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Exponential instability in the inverse scattering problem on the energy interval

 (up to the value of the exponent).

Introdution

We consider the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ R 3 , (1.1) 
where v is real-valued, v ∈ L ∞ (R 3 ), v(x) = O(|x| -3-ǫ ), |x| → ∞, for some ǫ > 0.

(1.2)

Under conditions (1.2), for any k ∈ R 3 \ 0 equation (1.1) with E = k 2 has a unique continuous solution ψ + (x, k) with asymptotics of the form

ψ + (x, k) = e ikx -2π 2 e i|k||x| |x| f k |k| , x |x| , |k| + o 1 |x| as |x| → ∞ uniformly in x |x| , (1.3) 
where f (k/|k|, ω, |k|) with fixed k is a continuous function of ω ∈ S 2 .

The function f (θ, ω, s) arising in (1.3) is refered to as the scattering amplitude for the potential v for equation (1.1). (For more information on direct scattering for equation (1.1), under condition (1.2), see, for example, [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF] and [START_REF] Newton | Inverse Schrodinger scattering in three dimensions[END_REF].)

It is well known that for equation (1.1), under conditions (1.2), the scattering amplitude f in its high-energy limit uniquely determines v on R 3 , where

v(p) = (2π) -3 R 3 e ipx v(x)dx, p ∈ R 3 , (1.4) 
via the Born formula. As a mathematical theorem this result goes back to [START_REF] Faddeev | Uniqueness of the solution of the inverse scattering problem[END_REF] (see, for example, Section 2.1 of [START_REF] Newton | Inverse Schrodinger scattering in three dimensions[END_REF] and Theorem 1.1 of [START_REF] Novikov | On determination of the Fourier transform of a potential from the scattering amplitude[END_REF] for details). We consider the following inverse problem for equation (1.1).

Problem 1.1 Given f on the energy interval I, find v.

In [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF] it was shown that for equation (1.1), under the conditions (1.2), for any E > 0 and δ > 0 the scattering amplitude f (θ, ω, s) on {(θ, ω, s)

∈ S 2 × S 2 × R + , E ≤ s 2 ≤ E + δ} uniquely determines v(p) on {p ∈ R 3 | |p| ≤ 2 √ E}.
This determination is based on solving linear integral equations and on an analytic continuation. This result of [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF] was improved in [START_REF] Novikov | On determination of the Fourier transform of a potential from the scattering amplitude[END_REF]. On the other hand, if v satisfies (1.2) and, in addition, is compactly supported or exponentially decaying at infinity, then v(p)

on {p ∈ R 3 | |p| ≤ 2 √ E} uniquely determines v(p) on {p ∈ R 3 | |p| > 2 √
E} by an analytic continuation and, therefore, uniquely determines v on R 3 .

In the case of fixed energy and potential v, satisfying (1.2) and, in addition, being compactly supported or exponentially decaying at infinity, global uniqueness theorems and precise reconstructions were given for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF], [START_REF] Novikov | The inverse scattering problem at fixed energy for the three-dimensional Schrodinger equation with an exponentially decreasing potential[END_REF].

An approximate but numerically efficient method for finding potential v from the scattering amplitude f in the case of fixed energy was devoloped in [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]. Related numerical implementation was given in [START_REF] Alexeenko | Solution of three-dimensional acoustical inverse scattering problem,II: modified Novikov algorithm[END_REF].

Global stability estimates for Problem 1.1 were given by Stefanov in [START_REF] Stefanov | Stability of the inverse problem in potential scattering at fixed energy[END_REF] (at fixed energy for compactly supported potentials), see Theorem 2.1 in Section 2 of the present paper. In [START_REF] Stefanov | Stability of the inverse problem in potential scattering at fixed energy[END_REF], using a special norm for the scattering amplitude f , it was shown that the stability estimates for Problem 1.1 follow from the Alessandrini stability estimates of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] for the Gel'fand-Calderon inverse problem of finding potential v in bounded domain from the Direchlet-to-Neumann map. The Alessandrini stability estimates were recently improved by Novikov in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF].

In the case of fixed energy, the Mandache results of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] show that logarithmic stability estimates of Alessandrini of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] and especially of Novikov of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] are optimal (up to the value of the exponent). In [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF] studies of Mandache were extended to the case of Direchletto-Neumann map given on the energy intervals. Note also that Mandache-type instability estimates for the elliptic inverse problem concerning the determination of inclusions in a conductor by different kinds of boundary measurements and the inverse obstacle acoustic scattering problems were given in [START_REF] Cristo | Examples of exponential instability for inverse inclusion and scattering problems Inverse Problems[END_REF].

In the present work we apply to Problem 1.1 the approach of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF], [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF] and show that the Stefanov logarithmic stability estimates of [START_REF] Stefanov | Stability of the inverse problem in potential scattering at fixed energy[END_REF] are optimal (up to the value of the exponent). The Stefanov stability estimates and our instability result for Problem 1.1 are presented and discussed in Section 2. In Section 3 we prove some basic analytic properties of the scattering amplitude. Finally, in Section 5 we prove the main result, using a ball packing and covering by ball arguments.

Stability and instability estimates

In what follows we suppose supp v(x) ⊂ D = B(0, 1),

where B(x, r) is the open ball of radius r centered at x. We consider the orthonormal basis of the spherical harmonics in L 2 (S 2 ) = L 2 (∂D):

{Y p j : j ≥ 0; 1 ≤ p ≤ 2j + 1}. (2.2)
The notation (a j 1 p 1 j 2 p 2 ) stands for a multiple sequence. We will drop the subscript

0 ≤ j 1 , 1 ≤ p 1 ≤ 2j 1 + 1, 0 ≤ j 2 , 1 ≤ p 2 ≤ 2j 2 + 1. (2.3) We expand function f (θ, ω, s) in the basis {Y p 1 j 1 × Y p 2 j 2 }: f (θ, ω, s) = j 1 ,p 1 ,j 2 ,p 2 a j 1 p 1 j 2 p 2 (s)Y p 1 j 1 (θ)Y p 2 j 2 (ω). (2.4)
As in [START_REF] Stefanov | Stability of the inverse problem in potential scattering at fixed energy[END_REF] we use the norm

||f (•, •, s)|| σ 1 ,σ 2 = j 1 ,p 1 ,j 2 ,p 2 2j 1 + 1 es 2j 1 +2σ 1 2j 2 + 1 es 2j 2 +2σ 2 |a j 1 p 1 j 2 p 2 (s)| 2 1/2 . (2.5)
If a function f is the scattering amplitude for some potential v ∈ L ∞ (D) supported in B(0, ρ), where 0 < ρ < 1, then

|a j 1 p 1 j 2 p 2 (s)| ≤ C(s, ||v|| L ∞ (D) ) esρ 2j 1 + 1 j 1 +3/2 esρ 2j 2 + 1 j 2 +3/2 (2.6) and, therefore, ||f (•, •, s)|| σ 1 ,σ 2 < ∞, see estimates of Proposition 2.2 of [17]. Theorem 2.1 (see [17]). Let v 1 , v 2 be real-valued potentials such that v i ∈ L ∞ (D) ∩ H q (R 3 ), supp v i ⊂ B(0, ρ), ||v i || L ∞ (D) ≤ N for i = 1,
2 and some N > 0, q > 3/2 and 0 < ρ < 1. Let f 1 and f 2 denote the scattering amplitudes for v 1 and v 2 , respectively, in the framework of equation (1.1) with E = s 2 , s > 0, then

||v 1 -v 2 || L ∞ (D) ≤ c(N, ρ)φ δ (||f 1 (•, •, s) -f 2 (•, •, s)|| 3/2,-1/2 ), (2.7) 
where φ δ (t) = (-ln t) -δ for some fixed δ, where, in particular, 0 < δ < 1, and for sufficiently small t > 0.

The main result of the present work is the following theorem.

Theorem 2.2. For the interval I = [s 1 , s 2 ], such that s 1 > 0, and for any m > 0, α > 2m and any real σ 1 , σ 2 there are constants β > 0 and N > 0, such that for any

v 0 ∈ C m (D) with ||v 0 || L ∞ (D) ≤ N, supp v 0 ⊂ B(0, 1/2
) and any ǫ ∈ (0, N), there are real-valued potentials

v 1 , v 2 ∈ C m (D), also supported in B(0, 1/2), such that sup s∈I (||f 1 (•, •, s) -f 2 (•, •, s)|| σ 1 ,σ 2 ) ≤ exp -ǫ -1 α , ||v 1 -v 2 || L ∞ (D) ≥ ǫ, ||v i -v 0 || L ∞ (D) ≤ ǫ, i = 1, 2, ||v i -v 0 || C m (D) ≤ β, i = 1, 2, (2.8) 
where f 1 , f 2 are the scattering amplitudes for v 1 , v 2 , respectively, for equation (1.1).

Remark 2.1. In the case of fixed energy s 1 = s 2 we can replace the condition α > 2m in Theorem 2.2 by α > 5m/3. Remark 2.2. We can allow β to be arbitrarily small in Theorem 2.2 if we require ǫ ≤ ǫ 0 and replace the right-hand side in the first inequality in (2.8) by exp(-cǫ -1 α ), with ǫ 0 > 0 and c > 0 depending on β. Remark 2.3. Note that Theorem 2.2 and Remark 2.1 imply, in particular, that for any real σ 1 and σ 2 the estimate

||v 1 -v 2 || L ∞ (D) ≤ c(N, ρ, m, I) sup s∈I φ δ (||f 1 (•, •, s) -f 2 (•, •, s)|| σ 1 ,σ 2 )
(2.9)

can not hold with δ > 2m in the case of the scattering amplitude given on the energy interval and with δ > 5m/3 in the case of fixed energy. Apparently, proceeding from results of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], it is not difficult to improve estimate (2.7) for

δ = m + o(m) as m → ∞.
(2.11)

Some basic analytic properties of the scattering amplitude

Consider the solution ψ + (x, k) of equation 1.1, see formula (1.3). We have that

ψ + (x, k) = e ikx µ + (x, θ, s), (3.1) 
where θ ∈ S 2 , k = sθ and µ + (x, θ, s) solves the equation

µ + (x, θ, s) = 1 - R 3 G + (x, y, s)e -isθ(x-y) v(y)µ + (y, θ, s)dy, (3.2) 
where

G + (x, y, s) = e is|x-y| 4π|x -y| . (3.3) 
We suppose that condition (2.1) holds and, in addition, for some h > 0 we have that

|Im s| ≤ h, (3.4 
)

c 1 (h, D)||v|| L ∞ (D) ≤ 1/2, (3.5) 
where D = B(0, 1),

c 1 (h, D) = sup x∈D D e 2h|x-y| 4π|x -y| dy. (3.6) 
Then, in particular, e -isθ(x-y) e is|x-y| ≤ e 2h|x-y| .

(3.7) Solving (3.2) by the method of succesive approximations in L ∞ (D), we obtain that

|µ + (x, θ, s)| ≤ 1 1 -c 1 ||v|| L ∞ (D) , θ ∈ S 2 , x ∈ D. (3.8) 
Lemma 3.1. Let a j 1 p 1 j 2 p 2 (s) denote coefficients f (s, θ, ω) in the basis of the spherical harmonics {Y p 1 j 1 ×Y p 2 j 2 }, where f is the scattering amplitude for potential v ∈ L ∞ (D) such that conditions (2.1) and (3.5) hold for some h > 0,

f (θ, ω, s) = j 1 ,p 1 ,j 2 ,p 2 a j 1 p 1 j 2 p 2 (s)Y p 1 j 1 (θ)Y p 2 j 2 (ω). (3.9)
Then a j 1 p 1 j 2 p 2 (s) is holomorphic function in W h = {s | |Im s| ≤ h} and

|a j 1 p 1 j 2 p 2 (s)| ≤ c 2 (h, D)s ∈ W h . (3.10)
Proof of Lemma 3.1. We start with the well-known formula

f (θ, ω, s) = 1 (2π) 3 R 3 e is(θ-ω)x v(x)µ + (x, θ, s)dx. (3.11) Note that, since θ, ω ∈ S 2 , |e is(θ-ω)x | ≤ e 2|Im s||x| . (3.12) 
Combining it with (2.1), (3.5), (3.8) and (3.11) we obtain that

|f (θ, ω, s)| ≤ c2 (h, D) for s ∈ W h . (3.13)
Using also that

a j 1 p 1 j 2 p 2 (s) = S 2 ×S 2 f (θ, ω, s)Y p 1 j 1 (θ)Y p 2 j 2 (ω)dθdω (3.14)
we obtain the result of Lemma 3.1.

A fat metric space and a thin metric space

Definition 4.1. Let (X, dist) be a metric space and ǫ > 0. We say that a set Y ⊂ X is an ǫ-net for X 1 ⊂ X if for any x ∈ X 1 there is y ∈ Y such that dist(x, y) ≤ ǫ. We call ǫ-entropy of the set X 1 the number

H ǫ (X 1 ) := log 2 min{|Y | : Y is an ǫ-net fot X 1 }. A set Z ⊂ X is called ǫ-discrete if for any distinct z 1 , z 2 ∈ Z, we have dist(z 1 , z 2 ) ≥ ǫ.
We call ǫ-capacity of the set X 1 the number C ǫ := log 2 max{|Z| : Z ⊂ X 1 and Z is ǫ-discrete}.

The use of ǫ-entropy and ǫ-capacity to derive properties of mappings between metric spaces goes back to Vitushkin and Kolmogorov (see [START_REF] Kolmogorov | ǫ-entropy and ǫ-capacity in functional spaces Usp[END_REF] and references therein). One notable application was Hilbert's 13th problem (about representing a function of several variables as a composition of functions of a smaller number of variables). In essence, Lemma 4.1 and Lemma 4.2 are parts of the Theorem XIV and the Theorem XVII in [START_REF] Kolmogorov | ǫ-entropy and ǫ-capacity in functional spaces Usp[END_REF]. Lemma 4.1. Let d ≥ 2 и m > 0. For ǫ, β > 0, consider the real metric space

X mǫβ = {v ∈ C m (R d ) | supp v ⊂ B(0, 1/2), ||v|| L ∞ (R d ) ≤ ǫ, ||v|| C m (R d ) ≤ β}
with the metric induced by L ∞ . Then there is µ > 0 such that for any β > 0 and ǫ ∈ (0, µβ), there is an ǫ-discrete set Z ⊂ X mǫβ with at least exp 2 -d-1 (µβ/ǫ) d/m elements. 

W I,γ = { a + b 2 + a -b 2 cos z | |Im z| ≤ γ}. (4.1)
Then there is a constant ν = ν(C, γ) > 0 such that for any δ ∈ (0, e -1 ) there is a δ-net for the space of functions on I with L ∞ -norm, having holomorphic continuation to W I,γ with module bounded above on W I,γ by the constant C, with at most exp(ν(ln δ -1 ) 2 ) elements.

Remark 4.1. In the case of a = b, taking

Y = δ 2 Z [-C, C] + i • δ 2 Z [-C, C], (4.2) 
we get δ-net with at most exp(ν ln δ -1 ) elements. Lemma 4.1 and Lemma 4.2 were also formulated and proved in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] and [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF], respectively. For the interval I = [s 1 , s 2 ] such that s 1 > 0 and real σ 1 , σ 2 we introduce the Banach space

X I,σ 1 ,σ 2 = a j 1 p 1 j 2 p 2 (s) | a j 1 p 1 j 2 p 2 (s) X I,σ 1 ,σ 2 < ∞ , (4.3) 
where

a j 1 p 1 j 2 p 2 (s) X I,σ 1 ,σ 2 = sup s∈I j 1 ,p 1 ,j 2 ,p 2 2j 1 + 1 es j 1 +σ 1 2j 2 + 1 es j 2 +σ 2 |a j 1 p 1 j 2 p 2 (s)| . (4.4)
We consider the scattering amplitude f for some potential v ∈ L ∞ (D) supported in B(0, ρ), where 0 < ρ < 1. We identify in the sequel the scattering amplitude f (s, θ, ω) with its matrix a j 1 p 1 j 2 p 2 (s) in the basis of the spherical harmonics

{Y p 1 j 1 × Y p 2 j 2 } . We have that sup s∈I ||f (•, •, s)|| σ 1 ,σ 2 ≤ c 3 a j 1 p 1 j 2 p 2 (s) X I,σ 1 ,σ 2 , (4.5) 
where σ1 -σ 2 = σ2 -σ 2 = 3 and c 3 = c 3 (I) > 1. We obtain (4.5) from definitions (2.5), (

and by taking c 3 > 1 in a such a way that

j 1 ,p 1 ,j 2 ,p 2 2j 1 + 1 es -3 2j 2 + 1 es -3 < c 3 . (4.6) 
For h > 0 we denote by A h the set of the matrices, corresponding to the scattering amplitudes for the potentials v ∈ L ∞ (D) supported in B(0, 1/2) such that condition (3.5) holds.

Lemma 4.3. For any h > 0 and any real σ 1 , σ 2 , the set A h belongs to X I,σ 1 ,σ 2 . In addition, there is a constant η = η(I, h, σ 1 , σ 2 ) > 0 such that for any δ ∈ (0, e -1 ) there is a δ-net Y for A h in X I,σ 1 ,σ 2 with at most exp η (ln δ -1 ) 6 (1 + ln ln δ -1 ) 2 elements.

Proof of Lemma 4.3. We can suppose that σ 1 , σ 2 ≥ 0 as the assertion is stronger in this case. If a function f is the scattering amplitude for some potential v ∈ L ∞ (D) supported in B(0, 1/2), we have from (2.6) that

2j 1 + 1 es j 1 +σ 1 2j 2 + 1 es j 2 +σ 2 |a j 1 p 1 j 2 p 2 (s)| ≤ c 4 (2j 1 + 1) σ 1 (2j 2 + 1) σ 2 2 j 1 +j 2 , ( 4.7) 
where c 4 = c 4 (I, h) > 0. Hence, for any positive σ 1 and σ 2 , a j 1 p 1 j 2 p 2 (s)

X I,σ 1 ,σ 2 ≤ sup j 1 ,j 2 c 4 (2j 1 + 1) σ 1 (2j 2 + 1) σ 2 2 j 1 +j 2 < ∞ (4.8)
and so the first assertion of the Lemma 4.3 is proved.

Let l δ,σ 1 ,σ 2 be the smallest natural number such that c 4 (2l + 1) σ 1 +σ 2 2 -l < δ for any l ≥ l δ,σ 1 ,σ 2 . Taking natural logarithm we have that ln c 4 -(σ 1 + σ 2 ) ln(2l + 1) + l ln 2 > ln δ -1 for l ≥ l δ,σ 1 ,σ 2 .

(4.9)

Using ln δ -1 > 1, we get that

l δ,σ 1 ,σ 2 ≤ C ′ ln δ -1 , (4.10) 
where the constant C ′ depends only on h, σ 1 , σ 2 and I = [s 1 , s 2 ]. We take W I = W I,γ of (4.1), where the constant γ > 0 is such that W I ⊂ {s | |Im s| ≤ h}. If max(j 1 , j 2 ) ≤ l δ,σ 1 ,σ 2 , then we denote by Y j 1 p 1 j 2 p 2 some δ j 1 p 1 j 2 p 2 -net from Lemma 4.2 with the constant C = c 2 , where the constant c 2 is from Lemma 3.1 and

δ j 1 p 1 j 2 p 2 = es 1 2j 1 + 1 j 1 +σ 1 es 1 2j 2 + 1 j 2 +σ 2 δ. (4.11) 
Otherwise we take Y j 1 p 1 j 2 p 2 = {0}. We set

Y = a j 1 p 1 j 2 p 2 (s) | a j 1 p 1 j 2 p 2 (s) ∈ Y j 1 p 1 j 2 p 2 . (4.12)
For any a j 1 p 1 j 2 p 2 (s) ∈ A h there is an element b j 1 p 1 j 2 p 2 (s) ∈ Y such that

2j 1 + 1 es j 1 +σ 1 2j 2 + 1 es j 2 +σ 2 |a j 1 p 1 j 2 p 2 (s) -b j 1 p 1 j 2 p 2 (s)| ≤ ≤ 2j 1 + 1 es j 1 +σ 1 2j 2 + 1 es j 2 +σ 2 δ j 1 p 1 j 2 p 2 ≤ δ (4.13)
in the case of max(j 1 , j 2 ) ≤ l δ,σ 1 ,σ 2 and

2j 1 + 1 es j 1 +σ 1 2j 2 + 1 es j 2 +σ 2 |a j 1 p 1 j 2 p 2 (s) -b j 1 p 1 j 2 p 2 (s)| ≤ ≤ c 4 (2j 1 + 1) σ 1 (2j 2 + 1) σ 2 2 j 1 +j 2 ≤ c 4 (2 max(j 1 , j 2 ) + 1) σ 1 +σ 2 2 max(j 1 ,j 2 ) < δ, (4.14) 
otherwise.

It remains to count the elements of Y . We recall that |Y j 1 p 1 j 2 p 2 | = 1 in the case of max(j 1 , j 2 ) > l δ,σ 1 ,σ 2 . Using again the fact that ln δ -1 ≥ 1 and (4.10) we get in the case of max(j 1 , j 2 ) ≤ l δ,σ 1 ,σ 2 : 4 , where n δ,σ 1 ,σ 2 is the number of four-tuples (j 1 , p 1 , j 2 , p 2 ) with max(j 1 , j 2 ) ≤ l δ,σ 1 ,σ 2 . Taking η to be big enough we get that

|Y j 1 p 1 j 2 p 2 | ≤ exp(ν(ln δ -1 j 1 p 1 j 2 p 2 ) 2 ) ≤ exp ν ′ ln δ -1 2 1 + ln ln δ -1 2 . (4.15) We have that n δ,σ 1 ,σ 2 ≤ l 2 δ,σ 1 ,σ 2 (2l δ,σ 1 ,σ 2 + 1) 2 ≤ (2l δ,σ 1 ,σ 2 + 1)
|Y | ≤ exp ν ′ ln δ -1 2 1 + ln ln δ -1 2 n δ,σ 1 ,σ 2 ≤ exp ν ′ ln δ -1 2 1 + ln ln δ -1 2 (1 + 2C ′ ln δ -1 ) 4 ≤ exp η ln δ -1 6 1 + ln ln δ -1 2 . (4.16)
Remark 4.2. In the case of s 1 = s 2 , taking into account Remark 4.1 and using it in (4.15) and (4.16), we get δ-net Y with at most exp η (ln δ -1 )

5 (1 + ln ln δ -1 ) elements.

Proof of Theorem 2.2

We take N such that condition (3.5) holds for any ||v|| L ∞ (D) ≤ 2N for some h > 0. By Lemma 4.1, the set v 0 + X mǫβ has an ǫ-discrete subset v 0 + Z. Since ǫ ∈ (0, N) we have that the set Y constructed in Lemma 4.3 is also δ-net for the set of the matrices, corresponding to the scattering amplitudes for the potentials v ∈ v 0 + X mǫβ . We take δ such that 2c 3 δ = exp -ǫ -1 α , see (4.5). Note that inequalities of (2. (5.5)

This completes the proof of Theorem 2.2.

In the case of fixed energy s 1 = s 2 , using Remark 4.2 in (5.3), we can replace the condition α > 2m in Theorem 2.2 by α > 5m/3.

Lemma 4 . 2 .

 42 For the interval I = [a, b] and γ > 0 consider the ellipse W I,γ ∈ C:

2 ≤≤.( 5 . 2 ) 1 α 6 1 + ln ln(2c 3 ) + ǫ - 1 α 2 ≤ exp η α ǫ - 3 m. ( 5 . 3 )

 25216312353 8) follow from |v 0 + Z| > |Y |, (5.1)where the set Y is constructed in Lemma 4.3 with σ1 = σ 1 + 3 and σ2 = σ 2 + 3. In fact, if|v 0 + Z| > |Y |, then there are two potentials v 1 , v 2 ∈ v 0 + Z with the matrices a j 1 p 1 j 2 p 2 (s)and b j 1 p 1 j 2 p 2 (s) , corresponding to the scattering amplitudes for them, being in the same X I,σ 1 ,σ 2 -ball radius δ centered at a point of Y . Hence, using (4.5) we get thatsup s∈I ||f 1 (•, •, s) -f 2 (•, •, s)|| σ 1 ,σ 2 ≤ c 3 a j 1 p 1 j 2 p 2 (s) -b j 1 p 1 j 2 p 2 (s) X I,σ 1 ,σ 2c 3 δ = exp -ǫ -1 α It remains to find β such that (5.1) is fullfiled. By Lemma 4.3 for some η α = η α (I, σ 1 , σ 2 , α) > 0 |Y | ≤ exp η ln(2c 3 ) + ǫ -Now we take β > µ -1 max N, η m/3 α 2 2m . (5.4) This fulfils requirement ǫ < µβ in Lemma 4.1, which gives |v 0 + Z| = |Z| ≥ exp 2 -4 (µβ/ǫ) 3/m (5.4) > > exp 2 -4 (η m/3 α 2 2m /ǫ)

  Thus Theorem 2.2 and Remark 2.1 show optimality of the Stefanov logarithmic stability result (up to the value of the exponent).

	Remark 2.4. A disadvantage of estimate (2.7) is that	
	δ < 1 even if m is very great.	(2.10)
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