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Abstract

We consider the inverse scattering problem on the energy interval in three dimensions.
We are focused on stability and instability questions for this problem. In particular,
we prove an exponential instability estimate which shows optimality of the logarithmic
stability result of [Stefanov, 1990] (up to the value of the exponent).

1. Introdution

We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ R
3, (1.1)

where
v is real-valued, v ∈ L∞(R3),
v(x) = O(|x|−3−ǫ), |x| → ∞, for some ǫ > 0.

(1.2)

Under conditions (1.2), for any k ∈ R3 \ 0 equation (1.1) with E = k2 has a unique
continuous solution ψ+(x, k) with asymptotics of the form

ψ+(x, k) = eikx − 2π2 e
i|k||x|

|x| f

(

k

|k| ,
x

|x| , |k|
)

+ o

(

1

|x|

)

as |x| → ∞
(

uniformly in
x

|x|

)

,

(1.3)

where f(k/|k|, ω, |k|) with fixed k is a continuous function of ω ∈ S2.
The function f(θ, ω, s) arising in (1.3) is refered to as the scattering amplitude for the

potential v for equation (1.1). (For more information on direct scattering for equation (1.1),
under condition (1.2), see, for example, [6] and [11].)

It is well known that for equation (1.1), under conditions (1.2), the scattering amplitude
f in its high-energy limit uniquely determines v̂ on R3 , where

v̂(p) = (2π)−3

∫

R3

eipxv(x)dx, p ∈ R
3, (1.4)

via the Born formula. As a mathematical theorem this result goes back to [5] (see, for
example, Section 2.1 of [11] and Theorem 1.1 of [14] for details).

We consider the following inverse problem for equation (1.1).
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Problem 1.1 Given f on the energy interval I, find v.
In [7] it was shown that for equation (1.1), under the conditions (1.2), for any E > 0 and

δ > 0 the scattering amplitude f(θ, ω, s) on {(θ, ω, s) ∈ S2 × S2 × R+, E ≤ s2 ≤ E + δ}
uniquely determines v̂(p) on {p ∈ R3 | |p| ≤ 2

√
E}. This determination is based on solving

linear integral equations and on an analytic continuation. This result of [7] was improved
in [14]. On the other hand, if v satisfies (1.2) and, in addition, is compactly supported or
exponentially decaying at infinity, then v̂(p) on {p ∈ R3 | |p| ≤ 2

√
E} uniquely determines

v̂(p) on {p ∈ R3 | |p| > 2
√
E} by an analytic continuation and, therefore, uniquely determines

v on R
3.

In the case of fixed energy and potential v, satisfying (1.2) and, in addition, being
compactly supported or exponentially decaying at infinity, global uniqueness theorems and
precise reconstructions were given for the first time in [12], [13].

An approximate but numerically efficient method for finding potential v from the scattering
amplitude f in the case of fixed energy was devoloped in [15]. Related numerical implementation
was given in [2].

Global stability estimates for Problem 1.1 were given by Stefanov in [17] (at fixed
energy for compactly supported potentials), see Theorem 2.1 in Section 2 of the present
paper. In [17], using a special norm for the scattering amplitude f , it was shown that the
stability estimates for Problem 1.1 follow from the Alessandrini stability estimates of [1] for
the Gel’fand-Calderon inverse problem of finding potential v in bounded domain from the
Direchlet-to-Neumann map. The Alessandrini stability estimates were recently improved by
Novikov in [16].

In the case of fixed energy, the Mandache results of [10] show that logarithmic stability
estimates of Alessandrini of [1] and especially of Novikov of [16] are optimal (up to the
value of the exponent). In [8] studies of Mandache were extended to the case of Direchlet-
to-Neumann map given on the energy intervals. Note also that Mandache-type instability
estimates for the elliptic inverse problem concerning the determination of inclusions in a
conductor by different kinds of boundary measurements and the inverse obstacle acoustic
scattering problems were given in [3].

In the present work we apply to Problem 1.1 the approach of [10], [8] and show that the
Stefanov logarithmic stability estimates of [17] are optimal (up to the value of the exponent).
The Stefanov stability estimates and our instability result for Problem 1.1 are presented and
discussed in Section 2. In Section 3 we prove some basic analytic properties of the scattering
amplitude. Finally, in Section 5 we prove the main result, using a ball packing and covering
by ball arguments.

2. Stability and instability estimates

In what follows we suppose
supp v(x) ⊂ D = B(0, 1), (2.1)

where B(x, r) is the open ball of radius r centered at x. We consider the orthonormal basis
of the spherical harmonics in L2(S2) = L2(∂D):

{Y p
j : j ≥ 0; 1 ≤ p ≤ 2j + 1}. (2.2)

The notation (aj1p1j2p2) stands for a multiple sequence. We will drop the subscript

0 ≤ j1, 1 ≤ p1 ≤ 2j1 + 1, 0 ≤ j2, 1 ≤ p2 ≤ 2j2 + 1. (2.3)
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We expand function f(θ, ω, s) in the basis {Y p1
j1

× Y p2
j2
}:

f(θ, ω, s) =
∑

j1,p1,j2,p2

aj1p1j2p2(s)Y
p1
j1
(θ)Y p2

j2
(ω). (2.4)

As in [17] we use the norm

||f(·, ·, s)||σ1,σ2
=

{

∑

j1,p1,j2,p2

(

2j1 + 1

es

)2j1+2σ1
(

2j2 + 1

es

)2j2+2σ2

|aj1p1j2p2(s)|2
}1/2

. (2.5)

If a function f is the scattering amplitude for some potential v ∈ L∞(D) supported in
B(0, ρ), where 0 < ρ < 1, then

|aj1p1j2p2(s)| ≤ C(s, ||v||L∞(D))

(

esρ

2j1 + 1

)j1+3/2(
esρ

2j2 + 1

)j2+3/2

(2.6)

and, therefore, ||f(·, ·, s)||σ1,σ2
<∞, see estimates of Proposition 2.2 of [17].

Theorem 2.1 (see [17]). Let v1, v2 be real-valued potentials such that vi ∈ L∞(D)∩Hq(R3),
supp vi ⊂ B(0, ρ), ||vi||L∞(D) ≤ N for i = 1, 2 and some N > 0, q > 3/2 and 0 < ρ < 1. Let
f1 and f2 denote the scattering amplitudes for v1 and v2, respectively, in the framework of
equation (1.1) with E = s2, s > 0, then

||v1 − v2||L∞(D) ≤ c(N, ρ)φδ(||f1(·, ·, s)− f2(·, ·, s)||3/2,−1/2), (2.7)

where φδ(t) = (− ln t)−δ for some fixed δ, where, in particular, 0 < δ < 1, and for sufficiently
small t > 0.

The main result of the present work is the following theorem.

Theorem 2.2. For the interval I = [s1, s2], such that s1 > 0, and for any m > 0, α > 2m
and any real σ1, σ2 there are constants β > 0 and N > 0, such that for any v0 ∈ Cm(D)
with ||v0||L∞(D) ≤ N , supp v0 ⊂ B(0, 1/2) and any ǫ ∈ (0, N), there are real-valued potentials
v1, v2 ∈ Cm(D), also supported in B(0, 1/2), such that

sup
s∈I

(||f1(·, ·, s)− f2(·, ·, s)||σ1,σ2
) ≤ exp

(

−ǫ− 1

α

)

,

||v1 − v2||L∞(D) ≥ ǫ,
||vi − v0||L∞(D) ≤ ǫ, i = 1, 2,
||vi − v0||Cm(D) ≤ β, i = 1, 2,

(2.8)

where f1, f2 are the scattering amplitudes for v1, v2, respectively, for equation (1.1).

Remark 2.1. In the case of fixed energy s1 = s2 we can replace the condition α > 2m in
Theorem 2.2 by α > 5m/3.
Remark 2.2. We can allow β to be arbitrarily small in Theorem 2.2 if we require ǫ ≤ ǫ0
and replace the right-hand side in the first inequality in (2.8) by exp(−cǫ− 1

α ), with ǫ0 > 0
and c > 0 depending on β.
Remark 2.3. Note that Theorem 2.2 and Remark 2.1 imply, in particular, that for any real
σ1 and σ2 the estimate

||v1 − v2||L∞(D) ≤ c̃(N, ρ,m, I) sup
s∈I

φδ(||f1(·, ·, s)− f2(·, ·, s)||σ1,σ2
) (2.9)
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can not hold with δ > 2m in the case of the scattering amplitude given on the energy interval
and with δ > 5m/3 in the case of fixed energy. Thus Theorem 2.2 and Remark 2.1 show
optimality of the Stefanov logarithmic stability result (up to the value of the exponent).
Remark 2.4. A disadvantage of estimate (2.7) is that

δ < 1 even if m is very great. (2.10)

Apparently, proceeding from results of [16], it is not difficult to improve estimate (2.7) for

δ = m+ o(m) as m→ ∞. (2.11)

3. Some basic analytic properties of the scattering amplitude

Consider the solution ψ+(x, k) of equation 1.1, see formula (1.3). We have that

ψ+(x, k) = eikxµ+(x, θ, s), (3.1)

where θ ∈ S2, k = sθ and µ+(x, θ, s) solves the equation

µ+(x, θ, s) = 1−
∫

R3

G+(x, y, s)e−isθ(x−y)v(y)µ+(y, θ, s)dy, (3.2)

where

G+(x, y, s) =
eis|x−y|

4π|x− y| . (3.3)

We suppose that condition (2.1) holds and, in addition, for some h > 0 we have that

|Im s| ≤ h, (3.4)

c1(h,D)||v||L∞(D) ≤ 1/2, (3.5)

where D = B(0, 1),

c1(h,D) = sup
x∈D

∫

D

e2h|x−y|

4π|x− y|dy. (3.6)

Then, in particular,
∣

∣e−isθ(x−y)eis|x−y|
∣

∣ ≤ e2h|x−y|. (3.7)

Solving (3.2) by the method of succesive approximations in L∞(D), we obtain that

|µ+(x, θ, s)| ≤ 1

1− c1||v||L∞(D)
, θ ∈ S2, x ∈ D. (3.8)

Lemma 3.1. Let aj1p1j2p2(s) denote coefficients f(s, θ, ω) in the basis of the spherical harmonics
{Y p1

j1
×Y p2

j2
}, where f is the scattering amplitude for potential v ∈ L∞(D) such that conditions

(2.1) and (3.5) hold for some h > 0,

f(θ, ω, s) =
∑

j1,p1,j2,p2

aj1p1j2p2(s)Y
p1
j1
(θ)Y p2

j2
(ω). (3.9)

Then aj1p1j2p2(s) is holomorphic function in Wh = {s | |Im s| ≤ h} and

|aj1p1j2p2(s)| ≤ c2(h,D)s ∈ Wh. (3.10)
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Proof of Lemma 3.1. We start with the well-known formula

f(θ, ω, s) =
1

(2π)3

∫

R3

eis(θ−ω)xv(x)µ+(x, θ, s)dx. (3.11)

Note that, since θ, ω ∈ S2,

|eis(θ−ω)x| ≤ e2|Ims||x|. (3.12)

Combining it with (2.1), (3.5), (3.8) and (3.11) we obtain that

|f(θ, ω, s)| ≤ c̃2(h,D) for s ∈ Wh. (3.13)

Using also that

aj1p1j2p2(s) =

∫

S2×S2

f(θ, ω, s)Y p1
j1
(θ)Y p2

j2
(ω)dθdω (3.14)

we obtain the result of Lemma 3.1. �

4. A fat metric space and a thin metric space

Definition 4.1. Let (X, dist) be a metric space and ǫ > 0. We say that a set Y ⊂ X is an
ǫ-net for X1 ⊂ X if for any x ∈ X1 there is y ∈ Y such that dist(x, y) ≤ ǫ. We call ǫ-entropy
of the set X1 the number Hǫ(X1) := log2min{|Y | : Y is an ǫ-net fot X1}.

A set Z ⊂ X is called ǫ-discrete if for any distinct z1, z2 ∈ Z, we have dist(z1, z2) ≥ ǫ. We
call ǫ-capacity of the set X1 the number Cǫ := log2max{|Z| : Z ⊂ X1 and Z is ǫ-discrete}.

The use of ǫ-entropy and ǫ-capacity to derive properties of mappings between metric
spaces goes back to Vitushkin and Kolmogorov (see [9] and references therein). One notable
application was Hilbert’s 13th problem (about representing a function of several variables
as a composition of functions of a smaller number of variables). In essence, Lemma 4.1 and
Lemma 4.2 are parts of the Theorem XIV and the Theorem XVII in [9].

Lemma 4.1. Let d ≥ 2 и m > 0. For ǫ, β > 0, consider the real metric space

Xmǫβ = {v ∈ Cm(Rd) | supp v ⊂ B(0, 1/2), ||v||L∞(Rd) ≤ ǫ, ||v||Cm(Rd) ≤ β}

with the metric induced by L∞. Then there is µ > 0 such that for any β > 0 and ǫ ∈ (0, µβ),

there is an ǫ-discrete set Z ⊂ Xmǫβ with at least exp
(

2−d−1(µβ/ǫ)d/m
)

elements.

Lemma 4.2. For the interval I = [a, b] and γ > 0 consider the ellipse WI,γ ∈ C:

WI,γ = {a + b

2
+
a− b

2
cos z | |Im z| ≤ γ}. (4.1)

Then there is a constant ν = ν(C, γ) > 0 such that for any δ ∈ (0, e−1) there is a δ-net for
the space of functions on I with L∞-norm, having holomorphic continuation to WI,γ with
module bounded above on WI,γ by the constant C, with at most exp(ν(ln δ−1)2) elements.
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Remark 4.1. In the case of a = b, taking

Y =
δ

2
Z

⋂

[−C,C] + i · δ
2
Z

⋂

[−C,C], (4.2)

we get δ-net with at most exp(ν ln δ−1) elements.
Lemma 4.1 and Lemma 4.2 were also formulated and proved in [10] and [8], respectively.
For the interval I = [s1, s2] such that s1 > 0 and real σ1, σ2 we introduce the Banach

space

XI,σ1,σ2
=

{

(

aj1p1j2p2(s)
)

|
∥

∥

∥

(

aj1p1j2p2(s)
)
∥

∥

∥

XI,σ1,σ2

<∞
}

, (4.3)

where

∥

∥

∥

(

aj1p1j2p2(s)
)
∥

∥

∥

XI,σ1,σ2

= sup
s∈I

j1,p1,j2,p2

(

(

2j1 + 1

es

)j1+σ1
(

2j2 + 1

es

)j2+σ2

|aj1p1j2p2(s)|
)

. (4.4)

We consider the scattering amplitude f for some potential v ∈ L∞(D) supported in B(0, ρ),
where 0 < ρ < 1. We identify in the sequel the scattering amplitude f(s, θ, ω) with its matrix
(

aj1p1j2p2(s)
)

in the basis of the spherical harmonics {Y p1
j1

× Y p2
j2
} . We have that

sup
s∈I

||f(·, ·, s)||σ1,σ2
≤ c3

∥

∥

∥

(

aj1p1j2p2(s)
)
∥

∥

∥

XI,σ̃1,σ̃2

, (4.5)

where σ̃1−σ2 = σ̃2−σ2 = 3 and c3 = c3(I) > 1. We obtain (4.5) from definitions (2.5), (4.4)
and by taking c3 > 1 in a such a way that

∑

j1,p1,j2,p2

(

2j1 + 1

es

)−3(
2j2 + 1

es

)−3

< c3. (4.6)

For h > 0 we denote by Ah the set of the matrices, corresponding to the scattering amplitudes
for the potentials v ∈ L∞(D) supported in B(0, 1/2) such that condition (3.5) holds.

Lemma 4.3. For any h > 0 and any real σ1, σ2, the set Ah belongs to XI,σ1,σ2
. In addition,

there is a constant η = η(I, h, σ1, σ2) > 0 such that for any δ ∈ (0, e−1) there is a δ-net Y

for Ah in XI,σ1,σ2
with at most exp

(

η (ln δ−1)
6
(1 + ln ln δ−1)

2
)

elements.

Proof of Lemma 4.3. We can suppose that σ1, σ2 ≥ 0 as the assertion is stronger in this
case. If a function f is the scattering amplitude for some potential v ∈ L∞(D) supported in
B(0, 1/2), we have from (2.6) that

(

2j1 + 1

es

)j1+σ1
(

2j2 + 1

es

)j2+σ2

|aj1p1j2p2(s)| ≤ c4
(2j1 + 1)σ1(2j2 + 1)σ2

2j1+j2
, (4.7)

where c4 = c4(I, h) > 0. Hence, for any positive σ1 and σ2,

∥

∥

∥

(

aj1p1j2p2(s)
)
∥

∥

∥

XI,σ1,σ2

≤ sup
j1,j2

(

c4
(2j1 + 1)σ1(2j2 + 1)σ2

2j1+j2

)

<∞ (4.8)

and so the first assertion of the Lemma 4.3 is proved.
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Let lδ,σ1,σ2
be the smallest natural number such that c4(2l + 1)σ1+σ22−l < δ for any

l ≥ lδ,σ1,σ2
. Taking natural logarithm we have that

− ln c4 − (σ1 + σ2) ln(2l + 1) + l ln 2 > ln δ−1 for l ≥ lδ,σ1,σ2
. (4.9)

Using ln δ−1 > 1, we get that
lδ,σ1,σ2

≤ C ′ ln δ−1, (4.10)

where the constant C ′ depends only on h, σ1, σ2 and I = [s1, s2]. We take WI = WI,γ of
(4.1), where the constant γ > 0 is such that WI ⊂ {s | |Im s| ≤ h}. If max(j1, j2) ≤ lδ,σ1,σ2

,
then we denote by Yj1p1j2p2 some δj1p1j2p2-net from Lemma 4.2 with the constant C = c2,
where the constant c2 is from Lemma 3.1 and

δj1p1j2p2 =

(

es1
2j1 + 1

)j1+σ1
(

es1
2j2 + 1

)j2+σ2

δ. (4.11)

Otherwise we take Yj1p1j2p2 = {0}. We set

Y =
{(

aj1p1j2p2(s)
)

| aj1p1j2p2(s) ∈ Yj1p1j2p2

}

. (4.12)

For any
(

aj1p1j2p2(s)
)

∈ Ah there is an element
(

bj1p1j2p2(s)
)

∈ Y such that

(

2j1 + 1

es

)j1+σ1
(

2j2 + 1

es

)j2+σ2

|aj1p1j2p2(s)− bj1p1j2p2(s)| ≤

≤
(

2j1 + 1

es

)j1+σ1
(

2j2 + 1

es

)j2+σ2

δj1p1j2p2 ≤ δ

(4.13)

in the case of max(j1, j2) ≤ lδ,σ1,σ2
and

(

2j1 + 1

es

)j1+σ1
(

2j2 + 1

es

)j2+σ2

|aj1p1j2p2(s)− bj1p1j2p2(s)| ≤

≤ c4
(2j1 + 1)σ1(2j2 + 1)σ2

2j1+j2
≤ c4

(2max(j1, j2) + 1)σ1+σ2

2max(j1,j2)
< δ,

(4.14)

otherwise.
It remains to count the elements of Y . We recall that |Yj1p1j2p2| = 1 in the case of

max(j1, j2) > lδ,σ1,σ2
. Using again the fact that ln δ−1 ≥ 1 and (4.10) we get in the case of

max(j1, j2) ≤ lδ,σ1,σ2
:

|Yj1p1j2p2| ≤ exp(ν(ln δ−1
j1p1j2p2

)2) ≤ exp
(

ν ′
(

ln δ−1
)2 (

1 + ln ln δ−1
)2
)

. (4.15)

We have that nδ,σ1,σ2
≤ l2δ,σ1,σ2

(2lδ,σ1,σ2
+ 1)2 ≤ (2lδ,σ1,σ2

+1)4, where nδ,σ1,σ2
is the number of

four-tuples (j1, p1, j2, p2) with max(j1, j2) ≤ lδ,σ1,σ2
. Taking η to be big enough we get that

|Y | ≤
(

exp
(

ν ′
(

ln δ−1
)2 (

1 + ln ln δ−1
)2
))nδ,σ1,σ2

≤ exp
(

ν ′
(

ln δ−1
)2 (

1 + ln ln δ−1
)2

(1 + 2C ′ ln δ−1)4
)

≤ exp
(

η
(

ln δ−1
)6 (

1 + ln ln δ−1
)2
)

.

(4.16)

�

Remark 4.2. In the case of s1 = s2, taking into account Remark 4.1 and using it in (4.15)

and (4.16), we get δ-net Y with at most exp
(

η (ln δ−1)
5
(1 + ln ln δ−1)

)

elements.
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5. Proof of Theorem 2.2

We take N such that condition (3.5) holds for any ||v||L∞(D) ≤ 2N for some h > 0. By
Lemma 4.1, the set v0 +Xmǫβ has an ǫ-discrete subset v0 +Z. Since ǫ ∈ (0, N) we have that
the set Y constructed in Lemma 4.3 is also δ-net for the set of the matrices, corresponding
to the scattering amplitudes for the potentials v ∈ v0 +Xmǫβ. We take δ such that 2c3δ =

exp
(

−ǫ− 1

α

)

, see (4.5). Note that inequalities of (2.8) follow from

|v0 + Z| > |Y |, (5.1)

where the set Y is constructed in Lemma 4.3 with σ̃1 = σ1 + 3 and σ̃2 = σ2 + 3. In fact, if

|v0 +Z| > |Y |, then there are two potentials v1, v2 ∈ v0 +Z with the matrices
(

aj1p1j2p2(s)
)

and
(

bj1p1j2p2(s)
)

, corresponding to the scattering amplitudes for them, being in the same

XI,σ1,σ2
-ball radius δ centered at a point of Y . Hence, using (4.5) we get that

sup
s∈I

||f1(·, ·, s)− f2(·, ·, s)||σ1,σ2
≤ c3

∥

∥

∥

(

aj1p1j2p2(s)
)

−
(

bj1p1j2p2(s)
)
∥

∥

∥

XI,σ̃1,σ̃2

≤

≤ 2c3δ = exp
(

−ǫ− 1

α

)

.
(5.2)

It remains to find β such that (5.1) is fullfiled. By Lemma 4.3 for some ηα = ηα(I, σ1, σ2, α) >
0

|Y | ≤ exp

(

η
(

ln(2c3) + ǫ−
1

α

)6 (

1 + ln
(

ln(2c3) + ǫ−
1

α

))2
)

≤ exp
(

ηαǫ
− 3

m

)

. (5.3)

Now we take
β > µ−1max

(

N, ηm/3
α 22m

)

. (5.4)

This fulfils requirement ǫ < µβ in Lemma 4.1, which gives

|v0 + Z| = |Z| ≥ exp
(

2−4(µβ/ǫ)3/m
) (5.4)
>

> exp
(

2−4(ηm/3
α 22m/ǫ)3/m

)

(5.3)

≥ |Y |.
(5.5)

This completes the proof of Theorem 2.2.
In the case of fixed energy s1 = s2, using Remark 4.2 in (5.3), we can replace the condition

α > 2m in Theorem 2.2 by α > 5m/3.
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