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Nonlinear adaptive output feedback control of series resonant dc-dc converters

The problem of regulating the output voltage of DC-to-DC series resonant converters (SRC) is addressed. The difficulty is threefold: (i) the converter model involves discontinuous and highly nonlinear terms and is, further, controlled through a modulating frequency signal; (ii) all state variables are not accessible to measurements; (iii) the load is uncertain and may even be varying. An output feedback controller, not necessitating the measurement of the converter state variables, is proposed and shown to ensure semi-global stabilization of the closed-loop system and perfect output reference asymptotic tracking. The controller is developed using the backstepping control approach and the high-gain observer design technique.

I.

INTRODUCTION

Series and parallel resonant DC-to-DC converters, and their various variants, have been given a great deal of interest in the power electronic literature. Compared to (hard) switched converters, SRC converters present several advantages e.g. they provide much higher power supplies. As they do not involve switched components, power losses are considerably reduced improving thus the conversion efficiency. However, SRC converters are more complex to control as they involve much more nonlinear dynamics. Furthermore, they are supplied by bipolar square signal generators and, consequently, the switching frequency is in general the only available control variable. These considerations make SRC modeling a particularly hard task. A modeling approach, based on generalized averaging, was developed in [START_REF] Sun | Averaged modeling and analysis of resonant converter[END_REF]. Small signal models for series and parallel resonant converters were developed in [START_REF] Lin | Analysis, modeling and robust controller design for a series resonant converter[END_REF].

In the present work, following the first harmonic approach [START_REF] Sun | Averaged modeling and analysis of resonant converter[END_REF], a fifth order state-space model is developed for the converter of fig [START_REF] Sun | Averaged modeling and analysis of resonant converter[END_REF]. From the control design viewpoint, the difficulty lies in: (i) the system nonlinear and discontinuous nature; (ii) the fact that the control signal (switching frequency) comes in all state variable equations. (iii) the vector state is not completely measurable and it should be estimated. Different control strategies were proposed for the considered class of converters. These include hybrid flatness based control [START_REF] Sira-Ramirez | On the control of the resonant converters: a hybrid flatness approach[END_REF], resonant tanks variables based optimal control [START_REF] Oruganti | Implementation of optimal trajectory control of series resonant converters[END_REF], sliding mode control [START_REF] Sosa | Sliding mode control for the fixed-frequency series resonant converter with asymmetrical clamped-mode modulation[END_REF] and passivity based control [START_REF] Carasco | Analysis and experimentation nonlinear dissipative controller for the series resonant converter[END_REF]. In the present work, a new control strategy is developed to cope with the problem of output voltage regulation in SRC converters without assuming the state variables to be measurable and the load to be known. Following [START_REF] Giri | Observation of state variables in resonant DC-DC converter using the high gain design approach[END_REF], a high gain observer is first designed to get estimates of the state variables that are not accessible to measurements. Then, an adaptive output control law is designed, using the tuning functions backstepping technique [START_REF] Krstic | Nonlinear and adaptive control design[END_REF], based on the above state observer. It is worth recalling that, unlike linear systems, the separation principle does not systematically apply to nonlinear systems [START_REF] Atassi | Separation results for the stabilization of nonlinear systems using different high-gain designs[END_REF]. Furthermore, a parameter projection will be introduced in the parameter adaptive law (estimating online the load) to prevent possible parameter estimate drift that, otherwise, could result due to the presence of state estimation errors. The output adaptive controller thus obtained is formally shown to achieve quite interesting performances. Specifically, the closed-loop system is asymptotically stable and the attraction region size can be made arbitrarily large by conveniently choosing the control design parameters. The output reference tracking error vanishes asymptotically. The unknown load is perfectly identified.

The paper is organized as follows: the studied series resonant converter is described and modeled in Section II; the state observer is presented in Section III; the adaptive output feedback controller is designed in Section IV and the resulting closed-loop system is analyzed in section V; the controller performances are illustrated by simulation in Section VI; technical proofs are placed in the appendix.

II. SERIES RESONANT CONVERTER MODELLING

The studied series resonant DC-to-DC converter is illustrated by Fig 1 . A state-space representation of the system is the following:
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where v and i denote the resonant tank voltage and current respectively; o v is the output voltage supplying the load (here a resistor R ); the power source supplying the converter is characterized by a constant amplitude E and a varying switching frequency  (in s rd / ); L and C designate respectively the inductance and capacitance of the resonant tank; As the supply source amplitude E is constant, the pulsation  turns out to be the only possible control variable. Doing so, one gets the following more convenient model: (see [START_REF] Sun | Averaged modeling and analysis of resonant converter[END_REF], [START_REF] Giri | Observation of state variables in resonant DC-DC converter using the high gain design approach[END_REF] for details):
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In the "harmonic" model ( 4)-( 6) the control signal  comes in linearly. However, it still not suitable for control/observer designs because it involves complex variables and parameters. To get a convenient state-space model, introduce the following notations:
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Substituting [START_REF] Giri | Observation of state variables in resonant DC-DC converter using the high gain design approach[END_REF] in ( 4)-( 6) yields the following state-space representation: . The only quantities that are accessible to measurements are:
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In [START_REF] Giri | Observation of state variables in resonant DC-DC converter using the high gain design approach[END_REF] a high-gain observer has been designed to get accurate estimates of unmeasured variables and shown to be exponentially convergent if all system signals are bounded. This is defined using the following variable change: ) is omitted for space limitation; it can be found in [START_REF] Giri | Observation of state variables in resonant DC-DC converter using the high gain design approach[END_REF] where the following high gain observer was proposed:
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where  denotes a design parameter. The convergence of the above observer has been analyzed in [START_REF] Giri | Observation of state variables in resonant DC-DC converter using the high gain design approach[END_REF] using the following Lyapunov function:
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2 2
I  denotes the 2 2  identity matrix and 1 S is a symmetric positive definite matrix that is the unique solution of the Lyapunov equation:
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with

A and C defined as follows:
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Theorem 1 ([7]). Consider the system ( 8)-( 12), subject to Assumptions A1-A2, the state variable change (14a-c) and the state observer (15a-h). Suppose all the system and observer state variables to be bounded so that all involved nonlinearities can be supposed to be Lipschitz. Then, the time-derivative of
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for some real constant e to vanish. To this end, the 1 e -dynamics need to be clearly defined. Deriving (20) one obtains:
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The quantity (28) Also, (26) can be rewritten as follows:
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Design

Step 2. The objective now is to make the error variables ) , ( 21 e e vanish asymptotically. To this end, the dynamics of 2 e are first determined. Deriving (27) one obtains, using (14a-c), (24) (26) and (28):
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) are not available they are replaced in (30) by their estimates provided by (15c-d). Doing so, one gets: ) , , ( ˆ4 3
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where the second regression function is defined by: Its derivative along the solution of ( 20) and ( 27) is: is just a virtual control, the above parameter update law is not sufficient. Nevertheless, we retain 2  as a second tuning function. Then, (38) gives: On the other hand, one obtains from (14b) and (15d):

) ( 1 2 2 3 1 2 2 1 1 2      w e e e e c V c        1 2 2 2 1 ) ( ~     e w e      (38)  ~ can be cancelled in 2 V  using the update law 2 ˆ    :             
3 2 2 2 1 2 2 2 2 2 1 1 2 ) ( ) ( e e w e e c e c V c                  ) , , (
 3 1 2 4 4 3 1 4 3 2 1 1 1 6 . 1 4 2 ) , , ( ˆz z E z Lz z z z z z u z z z z       (43) with                        4 1 5 1 3 1 4 1 4 5 5 1 2 2 2 2 ˆz Lz E L x Lz z z z L E Lz z x L z                ) ( 2 ) ( 2 6 2 2 2 1 1 1 2 z z E z C z z E z L    (44)
Furthermore, it is readily seen from (40) that:
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Using ( 24), (34), ( 35) and ( 42), the derivatives on the right side of (45) can be given the following more suitable:
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To alleviate the text, the exact expressions of the newly introduced quantities (i.e. 
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where 3 w denotes the last regressor function defined by:
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Note that the actual control input u appeared for the first time in (50). Notice also that the term in 2  vanishes exponentially fast whenever the 4 3 , ~z z do so. Now, the goal is to find a control law u and adaptive law for  ˆ so that the ) , ,

 e e e system is asymptotically stable. To this end, consider the augmented Lyapunov function candidate: V turns out to be:
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The term in  ~can be canceled on the right side of (56) using the update law This issue is commonly coped with resorting to estimate projection on a convex bounded set including the true parameter. Let such convex be any interval
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. Practical choice of 0 M is not an issue as this may be arbitrarily large. The gradient algorithm with projection is then defined as follows (see e.g. [START_REF] Ioannou | Adaptive control tutorial[END_REF]): 
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In addition to equations ( 61)-( 62), the closed-loop system is also described by the equation (omitted for space limitation) describing the evolution of the state estimation error The theorem shows that the propose output feedback controller ensure asymptotically stability of the closed-loop system. The stability is semi-global as the controller design parameters are dependent on the system initial conditions.

VI. SIMULATION RESULTS

The performances of the proposed adaptive controller are illustrated through numerical simulations. The controlled system, have the numerical values of Table 1. The DC voltage source is fixed to V E 20  . The adaptive output feedback controller is given the following design parameters that have proved to be convenient: 

VII. CONCLUSION

The problem of controlling series resonant converters has been addressed. An adaptive output feedback controller has been designed using the backstepping control technique and the high-gain observation approach. It is the first time that a controller, not necessitating the measurement of the state variables and the knowledge of the load, guarantees semiglobal stabilization and perfect output reference tracking for this class of converters. 

APPENDIX A. Expressions of auxiliary variables

Fig 1 .

 1 Fig 1. Series resonant converter under study A control oriented model can be obtained applying to (1)-(3) the first harmonic approximation procedure introduced in [1]. Based upon the following assumption, A1. The voltage v and current i are approximated with good accuracy by their (time varying) first harmonics (denoted 1 V and  j
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  0  l , depending on the Lipschitz coefficients of the different nonlinearities. Consequently, the state estimation error z z z   converges exponentially to zero, whatever the initial condition ) 0 ( ẑ , provided the observer gain  is sufficiently large  IV. ADAPTIVE CONTROL DESIGN The load resistance R in model (1-3) is allowed to undergo infrequent jumps. To cope with such a parameter uncertainty the adaptive controller to be designed should involve an on line estimation of the unknown parameter R / 1   . The unknown parameter estimate and the corresponding estimation error are denoted  ˆ and      , respectively. Following closely (Kristic et al., 1995) the adaptive controller is designed in three major steps. Design Step 1. Introduce the tracking error: the desired constant output reference. Achieving the tracking objective amounts to enforcing the error 1
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  stands as a virtual control input in (21). Consider the following Lyapunov equation:
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 1 where[START_REF] Sun | Averaged modeling and analysis of resonant converter[END_REF] w denotes the first regressor function defined by: law. Nevertheless, we retain as the first tuning function and tolerate the presence of ~in 1 V  .Introduce the second error variable: (21) becomes using (26) and (27):
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 2 ) are placed in the Appendix A. Substituting (43) and (45) in (42), one obtains:
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  update law (which is a gradient type) is not suitable because of its integral nature. The disturbing term) ) may cause the divergence the estimate  ˆ.

  seen that this adaptive law maintains the estimate  ˆ in the convex bounded set C . More interestingly, the projection operator (.) P is shown in many places to possess the following key property (e.g.[START_REF] Ioannou | Adaptive control tutorial[END_REF]): parameter and v is an additional control action resorted to cope with the parameter adaptive law saturation. The following choice will prove to be useful: LOOP STABILITY ANALYSIS Substituting the right side of (60a) for ) (t u in (50) and putting the resulting equation together with (28),(33),(40) ,(42) and (58a), one gets the following equations describing the trajectories of the errors )
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 2 The performances of the system are analyzed in the next theorem using the Lyapunov function:[START_REF] Elmaguiri | Nonlinear adaptive output feedback control of series resonant dc-dc converters[END_REF]). (Main result). Consider the control system consisting of the SRC model (8)-(12) in closed-loop with the adaptive controller composed of the control law (60a-b), the parameter update law (59a-b) and the high gain observer defined by (15a-h). For any parameter estimate  ˆ converges to its true value  
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 9 performances are illustrated by Figs. 2 to 4. Fig 2a illustrates the closed-loop system responses to a step reference Fig 2b). It is shown that the regulation objective is achieved after transient periods following load changes. Fig (2b) shows that the load estimate 1 ˆ  actually converges toward its varying true value R . Fig 3 shows that all state estimates converge to their true values after 5 ms.

  Fig 2a. Output voltage regulation in presence of varying converter load

Fig 3 :

 3 Fig 3: State estimation errors with ( 1000  