neural processing modules (Ullman 2001, Indefrey and Levelt 2004) which are 

not specified in detail in this model. Subsequently each phonologically specified syllable (i.e. 

a phonemic state; a neural activation pattern on the level of the phonemic map) is processed 

by the feedforward control module. In the case of a frequent syllable, the sensory states 

(auditory and somatosensory state) and the motor plan state of the syllable (which are already 

learned or trained during speech acquisition; see below) are activated via the phonetic map. 

The phonetic map (Fig. 1) can be interpreted as the central neural map constituting the mental 

syllabary (for the concept of mental syllabary see Levelt and Wheeldon 1994 and Levelt et al 

1999). For each frequent syllable a phonemic state initiates the neural activation of a specific 

neuron within the phonetic map, which subsequently leads to activation patterns of the 

appropriate sensory states and the appropriate motor plan state. In the case of infrequent 

syllables the motor plan state is assembled within the motor planning module on the level of 

sub-syllabic units, e.g. syllable constituents like syllable onset and syllable rhyme or single 

speech sounds (Varley and Whiteside 2001). This path is not implemented in our model at 

present. On the level of the motor plan map a high level motor state (motor plan) is activated 

for each speech item under production (current speech item). This high level motor state 

defines the temporal coordination of speech gestures or vocal tract action units (Goldstein et 
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al. 2006, Saltzman and Munhall 1989; for a general description of goal-directed action units 

see Sober and Sabes 2003, Todorov 2004, Fadiga and Craighero 2004). The motor plan of a 

speech item is processed by the motor execution module in order to define the spatio-temporal 

trajectories of articulator movements. Thus the motor execution module calculates the 

concrete specification of each speech gesture on the level of the primary motor map (cf. Ito et 

al. 2004, Sanguineti et al. 1997, Saltzman 1979, Saltzman and Munhall 1989, Saltzman and 

Byrd 2000). For example, a labial closing gesture involves coordinated movement of at least 

the lower jaw, the lower and upper lips. Thus each of these articulators must be controlled 

synergetically for the realization of a speech gesture. Subsequently the movement of an 

articulator is executed by activating the motor units controlling this articulator via the 

neuromuscular processing module.  

 

-- insert Figure 1 about here -- 

 

The (lower level) primary motor map comprises 10 articulatory parameters (Kröger et 

al. 2006b). Each articulatory parameter value is coded by two neurons with complementary 

activation (see below) leading to 20 neurons to encoding the primary motor commands for 

each point in time. The conversion of physical parameter values (e.g. displacement of an 

articulator) into neuromotor activation patterns is done (i) by mapping the physical 

displacement range for each parameter onto a neural activation range [0, 1] (i.e. no activation 

to full activation of a neuron) and (ii) by defining two neurons for each parameter with 

complementary activation (a2 = 1- a1) in order to hold the overall activation a (a = a1 + a2) 

constant (= 1) for each parameter value. The size of the (higher level) motor plan map 

depends on the length of the utterance under production. In the case of V-, CV-, and VC-

items three vocalic higher level parameters (high-low, front-back, rounded-unrounded) and 

four higher level consonantal parameters (labial, apical, dorsal, exact closing position) are 

controlled. These vocalic parameters and the consonantal parameter closing position are 

encoded using 2 neurons with complementary activation each, while the three remaining 

consonantal parameters are encoded by one neuron each in order to reflect the activation of a 

specific vocal tract organ. Thus the motor plan map for V-, CV-, and VC-items consists of 11 

neurons. Since a motor plan encodes a motor or sensory V-, CV-, or VC-item of a transition 

for C (encoded by 4 time labels) and a steady state portion for V (encoded by one time label) 

the (lower level) primary motor state of these items is encoded by five consecutive time 

labels. Thus the appropriate number of primary motor map neurons for a whole speech item is 
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5 x 20 = 100 neurons plus 10 neurons for coding 5 time intervals describing the temporal 

distance from label to label. 

A computer-implemented numerical articulatory vocal tract model generates the time 

course of vocal tract geometries and subsequently the acoustic vocal tract model generates the 

acoustic speech signal. A three-dimensional articulatory-acoustic model is used here which is 

capable of generating high-quality articulatory and acoustic speech signals (Birkholz and 

Jackèl 2004, Birkholz and Kröger 2006 and 2007, Birkholz et al. 2006 and 2007, and Kröger 

and Birkholz 2007). These articulatory and acoustic signals are used for feedback control. 

The articulatory and acoustic signals generated by feedforward control are continuous-

ly monitored or controlled. For this feedback control the articulatory and acoustic signals are 

converted into neural signals by auditory and somatosensory (i.e. tactile and proprioceptive) 

receptors. Somatosensory feedback signals (relative positions of articulators to each other and 

position and degree of vocal tract constrictions, see Saltzman and Munhall 1989, Shadmehr 

and Mussa-Ivaldi 1994, Tremblay et al. 2003, Nasir and Ostry 2006) are used for controlling 

motor execution. In addition sensory (i.e. somatosensory and auditory) signals are converted 

into higher level cortical sensory states, which represent the current speech item. These 

auditory and somatosensory (feedback) states of a currently produced speech item are 

processed by comparing them with the appropriate prelearned auditory and somatosensory 

state, activated by feedforward control before the current speech item is produced. This 

comparison is done on the level of the somatosensory and auditory processing modules. If the 

prestored (or feedforward) sensory state and the feedback sensory states indicate a reasonable 

difference an error signal is activated for correcting the motor plan during the ongoing 

feedforward control.  

The conversion of physical or psychophysical sensory parameter values (e.g. bark 

scaled formant values) into neural activation patterns is done (i) by mapping the whole 

physical parameter range onto the “neural” range [0, 1] (i.e. no activation to full activation of 

a neuron) and (ii) by defining two neurons per parameter with complementary activation (see 

above for the primary motor map). Since auditory states are processed as whole patterns, 

parameter values for our V-, CV-, and VC-items (see above) are obtained at 5 positions 

(labels) in the acoustic signal. Three formants were processed leading to 3 x 5 = 15 parameter 

values and thus to 30 neurons per item for the auditory state map. 10 proprioceptive and 9 

tactile parameters were processed (Kröger et al. 2006b) leading to 19 parameter values and 

thus 28 neurons for each item. Only one tactile and proprioceptive state is coded for the whole 

speech item representing the gestural target region of the vocalic part in the case of a V-item 
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and representing the gestural target regions of the vocalic and the consonantal part in the case 

of VC- or VC-items (overlay of tactile and proprioceptive patterns).  

The perception part of the neurocomputational model starts from an acoustic speech 

signal, generated by an external speaker (Fig. 1). This signal is converted into neural signals 

by auditory receptors and is further processed into a cortical higher level auditory signal via 

the same auditory pathway that is used for the feedback control of speech production (self-

productions). Speech perception comprises two pathways (cf. Hickock and Poeppel 2000, 

2004, and 2007). The auditory-to-meaning pathway (ventral stream) directly activates neural 

states within the mental lexicon by the high level cortical auditory state for a speech item (e.g. 

a word). This pathway is not included in our model, since high level mental lexical repre-

sentations are out of the scope of this study. The auditory-to-motor pathway (dorsal stream) 

activates the phonetic state of the current speech item (e.g. sound or syllable) within the 

cortical frontal motor regions. This pathway is included in our model and it will be shown 

below that this pathway is capable of modeling categorical perception of speech sounds and is 

capable of modeling differences in categorical perception of vowels and consonants. 

The structure of the neurocomputational model differentiates neural maps and neural 

mappings. Neural maps are ensembles of neurons which represent the phonemic, phonetic, 

sensory or motor speech states. These maps are capable of carrying states of different speech 

items by different neural activation patterns. These activations change from speech item to 

speech item under production or perception. Neural mappings represent the neural connec-

tions between the neurons of neural maps (Fig. 2). These connections can be excitatory or 

inhibitory. The degree of excitatory or inhibitory connection is described by link weight 

values. These values wij characterize the neural connection between each pair of neurons. 

They define the degree of activation of a connected neuron bj within a neural map 1 

(comprising M neurons j = 1, … , M) resulting from the degree of activation of all connecting 

neurons ai within a neural map 2 (comprising N neurons I = 1, … , N) (see Eq. 1 and Fig. 2).  

 

Mjforwaactfuncb
N

i
ijij ,...,1

1

=�
�

�
�
�

�= �
=

,     (eq. 1) 

Here actfunc is the activation function (a sigmoid function in the case of our modelling; see 

Zell 2003) which represents the total activation of neuron bj in map 1 as function of the sum 

of activations from all neurons i within map 2. The link weight values wij are limited to the 

interval [-1, +1] (i.e. maximal inhibitory to maximal excitatory link weight value).  

 

    -- insert Figure 2 about here --  
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The link weight values reflect the whole knowledge inherent in the training data and 

thus the knowledge gathered during the training procedures. Link weight values are adjusted 

during training stages, i.e. during speech acquisition stages (see below). They are allowed to 

be modified continuously in order to reflect new knowledge gained over life time.  

One-layer feedforward networks (Fig. 2) are of limited power and are used in our 

model exclusively for calculating articulatory joint-coordinate parameters from articulatory 

tract-variable parameters (cf. Kröger et al. 2006c). In this paper we will focus on the central 

phonetic map and the multilateral co-activation of phonemic states, sensory states, and motor 

plan states via the phonetic map. This multilateral co-activation is achieved by using self-

organizing maps or networks (Kohonen 2001 and Fig. 3). Each neuron of the central self-

organizing map (i.e. the phonetic map) represents a speech item. Different phonetic submaps 

(i.e. different parts within the phonetic map) are defined for each class of speech items, i.e. for 

vowels, for CV-, and for VC-syllables. Multilateral co-activation of phonemic, sensory, and 

motor plan states for a speech item via the phonetic map means that an activated neuron of the 

phonetic map (representing a currently perceived or produced speech item) leads to a co-

activation of neural activation patterns within the phonemic, motor plan, or sensory side layer 

maps representing this current speech item. The set of link weight values of the connections 

between all neurons of the phonemic, motor plan, or sensory side layer map and a neuron 

within the central phonetic map characterize the phonemic, motor plan, or sensory state of the 

speech item represented by this neuron within the phonetic map. Activation patterns of 

neurons within the side layer maps induced by an activation pattern of the phonetic map as 

well as activation patterns of the phonetic map induced by an activation pattern of one of the 

side layer maps are calculated in the same way as it is described above for simple one-layer 

feedforward networks (eq. 1)  

 

-- insert Figure 3 about here -- 

 

The structure of the neurocomputational production-perception model introduced here 

is based on the structure of the DIVA model introduced by Guenther (2006) and by Guenther 

et al. (2006). The approach described in this paper as well as the Guenther approach comprise 

a feedforward and a feedback control path. Both approaches comprise self-organizing 

networks for processing neural states and comprise neural maps for storing phonemic, motor, 

and sensory states representing speech items. Both approaches introduce pre-linguistic and 

early linguistic language-specific training (i.e. babbling and imitation training, see below) in 



 

 

 

ACCEPTED MANUSCRIPT 

 

order to shape the neural mappings within the computational models and both approaches 

include the concept of a mental syllabary (Levelt and Wheeldon 1994, Levelt et al 1999) and 

basic ideas of the mirror neuron concept (Fadiga and Craighero 2004, Rizzolatti and 

Craighero 2004) since both approaches claim a  simultaneously occurring activation of 

sensory and motor states for speech items.  

But there are three major differences between both approaches. Firstly, the DIVA 

approach does not separate motor planning and motor execution as is introduced here. This 

separation results from the fact that for all types of voluntary movements (actions) just the 

goal of an action (e.g. grasping a definite object or pressing a sequence of buttons) and the 

temporal overlap or temporal sequencing of actions are determined on the planning level 

while the details of movement execution are determined on lower neural levels (Kandel et al. 

2000, Kröger et al. 2008). In the case of speech production vocal tract action units or speech 

gestures are well established as basic units of speech production (Browman and Goldstein 

1989 and 1992, Goldstein et al. 2006 and 2007) separating motor speech planning – i.e. the 

level of action scores (Goldstein et al. 2006) – and motor speech execution (Saltzman and 

Munhall 1989, Goldstein et al. 2006) – i.e. the detailed determination of all articulator 

movements. The practical importance of dynamically defined speech action units becomes 

apparent if modelling of segmental reduction effects resulting from high speech rate (Kröger 

1993) or if modelling of speech errors (Goldstein et al. 2007) is attempted. Secondly, the 

DIVA model does not explicitly introduce a phonetic map or at least a map, reflecting the 

self-organization of speech items between sensory, motor, and phonemic representation; and 

the DIVA model does not explicitly claim bidirectional mappings between phonemic, sensory, 

and motor representations. But the assumption of bidirectional associations is essential in our 

production-perception model. Production is modelled in our approach using neural 

connections from the phonemic map directed towards the motor and sensory maps via the 

phonetic map and perception is modelled in our approach using the neural connections from 

sensory maps directed toward phonemic map via the phonetic map. Furthermore the phonetic 

map itself is a central concept in our approach. On the one hand, the phonetic map introduces 

a hypermodal description of speech items which connects the sensory and motor represen-

tations of a speech item as is claimed in the mirror neuron theory. Our simulation results 

indicate that it is very feasible to introduce this level of neural self-organization (phonetic 

map) since it elucidates the ordering of speech items with respect to phonetic features 

(phonetotopy, see below). Furthermore the notion of the phonetic map is important for 

modelling speech perception since perceptual discrimination is defined in our approach as a 
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distance between activated states on this neural level (see below). Thirdly, the DIVA model is 

a production model not aiming for modelling speech perception. But according to the 

arguments given above the modelling of speech production and speech perception as two 

closely related processes is of great importance. This is achieved in our approach.  

 

 
3 Gaining Speech Knowledge: Training Stages for Speech Acquisition 

 
Speech knowledge is gained during training stages which model basic stages of human 

speech acquisition. This knowledge is stored within the mappings of the model, i.e. by the 

link weight values connecting the neurons within the production-perception model. Link 

weight values are adjusted during training stages. Two basic training stages can be 

differentiated, i.e. the babbling and the imitation stage (Oller et al. 1999).  

For babbling training the training sets comprise pre-linguistic speech items, i.e. proto-

vocalic and proto-syllabic speech items. The model randomly produces proto-vocalic and 

proto-syllabic speech items and listens to its own productions using the auditory feedback 

path (Fig. 1). The link weights between the sensory maps and the motor plan map are adjusted 

via the phonetic map during this training stage. No phonemic activation occurs since these 

training items are pre-linguistic. The knowledge which is gained during babbling training is 

language independent general phonetic knowledge. During this training stage the neuro-

computational model learns the sensorimotor interrelationship of the vocal tract apparatus 

and its neural control, i.e. the interrelationship between various motor plan states and their 

resulting somatosensory and auditory states. The babbling training can be subdivided into 

training stages for training of proto-vocalic states and for proto-syllabic CV- and VC-states.  

The proto-vocalic babbling training set comprises a set of proto-vocalic states which 

exhibit a quasi-continuous variation of the vocalic motor plan parameters low-high and front-

back. The training set used here comprises 1076 proto-vocalic states which cover the 

language independent articulatory vowel space between the cardinal vowel qualities [i], [a], 

and [u] (Fig. 4). Each proto-vocalic motor plan state is defined by the vocalic parameters 

back-front and low-high. Thus the proto-vocalic training stimuli form a two-dimensional 

plane within the F1-F2-F3 acoustic vowel space (Fig. 4). Other motor parameters like tongue 

body height, tongue body horizontal and vertical position, and like lip opening are functions 

of these two motor plan parameters (Kröger et al. 2006c). Even lip-protrusion is a function of 

the parameter front-back in the case of this preliminary training set since the training set does 

not include rounded front proto-vowels (e.g. [y]-like vowel qualities).   
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-- insert Figure 4 about here -- 

 

The proto-syllabic CV and VC babbling training sets are based on a set of 31 proto-

vocalic motor plan states which are characterized by the motor plan parameters back-front and 

low-high and which are covering the whole articulatory vowel space. Labial, apical, and 

dorsal opening and closing gestures (proto-CV- or proto-VC-gestures) starting or ending with 

a full closure are superimposed on these proto-vocalic states. Three proto-consonantal places 

of articulation (front-mid-back) are defined per gesture. This leads to a total amount of 279 

training items for each of the two proto-syllabic training sets (proto-CV- and proto-VC-

training set). The articulatory velocity of the gesture-executing articulator for all closing and 

opening gestures is proportional to the distance between actual articulator position and 

gestural target position. This leads to an exponential time function for the displacement of this 

articulator. A gesture is ending if the articulator-target distance is below 10% in the case of 

opening or proto-CV-gestures or if a full closure is reached in the case of closing or proto-

VC-gestures (target of closing gestures is beyond the full closure position). In summary the 

motor plan state for these proto-CV- and proto-VC-gestures is defined by (i) two vocalic 

parameters (back-front and low-high), by (ii) the gesture-performing articulator (labial, apical, 

or dorsal) and by (iii) the exact proto-consonantal closing position (front-mid-back). The 

lower level (or primary) motor parameters and their time courses are calculated from these 

motor plan parameters by the motor execution module. The appropriate auditory state of these 

opening and closing gestures (proto-CV- and proto-VC-syllables) is the time courses of the 

first three formants F1, F2, and F3 (Fig. 5 and see section 2) and the appropriate somato-

sensory state for each proto-syllabic motor plan state comprises tactile information of the 

proto-consonantal closure and proprioceptive information of the proto-vocalic opening. 

 

-- insert Figure 5 about here -- 

 

Proto-vocalic, proto-CV-syllabic, and proto-VC-syllabic babbling training is 

performed independently from each other. Three self-organizing maps (size: M = 15 x 15 = 

225 neurons) form three phonetic submaps and are trained by using the three training sets 

described above. Training leads to an adjustment of link weight values wij between the N side 

layer neurons ai and the M central layer neurons bj. The side layers consist of the motor plan 

map (i = 1, … , K) and the sensory (auditory and somatosensory) maps (i = K+1, … , N) while 



 

 

 

ACCEPTED MANUSCRIPT 

 

the central layer represents the phonetic map (j = 1, … , M). Link weight values are initialized 

by random values within the interval [0, 1] (i.e. no activation to full activation). The link 

weights wij(tinit) are initialized using random values between 0 and 1 (Eq. 2). This adjustment 

of the link weights is done incrementally, i.e. step by step, using Hebbian learning (Eq. 3). 

When a new stimulus I with I = (x0, … , xN) is presented, the winner neuron bwinner is 

identified in the central layer by calculating the minimum of Euclidian norm between I and Wj, 

j = 1, …, M; i.e. winner = arg minj(�I - Wj�) where Wj is a vector containing the link weights 

of all links from the central layer neuron bj to the side layer neurons ai, i.e. Wj = (w1j, … , wNj). 

Once the winner neuron bwinner is identified the link weights for a step t with tinit < t < tmax are 

updated as  

 
)1,0()( randtw initij =          (eq. 2) 

 

))(()()()()1( , twItLtNtwtw ijijwinnerijij −⋅⋅+=+ ,    (eq. 3) 

 

where 0 < L(t) < 1 is a constantly decreasing learning factor defined as 
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and Nwinner,j(t) is a neighborhood kernel (see Eq. 5). Only the link weights of the neurons in 

the neighborhood around the winner neuron are updated. A 1-neighborhood is defined as all 8 

neurons around the winner neuron, if they exist. A (n+1)-neighborhood contains all neurons 

of a n-neighborhood and their 1-neighbors, if they exist. Thus a neighborhood kernel Nwinner,j(t) 

is defined as  
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with neighborhood radius of bwinner. The additional step dependent function r(t) is introduced 

to get a constantly decreasing neighborhood radius (see Eq. 6). 
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For the babbling training an initial neighborhood radius rinit = 12 and an initial learning rate 

Linit = 0.8 are chosen. 

Proto-vocalic and proto-syllabic test sets were defined for testing the proto-vocalic and 

proto-syllabic training results. The proto-vocalic test set comprises 270 proto-vocalic states 

which cover the language independent articulatory vowel space between the cardinal vowel 

qualities [i], [a], and [u]. This proto-vocalic test set is organized in the same way as the proto-

vocalic training set but the test set exhibits a much lower density within the articulatory or 

auditory vowel space. This also results in different training and test items. Both proto-syllabic 

test sets are based on a set of 22 quasi-vocalic motor plan states covering the whole language 

independent articulatory vowel space. Both proto-syllabic test sets are organized in the same 

way as the proto-syllabic training sets but the test sets exhibit a lower density within the 

articulatory or auditory vowel space for the proto-vocalic starting or ending positions of the 

VC- or CV-proto-syllables. Both proto-syllabic test sets comprise 198 items. The test items 

were different from the training items defined above. 

An estimation of the quality of the proto-vocalic and the proto-syllabic training results 

is done by calculating a mean error over all test set items for estimating an articulatory state 

of a test set item from its auditory state. The calculation of the error value for each test item 

comprises six steps: In a first step the motor plan state of a test item is applied to the motor 

execution module for calculating the appropriate articulatory patterns (i.e. the time course of 

articulatory parameters for a speech item) by using the feedforward part of the model. This 

calculated articulatory pattern is called initial articulatory pattern. In a second step the 

appropriate auditory state pattern is calculated by using the output of the three-dimensional 

articulatory-acoustic model for the initial articulatory pattern and by applying this output to 

the auditory feedback pathway of the model. In a third step the motor plan state is 

recalculated from the auditory state pattern calculated in the second step. Note that the trained 

self-organizing network is used for this step. This step leads to an estimated motor plan state 

which results from the sensorimotor knowledge stored within the self-organizing network, i.e. 

which results from the learning or training procedure. In a fourth step the estimated 

articulatory pattern is calculated for the estimated motor plan states by reusing the 

feedforward part of the model. In a fifth step the estimated and initial articulatory patterns are 

compared. An error value is calculated for each test item which is the difference between 

estimated and initial articulatory pattern. This difference is normalized with respect to the 

initial articulatory pattern. In a sixth step the mean error over all test set items is calculated for 

the trained network.  
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500.000 training steps are sufficient for predicting associated articulatory states from 

the auditory states of the test items with a precision below 2% error rate on the primary motor 

level in the case of the proto-vocalic training (using the proto-vocalic training set) and 

280.000 training steps are sufficient for predicting the articulatory states from the auditory 

states with a precision below 5% error rate in the case of both proto-syllabic trainings (using 

both proto-syllabic training sets). Thus the complete babbling training requires less than five 

minutes on standard PC’s.  

The resulting link weight values for the neurons connecting the self-organizing 

phonetic maps with the motor plan and auditory map are graphically displayed for the proto-

vocalic training in Fig. 6 and for the proto-CV-syllabic training in Fig. 7. It appears that motor 

plan states are organized with respect to phonetic categories. In the case of the vocalic 

phonetic submap vocalic states are ordered continuously with respect to the motor plan 

parameters high-low and front-back. Experimental evidence for this kind of ordering is given 

by Obleser et al. (2006). In the case of the syllabic submap three regions occur which 

represent the gesture-performing articulator (labial, apical, and dorsal), i.e. an ordering occurs 

with respect to the motor-plan parameter gesture-performing articulator. This neural behavior 

resulting from self-organization of vocalic and consonantal or syllabic states with respect to 

phonetic categories (high-low, front-back, gesture-performing articulator) can be labeled as 

phonetotopy in parallel to tonotopy for the cortical ordering of auditory states with respect to 

their fundamental frequency (Kandel 2000, p. 609) or in parallel to somatotopy for the 

ordering of somatosensory states with respect to their location on the body surface (Kandel 

2000, p. 460f). 

It should be kept in mind at this point that the general phonetic sensorimotor know-

ledge stored in these phonetic maps is knowledge of sensorimotor relations exclusively gene-

rated by the three-dimensional articulatory and acoustic vocal tract model. Thus it is impor-

tant for the performance or quality of neurocomputational models of speech production and 

perception that these models comprise realistic articulatory and acoustic vocal tract models as 

front-end modules which are capable of generating high quality articulatory and acoustic 

signals, since the signals generated by the articulatory-acoustic model are the basis for the 

calculation of all sensory signals.  

 
-- insert Figure 6 and 7 about here -- 
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After babbling training the neurocomputational model is capable of reproducing (or 

imitating) the motor plan state (i.e. the articulation) of any pre-linguistic speech item – in our 

case of any proto-vowel, proto-CV-syllable and proto-VC-syllable (with C = proto-

consonantal closing gestures) – from their acoustic (or auditory) state patterns. Thus the 

neurocomputational model is now ready for language-specific imitation training. For 

imitation training the training sets comprise language-specific speech items; in our case 

vocalic and syllabic speech items. Beside the adjustment of link weights of the mapping 

between the phonetic map and the sensory maps and of the mapping between the phonetic 

map and the motor plan map, which is mainly done during babbling training, now in addition 

the link weights of the mapping between the phonetic map and the phonemic map are 

adjusted. Language-specific imitation training results in (i) specifying regions of typical 

phoneme realizations (phone regions) within the phonetic map, i.e. in specifying regions of 

neurons within the phonetic map, which represent typical realizations of a phoneme or of a 

syllable phoneme chain (see Fig. 6 and Fig. 7) and in (ii) fine-tuning of the sensorimotor link 

weights already trained during babbling. This fine-tuning mainly occurs at the phone regions. 

Thus the knowledge which is gained during imitation is language dependent. In other words 

during this training stage the neurocomputational model mainly learns to link neurons which 

represent different phonemes or phonemic descriptions of syllables with the motor plan states 

and with the sensory states of their appropriate typical realizations. In parallel to babbling 

training also imitation training can be subdivided into training procedures for vowels, CV- 

and for VC-syllables.  

The vowel imitation training set comprises a set of 100 acoustic vowel realizations per 

phoneme for a typical five vowel phoneme system /i/, /e/, /a/, /o/, and /u/ (e.g. Bradlow 1995 

and Cervera et al. 2001). A three-dimensional Gaussian distribution was chosen for each 

phoneme for distributing the 100 realizations per phoneme over the F1-F2-F3-space (Fig. 8 

for the F1-F2-space). The distribution of the phoneme realizations in the acoustic vowel space 

(F1-F2-F3-space) is chosen as realistically as possible. The acoustic vowel realizations within 

the acoustic vowel space slightly overlap. These 500 vowel realizations are supposed to be 

realizations given by different external speakers, but matched with respect to the models 

babbling vowel space. It should be noted that vowel phonemes normally are learned in the 

context of words during speech acquisition. This is replaced in this model by training of 

isolated vowels by reason of simplicity. More complex training scenarios are beyond the 

scope of this paper. 
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-- insert Figure 8 about here -- 

 

During vowel imitation training each external acoustic (or auditory) vowel item is 

processed by the proto-vocalic babbling network in order to estimate the appropriate motor 

plan parameters. Thus the model is capable of re-articulating (imitating) these externally 

produced vowels and the model is capable of generating the appropriate internal auditory 

feedback states. In natural human speech acquisition scenarios the imitated vowel item is then 

judged as right or wrong (i.e. is accepted or not accepted) by an external listener; i.e. the pro-

duced item is awarded or not by the external listener, e.g. by communication between carer 

and toddler. If the item is accepted as a proper realization of the intended phoneme, its motor 

and sensory states can be linked to the neuron representing this phoneme in the phonemic 

map. In the case of our model all realizations (re-articulations or imitations) can be accepted 

and thus can be added to the imitation training data set since the acoustic realizations of all re-

articulations (or imitations) occur within the phoneme realization clouds (Fig. 8). Thus the 

vocalic imitation training set comprises 500 items of appropriate phonemic, motor plan, and 

sensory states. These data are the basis for imitation training.  

The syllable CV and VC imitation training sets are based on a set of a labial, apical, 

and dorsal closing and opening gesture ending or starting at 31 different vowel realizations 

per vowel phoneme. That leads to 31 acoustic realizations for each of the phonemic CV- or 

VC- syllables (i.e. /bi/, /di/, /gi/, /be/, /de/, /ge/, /ba/, /da, /ga/, /bo/, /do/, /go/, /bu/, /du/, and 

/gu/) and results in 465 training items. Each of these externally produced acoustic items are 

imitated in the same way as described above for the vowel items. Thus 465 training items of 

appropriate phonemic, motor plan, and sensory states for CV- or VC-stimuli are generated. 

Only 5.000 training steps for vowels and only 5.000 training steps for CV- and VC-

syllables had to be added to the proto-vocalic and proto-syllabic babbling training for 

obtaining clear phoneme realization regions (phone regions) within the phonetic maps (see 

the outlined neuron boxes in Fig. 6 and Fig. 7). A neuron of the phonetic map is defined to be 

a part of a phone region if the phonemic link weight value for this neuron of the phonetic map 

and the appropriate neuron of the phonemic map is above the level of 0.95. Thus for the 

neurons which form a phone region within the phonetic map, strong excitatory connections 

exist towards the neuron representing the appropriate phoneme within the phonemic map.  

For imitation training the imitation training sets are used in addition to the ongoing 

applied babbling training set. The network is not reset; the already trained babbling network is 

used as a basis for further training. The algorithms for adjusting the network link weight are 
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identical for babbling and for imitation training. Thus the succession from babbling to 

imitation training needs not to be abrupt. Imitation training can start in parallel to babbling 

training if some sensorimotor knowledge, i.e. if some knowledge how to estimate motor plan 

states from auditory states, is already available from early babbling training. The complete 

imitation training requires less than one minute on a standard PC for the training sets used 

here.  

 
 

4 Producing and perceiving Vowels and CV-Syllables 
 

It should be emphasized that babbling and imitation training is not only the basis for learning 

to produce speech items of a target language. Since the sensory states of all self-productions 

are perceived by the feedback loop during babbling training and since external acoustic 

speech items as well as self-productions are perceived during imitation training it can be 

hypothesized that babbling and imitation training are also important for learning to perceive 

speech items of a target language.  

The production pathway (phonemic map � phonetic map � motor plan map � 

primary motor map � articulation) has been introduced in section 2. The speech items which 

were trained in this study can be labeled as frequent syllables. The description of the pro-

cessing of infrequent syllables is beyond the scope of this paper. Our training results given 

above indicate strong neural connections from a phonemic state within the phonemic map to a 

set of neurons within the phonetic map. Each of these sets of neurons within the phonetic map 

represent a region of phoneme realizations (phone regions) and thus represent production 

variability since neighboring neurons within the phonetic map represent slightly different 

motor and sensory states (for natural variation in vowel realizations see Perkell et al. 1993). If 

a phonemic speech item is activated (phonemic map) this leads to an activation of several 

neurons within the phonetic map (see the outlined boxes or phone regions for example for the 

vocalic phonetic map; Fig. 6). Thus in our model the maximal activated neuron within the 

phonetic map can differ from realization to realization. Therefore the motor plan and the 

subsequent articulatory realization of a phonemic item are allowed to vary within a 

perceptually acceptable region. These regions for phonemic items are the phoneme realization 

regions or phone regions and they are language-specific and are defined during imitation 

training (see Fig. 6 and Fig. 7).  

Furthermore coarticulation is introduced in our neurocomputational model. Two 

sources of coarticulation are implemented in our model. Firstly, coarticulation results from the 

fact that the exact coordination of articulators for executing a speech gesture is controlled by 
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the motor execution module and that a speech gesture is not encoded in all details on the 

motor plan level. That leads to variability in gesture execution with respect to context. For 

example the realization of /b/ in /ibi/ or /aba/ is different in our model. In /aba/ the lower jaw 

is more involved in the execution of the labial closing gesture than in /ibi/ because of the wide 

mouth opening occurring in /a/ in comparison to /i/. Because of this wide mouth opening in 

/a/ it would be ineffective to execute the closing gesture in /aba/ just by using the lips. It is 

more effective to add a synergetic elevation of the lower jaw. Thus, the lower jaw elevation 

and the lower lip elevation form a labial closing gesture in a synergetic way. Secondly, 

coarticulation results from the fact that gesture specifications can vary even on the level of the 

motor plan. For example lip protrusion is allowed to vary for a consonantal labial closing 

gesture since lip protrusion is a non relevant phonemic feature in the case of a labial closing 

gesture in our target language. Since the labial closing gesture within a CV-syllable 

temporarily overlaps with the following vocalic gesture (e.g. for a gesture for realizing an /i/- 

or /u/) our simulations show anticipatory lip protrusion on the motor execution level in /pu/ 

while lips are not protruded during the labial closure in /pi/.  

In the case of language-specific perception of speech items it can easily be shown that 

the neurocomputational model trained thus far for vowels and simple CV- and VC-syllables is 

capable of producing categorical perception for vowels and in an even stronger way for 

consonants (i.e. voiced plosives in the case of our model). The auditory pathway for per-

ception of external speech items (auditory receptors � auditory map � phonetic map � 

phonemic map) has already been introduced in section 2 (auditory-to-motor pathway, see 

Hickok and Poeppel 2000 and 2004). Thus the phonetic map is not only a central neural 

representation in speech production but also in speech perception at least for sublexical 

speech units like speech sounds and syllables. In order to show that the current neuroncompu-

tational production-perception model perceives vowels (for the five vowel system /i/, /e/, /a/, 

/o/, and /u/) and consonants (for the voiced plosives /b/, /d/, and /g/) in a speech-like 

categorical way, speech identification and discrimination experiments were carried out using 

the model. In order to be able to perform these experiments using the model, 20 different 

instances of the model were trained using (i) different sets of training data due to different 

randomization procedures for determining the vocalic items within all training sets, using (ii) 

a different ordering of training stimuli during each training stage, and using (iii) different sets 

of randomly generated initial link weight values for each of the 20 instances. The resulting 20 

instances of the model are called virtual listeners.  
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Identification of an external acoustic stimulus is performed in our model by a virtual 

listener by identifying the most excited neuron within the phonemic map. Discrimination of 

two external acoustic stimuli is performed in our model by calculating the most activated 

neuron on the level of the phonetic map for each acoustic stimulus and subsequently by 

calculating the city block distance between these both neurons for each virtual listener. The 

phonetotopic ordering of speech items on the level of the phonetic map (see above) is a first 

hint that distance between speech items (states) on the level of this map indicates phonetic 

similarity or dissimilarity. Moreover we assume that the sensory resolution of two states (i.e. 

the capability for discrimination between these states) is governed by the spatial distance of 

these two states on the level of the phonetic map. This assumption holds for tonotopic 

ordering and thus for F0-discrimination of auditory stimuli (see the discussion of tonotopic 

cortical maps, Kandel 2000, p. 609) and this assumption also holds for somatotopic ordering 

and thus for the spatial discrimination of tactile stimuli (see the discussion of somatotopic 

maps, Kandel et al. 2000, p. 460ff). Consequently it can be hypothesized that two stimuli can 

be discriminated if the distance of the activated neurons representing the stimuli on the level 

of the phonetic map exceeds a certain neuron distance within this map and it can be 

hypothesized that discrimination becomes stronger with increasing neuron distance.  

Vocalic and consonantal identification and discrimination tests were performed on the 

basis of quasi-continuous acoustic stimulus continua (for an introduction to speech perception 

experiments see e.g. Raphael et al. 2007). The stimulus continua generated for these tests 

model an /i/-/e/-/a/-continuum for vowels and a /ba/-/da/-/ga/-continuum for CV-syllables (Fig. 

9 and Fig. 10). The resulting identification and discrimination scores are given in Fig. 11 and 

Fig. 12. It can be seen that the measured identification scores (measured for the 20 virtual 

listeners by identifying the most excited neuron within the phonemic map via the phonetic 

map for each stimulus) indicate more abrupt phoneme boundaries in the case of consonants 

than in the case of the vowels. Additionally it can be seen that the measured discrimination 

scores (measured for the same 20 virtual listeners by estimating the distance for both stimuli 

on the level of the phonetic map; see above) indicate higher discrimination scores at least for 

consonant perception. Beside measured discrimination (naturally perceived discrimination) 

also calculated discrimination scores are shown in Fig. 11 and Fig. 12. Calculated 

discrimination scores are theoretical constructs (see Liberman et al. 1957). They are 

calculated from (measured) identification scores for each single (virtual) listener. Thus calcu-

lated discrimination is a discrimination of stimuli which merely results from differences in 

identification of these stimuli. The probability pdiscr for a certain percentage of calculated 
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discrimination of two stimuli a and b is based just on the identification probabilities pid of 

these two stimuli for each phonemic category i = 1, 2, or 3 (with 1 =  /b/, 2 = /d/, and 3 = /g/ 

in case of consonants and with 1 = /i/, 2 = /e/, and 3 = /a/ in the case of vowels, see Eq. 7 and 

Liberman et al. 1957, p. 363).   
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Consequently calculated discrimination just indicates that part of discrimination of stimuli 

which results from the ability of subjects to classify stimuli to different categories. Calculated 

discrimination or discrimination based on identification (Liberman et al. 1957, Eimas 1963) 

and its difference to (naturally) measured discrimination is discussed as an important feature 

of categorical perception (Damper and Harnad 2000). Calculated discrimination indicates 

discrimination which is just based on discrete linguistic or phonemic categorical knowledge, 

while measured discrimination scores indicate the complete discrimination of two stimuli 

based on all available auditory information given by these stimuli; not just the linguistic, 

phonemic, or categorical information, needed for (categorical) identification. It can be seen 

from Fig. 11 and Fig. 12 that measured discrimination rates are always higher than calculated 

discrimination rates. That is in agreement with identification and discrimination scores 

extracted from identification and discrimination experiments carried out with humans and can 

be interpreted in the way that acoustic speech stimuli always convey categorical (linguistic) 

and non-categorical (para-linguistic or non-linguistic extra) information. While measured and 

calculated discrimination scores are nearly identical in the case of consonants, it comes out 

from our modeling data that measured discrimination is better than calculated discrimination 

especially in the case of vowels. This is in agreement with result of natural speech perception 

(Fry et al. 1962, Eimas 1963) and reflects the typical differences in categorical perception of 

consonants and vowels.  

 

-- insert Figure 9, 10, 11, and 12 about here -- 

 
 

5 Discussion and Conclusions 
 

The experimental results presented in this paper indicate that a model of speech production 

and perception which is shaped with respect to basic neurophysiological facts is capable of 

embedding important features of speech production and speech perception in a straight 
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forward way even if the neurocomputational modeling is relatively basic as is here by using 

simple standard self-organizing networks. Typical and therefore important features of speech 

production and perception like production variability of phoneme realizations and categorical 

speech perception and especially the fact of different degrees of categorical perception for 

consonants and vowels, occur in a straightforward way in this production-perception model. 

Since human speech production and perception easily outperforms speech synthesis and 

speech recognition systems at least in difficult conditions, it could be useful to include 

human-like speech processing routines into such technical speech processing systems. This 

may help to increase the quality and the level of performance of technical speech processing 

systems.  

Furthermore this modeling study indicates the close relationship of speech production 

and speech perception. Speech perception theories such as the motor theory of speech percep-

tion (Liberman et al. 1967, Liberman and Mattingly 1985) or the direct-realist theory (Fowler 

1986) have already postulated this close relationship. And recent experimental results provide 

support for this claim and suggest that the development of an integrative model on speech 

production and perception is highly desirable. For example perceptual feedback loops (also 

called self-monitoring processes) are known to activate parts of the speech perception 

mechanism during overt (external perceptual loop) as well as covert speech production 

(internal perceptual loop, cf. Indefrey and Levelt 2004, Postma 2000, Hartsuiker and Kolk 

2001). In addition imaging studies focusing on speech perception have demonstrated that 

perception is capable of activating parts of the speech production cortical networks (Fadiga et 

al. 2002, Wilson et al. 2004, Hickok and Poeppel 2004 and 2007).  

Bidirectional mappings between phonemic and phonetic and between sensory and 

phonetic maps are introduced in our neural model in order to illustrate the close relationship 

between production and perception. The introduction of these bidirectional mappings is the 

basis for important features of the model like categorical perception. Physiologically a 

bidirectional mapping comprises two related unidirectional mappings since neurons always 

forward their firing pulses in one direction (Kandel et al. 2000). Thus physiologically 

bidirectional mappings are represented by two neural paths connecting the maps in both 

directions (see the separate arrows in Fig. 1). The phonetic map – which forms the central 

map for all bidirectional mappings in our model (see Fig. 1) can be interpreted as the central 

part of the mental syllabary (Levelt and Wheeldon 1994 and Levelt et al 1999). Neural 

cortico-cortical connections exist in both directions between this part of the frontal cortex and 
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the sensory areas as well as between this part of the frontal cortex and those temporal regions 

which process phonemic information (Kandel et al. 2000).  

Other computer implemented models of speech production (Bailly 1997, Guenther 

1994, 1995, 2006, and Guenther et al. 2006) as well as the model introduced here reflect the 

relationship between perception and production by incorporating perceptual feedback control 

loops  or by incorporating production-perception pathways for self-monitoring processes 

(Indefrey and Levelt 2004). Dual stream models of speech perception have recently been 

published which introduce a ventral stream for passive auditory processing and a dorsal 

stream activating auditory-motor networks (e.g. Hickok and Poeppel 2004 and 2007) but 

passive models of speech perception that do not refer to production processes can also be 

found (McClelland and Elman 1986, Gaskell and Marslen-Wilson 1997, Luce et al. 2000, 

Norris et al. 2006). The model introduced here reflects the close relationship between speech 

production and speech perception since on the one hand our model comprises basic features 

of speech production models (cf. Guenther et al. 2006) and since on the other hand our model 

is capable of incorporating in addition the dual stream idea (Hickok and Poeppel 2007) in a 

straight forward way (see the labels “ventral stream” and “dorsal stream” in Fig. 1).  

Mirror neurons (visual and audio-visual mirror neuron system) appear to be one of the 

neural systems that are involved in the association of production and perception processes 

(Rizzolatti and Arbib 1998, Studdert-Kennedy 2002, Kohler et al. 2002, Fadiga and Craighero 

2004, Rizzolatti and Craighero 2004, Wilson et al. 2004, Iacoboni 2005, Wilson and Knoblich 

2005, Arbib 2005). Systems of mirror neurons have been detected which code the abstract 

meaning of goal-directed actions (e.g. grasping) and which are capable of co-activating motor 

and sensory (visual and audio-visual) representations of these actions by neural cortico-

cortical associations. These visual and audio-visual mirror neuron systems also co-activate 

abstract concepts (preferably for action words) and thus are capable of associating higher 

order linguistic representations with goal-directed actions. A speech mirror neuron system 

(“mirror resonant system” after Fadiga and Craighero 2004, p. 167, “auditory mirror neuron 

system” or “echo neurons” after Rizzolatti and Craighero 2004, p. 185f) is postulated which is 

newer from the viewpoint of evolution in comparison to the mirror neuron system introduced 

above and which is directly linked with the capacity of humans to learn speech items by 

imitation. It can be assumed that this speech mirror neuron system in parallel co-activates 

motor representations, sensory representations, and phonemic representations of speech items. 

Given that from a phonetic viewpoint speech items also are built up by goal-directed actions 

(called speech gestures) which build up the motor plans for speech items in our model (see 
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section 2), it can be hypothesized that a mirror neuron layer also exists for the association of 

motor, sensory, and phonemic representations of speech gestures (see also Westerman and 

Miranda 2004).   

Self-organization is a central principle of learning and self-organizing maps are used 

for modeling cortical networks (Kohonen 2001). Within our neurocomputational model 

artificial self-organizing neural networks are implemented since self-organizing neural 

networks are biologically plausible and have been used successfully for modeling semantic 

lexical networks (Ritter und Kohonen 1989), for (i) modeling semantic and phonological 

aspects during early lexical development (Li et al. 2004), and for (ii) modeling the generation 

and recognition of goal-directed movements (Bullock et al. 1993, Tani et al. 2004). A further 

argument for using self-organizing maps is their success in modeling the mapping between 

phonemic and phonetic aspects of speech production as demonstrated by the learning 

experiments for vowels and syllables described in this study.  

In our current model different submaps are used for different classes of speech items 

(V, CV, VC) and separate training procedures were introduced for training these classes of 

speech items. This separation of the phonetic map in submaps as well as the separation of 

training procedures for different speech items was done in order to simplify the modeling of 

the speech acquisition procedure for these three classes of speech items from the 

computational viewpoint. But in principle all types of speech items (i.e. all types of syllables 

and words or word components) can be trained simultaneously by introducing just one 

comprehensive learning task and by using one single phonetic map. Recent preliminary 

experiments indicate that a comprehensive single phonetic map shapes different subregions 

representing different classes of speech items. The ordering of speech items within these 

subregions is similar to the phonetotopic ordering presented in this paper for the different 

submaps discussed here.  

It is unclear whether the training sets used here constitute a representative natural 

model of babbling and imitation training during early states of human speech acquisition. Our 

training sets comprise a widespread set of vocalic vocal tract positions and a widespread set 

of opening and closing movements. At least these sets comprise all vocal tract positions and 

all opening and closing movements which are physiologically possible. But it is conceivable 

that toddlers very quickly reduce their set of training items from all physiological possible 

positions and movements towards a subset of positions and movements which are especially 

important for speech.  
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It should be noted that our neural modeling approach does not include modeling of 

temporal aspects of neural functioning. Rather the temporal aspects of production and 

perception are included in the speech items and thus in the sensory, motor, phonetic, and 

phonemic states. In our production-perception model sensory and motor states of vowels and 

syllables are processed as a whole. Our modeling approach thus is sufficient as long as only a 

description of the training and processing of syllables is wanted. In contrast a detailed 

temporal organization becomes important if speech items comprise more than one syllable. In 

this case processing delays must be introduced for all pathways postulated in the model (cf. 

Guenther et al. 2006) and temporal aspects of neural activity need to be considered (cf. Maass 

and Schmitt 1999).  

The two training stages identified by our modeling study distinguish between babbling 

(i.e. the build-up stage for sensorimotor representations of pre-linguistic proto-vocalic and 

proto-consonantal speech gestures) and imitation (i.e. the build-up stage for language-specific 

perceptual, motor, phonetic, and phonemic representations of speech items). A closer mode-

ling of early stages of speech acquisition (Oller et al. 1999) is beyond the scope of this paper. 

Furthermore in reality the two training stages introduced here overlap in time. This is partially 

realized in our approach, since babbling and imitation training items are applied in parallel 

during the imitation training stage after a short babbling training stage.  

The next important step would be to introduce processes for building up the mental 

lexicon and for modeling the process of word segmentation and identification (cf. Batchelder 

2002, Werker and Yeung 2005, Jusczyk 1999, Brent 1999). The representation of the mental 

lexicon of the target language is very important for including top-down processes of speech 

perception and thus for speech recognition. However consideration of these processes 

currently goes beyond the scope of the current implementation of our model. But the model in 

generally is open for integrating a mental lexicon.   

Last but not least it has to be stated that the neurocomputational production-perception 

model developed thus far by no means is an alternative solution for high-performance speech 

recognition or speech synthesis systems. At present the model described here is capable of 

producing and perceiving simple CV- and VC-syllables under ideal conditions. Concerning a 

further development of the model introduced here two different strategies are imaginable. On 

the one hand, this model can be further developed in order to handle more complex classes of 

speech items (words, sentences, or a whole discourse) under ideal and non ideal conditions 

(e.g. different speakers, different emotional states, external noise). On the other hand, the 

organization of the neurocomputational model outlined in this paper could be integrated at 
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least partially into the architecture of current or new speech recognition and speech synthesis 

systems.  
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Figures  
 
 
 
 
 

 
 
 
 
Figure 1: Organization of the neurocomputational model. Boxes with black outline represent 
neural maps. Arrows indicate processing paths or neural mappings. Boxes without outline 
indicate processing modules. Grey letters and grey arrows indicate processing modules and 
neural mappings which are not computer implemented in the current version of the model.    
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Figure 2: One-layer feedforward network connecting two neural maps 1 and 2. Grey lines 
indicate the neural connections connecting each neuron of map 1 with each neuron of map 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Self-organizing network connecting three neural maps (side layer maps) by a cen-
tral self-organizing map (SOM or central layer map). Black lines indicate the neural connec-
tions, connecting each neuron of each side layer map with each neuron of the central map.  
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Figure 4: Position of all auditory patterns of the proto-vocalic training stimuli (grey points) in 
the normalized and bark-scaled (a) F1-F2 and (b) F1-F3 vowel space.  
 



 

 

 

ACCEPTED MANUSCRIPT 

 

 
 
 
 
 

 

 

 

 

 

 

 

Figure 5: Auditory state (right side) for a dorsal closing gesture (left side).  
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Figure 6: Motor plan and auditory link weight values after vocalic babbling and imitation 
training for each neuron within the vocalic phonetic map (15x15 neurons). Link weight values 
are given for two motor plan parameters within each neuron box: back-front (left bar) and 
low-high (right bar). Link weight values are given for three auditory parameters: bark scaled 
F1, F2, and F3 (horizontal lines within each neuron box). The outlined boxes indicate the 
association of neurons with vowel phoneme categories. These associations are established 
during imitation training (see text).  
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Figure 7: Motor plan and auditory link weight values after CV-syllabic babbling and imi-
tation training for each neuron within the CV-phonetic map (15x15 neurons). Link weight 
values are given for five motor plan parameters within each neuron box. First three columns: 
vocal tract organ which performs the closing gesture (labial, apical, dorsal); two last columns: 
back-front value (forth column) and low-high value (fifth column) of the vowel within the 
CV-sequence. Link weight values are given for three auditory parameters: bark scaled F1, F2, 
and F3 (formant transitions within each neuron box). The outlined boxes indicate the associ-
ation of neurons with consonant phoneme categories /b/, /d/, and /g/; each of these three 
regions comprises the appropriate consonant in all vocalic contexts. These associations are 
established during imitation training (see text).  
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Figure 8: Positions of all auditory patterns of the language-specific vocalic training stimuli 
(phone clouds: 100 realizations per phoneme /i/ (square), /e/ (cross), /a/ (circle), /o/ (triangle), 
and /u/ (plus)) in the normalized and bark-scaled (a) F1-F2 and (b) F1-F3 vowel space. The 
patterns (or phone clouds) are added to the proto-vocalic training stimuli (points).  
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Figure 9: Bark-scaled formant pattern for 13 vocalic stimuli (/i/-/e/-/a/-continuum) for the 
vocalic perceptual identification and discrimination tests.   
 
 
 
 
 
 
 
 
 

 
 
 
Figure 10: Bark-scaled formant pattern for 13 CV-stimuli (/ba/-/da/-/ga/-continuum) for the 
consonantal perceptual identification and discrimination tests.   
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Figure 11: Measured identification scores (non-bold black lines) and measured (bold black 
line) and calculated (bold grey line) discrimination score for the vocalic /i/-/e/-/a/ stimulus 
continuum for 20 virtual instances of the model.  
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Figure 12: Measured identification scores (non-bold black lines) and measured (bold black 
line) and calculated (bold grey line) discrimination scores for the consonantal /ba/-/da/-/ga/ 
stimulus continuum for 20 virtual instances of the model. 
 
 
 
 
 
 


