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Abstract. The problem of regulating the output voltage of 

DC-to-DC series resonant converters (SRC) is addressed. The 

difficulty is threefold: (i) the converter model involves 

discontinuous and highly nonlinear terms and is, further, 

controlled through a modulating frequency signal; (ii) all state 

variables are not accessible to measurements; (iii) the load is 

uncertain and may even be varying. An output feedback 

controller, not necessitating the measurement of the converter 

state variables, is proposed and shown to ensure semi-global 

stabilization of the closed-loop system and perfect output 

reference asymptotic tracking. The controller is developed 

using the backstepping control approach and the high-gain 

observer design technique. 

I. INTRODUCTION 

Series and parallel resonant DC-to-DC converters, and 

their various variants, have been given a great deal of 

interest in the power electronic literature. Compared to 

(hard) switched converters, SRC converters present several 

advantages e.g. they provide much higher power supplies. 

As they do not involve switched components, power losses 

are considerably reduced improving thus the conversion 

efficiency. However, SRC converters are more complex to 

control as they involve much more nonlinear dynamics. 

Furthermore, they are supplied by bipolar square signal 

generators and, consequently, the switching frequency is in 

general the only available control variable. These 

considerations make SRC modeling a particularly hard task. 

A modeling approach, based on generalized averaging, was 

developed in [1]. Small signal models for series and parallel 

resonant converters were developed in [2].  

In the present work, following the first harmonic approach 

[1], a fifth order state-space model is developed for the 

converter of fig (1). From the control design viewpoint, the 

difficulty lies in: (i) the system nonlinear and discontinuous 

nature; (ii) the fact that the control signal (switching 

frequency) comes in all state variable equations. (iii) the 

vector state is not completely measurable and it should be 

estimated. Different control strategies were proposed for the 

considered class of converters. These include hybrid flatness 

based control [3], resonant tanks variables based optimal 

control [4], sliding mode control [5] and passivity based 

control [6]. In the present work, a new control strategy is 

developed to cope with the problem of output voltage 

regulation in SRC converters without assuming the state 

variables to be measurable and the load to be known. 

Following [7], a high gain observer is first designed to get 

estimates of the state variables that are not accessible to 

measurements. Then, an adaptive output control law is 

designed, using the tuning functions backstepping technique 

[8], based on the above state observer. It is worth recalling 

that, unlike linear systems, the separation principle does not 

systematically apply to nonlinear systems [9]. Furthermore, 

a parameter projection will be introduced in the parameter 

adaptive law (estimating online the load) to prevent possible 

parameter estimate drift that, otherwise, could result due to 

the presence of state estimation errors. The output adaptive 

controller thus obtained is formally shown to achieve quite 

interesting performances. Specifically, the closed-loop 

system is asymptotically stable and the attraction region size 

can be made arbitrarily large by conveniently choosing the 

control design parameters. The output reference tracking 

error vanishes asymptotically. The unknown load is 

perfectly identified. 

 

The paper is organized as follows: the studied series 

resonant converter is described and modeled in Section II; 

the state observer is presented in Section III; the adaptive 

output feedback controller is designed in Section IV and the 

resulting closed-loop system is analyzed in section V; the 

controller performances are illustrated by simulation in 

Section VI; technical proofs are placed in the appendix. 

 

II. SERIES RESONANT CONVERTER MODELLING 

The studied series resonant DC-to-DC converter is 

illustrated by Fig 1. A state-space representation of the 

system is the following: 
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where v  and i  denote  the resonant tank voltage and current 

respectively; 
o

v  is the output voltage supplying the load 

(here a resistor R ); the power source supplying the 

converter is characterized by a constant amplitude E  and a 

varying  switching frequency   (in srd / ); L  and C  

designate respectively the inductance and capacitance of the 

resonant tank;  

As the supply source amplitude E  is constant, the pulsation 

  turns out to be the only possible control variable. 



                  
Fig 1. Series resonant converter under study 

 

A control oriented model can be obtained applying to (1)-(3) 

the first harmonic approximation procedure introduced in 

[1]. Based upon the following assumption, 
 

A1.  The voltage v  and current i  are approximated with 

good accuracy by their (time varying) first harmonics 

(denoted 
1V  and 

j
eI

1
 respectively). 

 

Doing so, one gets the following more convenient model: 

(see [1], [7] for details): 
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In the „harmonic‟ model (4)-(6) the control signal   comes 

in linearly. However, it still not suitable for control/observer 

designs because it involves complex variables and 

parameters. To get a convenient state-space model, introduce 

the following notations: 
 

  
211 xjxI  ,  

431 xjxV  ,  
5o xV    (7) 

 
Substituting (7) in (4)-(6) yields the following state-space 

representation: 
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where 
def

u   and R/1 . The only quantities that are 

accessible to measurements are: 

 o5 Vx  ,  
1

2

2

2

1 Ixx  ,  
1

2

4

2

3 Vxx   (13) 

III  HIGH  GAIN  OBSERVER 

In [7] a high-gain observer has been designed to get accurate 

estimates of unmeasured variables and shown to be 

exponentially convergent if all system signals are bounded. 

This is defined using the following variable change: 
 

zxIRIR  ;:
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24 xz  ;  
45 xz  ;  

16 xz  ;  
37 xz  ;  

58 xz   (14c) 
 
The equation describing the evolution of the new state 

variables, 
iz  ( 7,,1 i ) is omitted for space limitation; it 

can be found in [7] where the following high gain observer 

was proposed: 
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where   denotes a design parameter.  

The convergence of the above observer has been analyzed in 

[7] using the following Lyapunov function: 
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where 

22I 
 denotes the 22   identity matrix and 

1S  is a 

symmetric positive definite matrix that is the unique solution 

of the Lyapunov equation: 
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with A  and C  defined as follows: 
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Theorem 1 ([7]). Consider the system (8)-(12), subject to 

Assumptions A1-A2, the state variable change (14a-c) and 

the state observer (15a-h). Suppose all the system and 

observer state variables to be bounded so that all involved 

nonlinearities can be supposed to be Lipschitz. Then, the 

time-derivative of )
~

(zVob
 along the trajectory of z

~  satisfies 

the inequality  

obob VlV )(    (19) 

for some real constant 0l , depending on the Lipschitz 

coefficients of the different nonlinearities. Consequently, the 

state estimation error zzz ˆ~
  converges exponentially to 

zero, whatever the initial condition )0(ẑ , provided the 

observer gain   is sufficiently large   

 

IV. ADAPTIVE CONTROL DESIGN 

 

The load resistance R in model (1-3) is allowed to undergo 

infrequent jumps. To cope with such a parameter uncertainty 

the adaptive controller to be designed should involve an on 

line estimation of the unknown parameter R/1 . The 

unknown parameter estimate and the corresponding 

estimation error are denoted ̂  and  ˆ~
  , respectively. 

Following closely (Kristic et al., 1995) the adaptive 

controller is designed in three major steps. 

 

Design Step 1.  Introduce the tracking error: 
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x
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denotes the desired constant output reference. 

Achieving the tracking objective amounts to enforcing the 

error 
1

e  to vanish. To this end, the 
1e -dynamics need to be 

clearly defined. Deriving (20) one obtains: 
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 stands as a virtual control input in 

(21). Consider the following Lyapunov equation: 
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where  0  is a design parameter, called adaptation gain. 

Time-derivation of 
1cV , along the )
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,( 1 e -trajectory, is: 
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where 
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w  denotes the first regressor  function defined by: 
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where the stabilizing function 
1  is defined by: 
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where 01 c  is a design parameter. Since 
oCz /4 1

is not 

the actual control input, we can only seek the convergence of 

the error 
11 )/4(  oCz  to zero. Also, we do not take 
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 as parameter update law. Nevertheless, we retain 

1
 as the first tuning function and tolerate the presence of 
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Then, equation (21) becomes using (26) and (27): 
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Also, (26) can be rewritten as follows: 
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Design Step 2. The objective now is to make the error 

variables ),(
21

ee  vanish asymptotically. To this end, the 

dynamics of 
2e are first determined. Deriving (27) one 

obtains, using (14a-c), (24) (26) and (28): 
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As the states 
iz  ( 4,3i ) are not available they are replaced 

in (30) by their estimates provided by (15c-d). Doing so, one 

gets:  
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where 
3

~
z and 

4

~
z are the estimation errors of 

3
z and

4
z . 

Introduce the new error: 
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Then (31) is rewritten as follows: 
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where the second regression function is defined by: 
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Notice that the disturbing term )
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,( 4311 zzz  vanishes 

exponentially fast whenever 
43
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,
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zz  do so. Consider the 

augmented Lyapunov function: 
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parameter update law is not sufficient. Nevertheless, we 
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2  as a second tuning function. Then, (38) gives: 
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Design Step 3.  Deriving (32) gives: 
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On the other hand, one obtains from (14b) and (15d): 
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Furthermore, it is readily seen from (40) that: 
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Using (24), (34), (35) and (42), the derivatives on the right 

side of (45) can be given the following more suitable: 
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To alleviate the text, the exact expressions of the newly 

introduced quantities (i.e.  
10e , 

20e , 
50x , 

10z , 
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~
z , 

0a ,
1a  

and 
2a ) are placed in the Appendix A. Substituting (43) and 

(45) in (42), one obtains: 
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where 
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w  denotes the last regressor function defined by: 
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Note that the actual control input u  appeared for the first 

time in (50). Notice also that the term in 
2  vanishes 

exponentially fast whenever the 
43

~
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~
zz  do so.  Now, the goal 

is to find a control law u  and adaptive law for ̂  so that the 
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consider the augmented Lyapunov function candidate: 
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Using (41) and (50), the derivative of 
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V  turns out to be: 
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The term in 
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can be canceled on the right side of (56)  

using the update law 
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However, this update law (which is a gradient type) is not 

suitable because of its integral nature. The disturbing term 

)ˆ,
~

,(2 zzz in (56) may cause the divergence the estimate ̂ . 

This issue is commonly coped with resorting to estimate 

projection on a convex bounded set including the true 

parameter. Let such convex be any interval  
00

, MMC   

such that 
0

M . Practical choice of 
0M  is not an issue as 

this may be arbitrarily large. The gradient algorithm with 

projection is then defined as follows (see e.g. [10]): 
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It is readily seen that this adaptive law maintains the 

estimate ̂  in the convex bounded set C . More interestingly, 

the projection operator (.)P is shown in many places to 

possess the following key property (e.g. [10]):  
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The expression of 3cV  suggest the following control law:     
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where 03 c is a new parameter and v  is an additional 

control action resorted to cope with the parameter adaptive 

law saturation. The following choice will prove to be useful: 
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V.  CLOSED LOOP STABILITY ANALYSIS 

Substituting the right side of (60a) for )(tu  in (50) and 

putting the resulting equation together with (28),(33),(40) 

,(42) and (58a), one gets the following equations describing 

the trajectories of the errors )3,2,1,( iei
 and 

~
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where A  is a skew symmetric matrix defined by: 
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In addition to equations (61)-(62), the closed-loop system is 

also described by the equation (omitted for space limitation) 

describing the evolution of the state estimation error 

zzz ˆ~
 . The performances of the system are analyzed in 

the next theorem using the Lyapunov function: 
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Theorem 2([11]). (Main result). Consider the control system  

consisting of the SRC model (8)-(12) in closed-loop with the 

adaptive controller composed of the control law (60a-b), the 

parameter update law (59a-b) and the high gain observer 

defined by (15a-h). For any 0 , there exist 

 minmin ,0 c  such that, if 
min321 ),,(min cccc  , 

min   and     )0(
~

),0(
~

),0( zeV  then: 

1)  all closed-loop signals remain bounded and the state 

estimation error zzz ˆ~
  vanishes exponentially fast, 

2)  the tracking error 
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  vanishes asymptotically, 

3) the parameter estimate ̂  converges to its true value    

 

The theorem shows that the propose output feedback 

controller ensure asymptotically stability of the closed-loop 

system. The stability is semi-global as the controller design 

parameters are dependent on the system initial conditions.  

 

 VI.  SIMULATION RESULTS 

The performances of the proposed adaptive controller are 

illustrated through numerical simulations. The controlled 

system, have the numerical values of Table 1. The DC 

voltage source is fixed to VE 20 . The adaptive output 

feedback controller is given the following design parameters 

that have proved to be convenient: 
3

101 , 2

1 1014 c , 2

2 105 c , 2

3 108 c , 

13
101


  and 10

0
M . 

 

Table 1: numerical values of the SRC 

characteristics 

parameter Symbol value    

unit 

Inductor L 3
109.0


   H 

Capacitor C 6
10130


  F 



Capacitor Co 3
104.2


  F 

The initial states of x  and ẑ  are respectively: 

 T
0x 58575.035.0)(      

  T
0z 05.025.0002.03.03.0)(ˆ     

The resulting control performances are illustrated by Figs. 2 

to 4. Fig 2a illustrates the closed-loop system responses to a 

step reference vtx
ref

8)(
5

  and successive converter load 

jumps. Specifically, the true load switches between 74 .  

and 9  (Fig 2b). It is shown that the regulation objective is 

achieved after transient periods following load changes. Fig 

(2b) shows that the load estimate 1ˆ   actually converges 

toward its varying true value R .  Fig 3 shows that all state 

estimates converge to their true values after 5 ms. 

VII. CONCLUSION 

The problem of controlling series resonant converters has 

been addressed. An adaptive output feedback controller has 

been designed using the backstepping control technique and 

the high-gain observation approach. It is the first time that a 

controller, not necessitating the measurement of the state 

variables and the knowledge of the load, guarantees semi-

global stabilization and perfect output reference tracking for 

this class of converters. 

 

APPENDIX A. Expressions of auxiliary variables 
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Fig 2a.   Output voltage regulation in presence of  

varying converter load 
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Fig 2b.  Load estimate  1ˆ   (solid) in presence of  

   varying converter load 1
  (dashed) 
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Fig 3:  State estimation errors with ( 1000 ) 
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