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I. INTRODUCTION

T is widely recognized that the induction motor is going to become the main actuator for industrial purposes. Indeed, as compared to the DC machine, it provides a better power/mass ratio, simpler maintenance (as it includes no mechanical commutators) and a relatively lower cost. However, the problem of controlling the induction motor is more complex, as its model is multivariable and highly nonlinear. A considerable progress has been made in power electronics technology leading to reliable power electronic converters and making possible varying speed drive of inductions machines. Indeed, speed variation can be achieved for these machines by acting on the supply net frequency. Until the development of modern power electronics, there was no effective and simple way to vary the frequency of a supply net. On the other hand, in the electric traction domain, the used power nets are either DC or AC but mono-phase. Therefore, three-phase DC/AC inverters turn out to be the only possible interface (between railway nets and 3-phase AC motors) due to their high capability to ensure flexible voltage and frequency variation.
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The above considerations illustrate the major role of modern power electronics in the recent development of electrical traction applications (locomotives, vehicles …). As mentioned above, a 3 phase DC/AC inverter used in traction is supplied by a power net that can be either DC or monophase AC. In the case of AC supply, the (mono-phase) net is connected to the three-phase DC/AC inverter through a transformer and an AC/DC rectifier The connection line between the rectifier and the inverter is called DC link.

The control problem at hand is to design a controller ensuring a wide speed range regulation for the system including the AC/DC converter, the DC/AC inverter and the induction motor. The point is that such system behaves as a nonlinear load seen by the AC supply line. Then, undesirable current harmonics are likely to be generated in the AC line. These harmonics reduce the rectifier efficiency, induce voltage distortion in the AC supply line and cause electromagnetic compatibility problems. The pollution caused by the converter may be reduced resorting to additional protection equipments (transformers, condensers…) and/or over-dimensioning the converter and net elements. However, this solution is costly and may not be sufficient. To overcome this drawback, the control objective must not only be motor speed regulation but also current harmonics rejection. The last objective is referred to power factor correction (PFC) [START_REF] Singh | Improved Power Quality AC-DC Converter for Electric Multiple Units in Electric Traction[END_REF].

Previous works on induction machine speed control simplified the control problem neglecting the dynamics of the AC/DC rectifier i.e. focusing only on the set 'DC/AC inverter -Motor'. This simplified system has been dealt with using several control strategies ranging from simple techniques, e.g. field-oriented control [5], to more sophisticated nonlinear approaches, e.g. direct torque control [6]. A control strategy that ignores the presence of the AC/DC rectifier suffers at least from two drawbacks. First, the controller design relies on the assumption that the DC voltage (provided by the AC/DC rectifier) is perfectly regulated; the point is that perfect regulation of the rectifier output voltage can not be ensured ignoring the rectifier load which is nothing other than the set 'DC/AC inverter -Motor'. The second drawback lies in the entire negligence of the PFC requirement. That is, from a control viewpoint, it is not judicious to consider separately the inverter-motor association, on one hand, and the power rectifier, on the
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In the present work, we will develop a new control strategy dealing simultaneously with both involved subsystems i.e. the AC/DC inverter and the combination 'DC/AC inverter-motor'. Our control strategy is featured by its multi-loops nature. First, a current loop is designed so that the coupling between the power supply net and the AC/DC rectifier operates with a unitary power factor. Then, a second loop is designed to regulate the output voltage of the AC/DC rectifier so that the DC-link between the rectifier and the inverter operates with a constant voltage despite changes of the motor operation conditions. Finally, a bi-variable loop is designed to make the motor velocity track its varying reference value and to regulate the rotor flux norm to its nominal value. All control loops are designed using the Lyapunov and backstepping techniques [START_REF] Krstic | Nonlinear and adaptive control design[END_REF]. It will be formally proved that the proposed multi-loop controller actually stabilizes (globally and asymptotically) the controlled system and does meet its tracking objectives with a good accuracy.

The paper is organized as follows: the system under study (i.e. the AC/DC/AC converter and induction motor association) is modeled and given a state space representation in Section 2; the controller design and the closed-loop system analysis are presented in Section 3; the controller performances are illustrated through numerical simulations in Section 4. 

A. AC/DC rectifier modeling

The power supply net is connected to a H-bridge converter which consists of four IGBT's with anti-parallel diodes for bidirectional power flow mode. This is expected to accomplish two main tasks: (i) providing a constant DC link voltage; (ii) providing an almost unitary power factor. Applying Kirchhoff's laws, this subsystem is described by the following set of differential equations: The above (instantaneous) model describes accurately the physical inverter. Then, it is based upon when constructing converter simulators. However, it is not suitable for control design due to the switched nature of the control input s . As a matter of fact, most existing nonlinear control approaches apply to systems with continuous control inputs. Therefore, control design for the above inverter will be performed using the following average version of (1a-b) [START_REF] Sira | Control design techniques in power electronics devices[END_REF] :

1 2 1 1 / ) ( L x u v x e    (2a) C i x u x s 2 / ) ( 1 1 2    (2b)
where:

e i x  1 , dc v x  2 , s u  1 (2c)
are the average values over cutting periods of e i , dc v and s , respectively

B. Inverter-Motor modeling

The induction model is based on the motor equations in rotating  -and- axes and reads as and, L T , are the stator currents, rotor fluxes, angular speed, and load torque, respectively. The subscripts s and r refer to the stator and rotor, respectively. The parameters a , b , c ,  ,  , m , and 1 m are defined as :
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, respectively. s R and r R are the resistances. s L and r L are the self-inductances, and sr M is the mutual inductance between the stator and rotor windings. p is the number of pole-pair. J is the inertia of the system (motor and load), and f is the viscous damping coefficients. 
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where: 2 u , 3 u represent the average αand β-axis (Park's transformation) of the 3 phase duty ratio system ). Now, let us introduce the state variables:

  3 x ,  s i x  4 ,  s i x  5 ,   r x  6 ,   r x  7 , (5) 
Substituting (4a-e) in (3a-e), the state space equations obtained up to now are put together to get a state-space model of the whole system including the AC/DC/AC converters combined with the induction motor. For convenience, the whole model is rewritten here for future reference:
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III. CONTROLLER DESIGN A. Control objectives

There are two operational control objectives: (i) Speed regulation: the machine speed  must track, as closely as possible, a given reference signal 

B. AC/DC rectifier control design 1) Controlling rectifier input current to meet PFC:

The PFC objective means that the input current rectifier should be sinusoidal and in phase with the AC supply voltage. We therefore seek a regulator that enforces the current 1

x to tack a reference signal * 1 x of the form:

e v k x  * 1 (7)
At this point k is any real parameter that is allowed to be time-varying. k . Introduce the current tracking error:

* 1 1 1 x x z   (8)
In view of (6a), the above error undergoes the following equation:
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To get a stabilizing control law for this first-order system, consider the quadratic Lyapunov function V  is a negative definite function of 1 z if the control input is chosen to be: and its first time derivative are available then one has the following properties:
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The current loop undergoes the equation

1 1 1 z c z    where * 1 1 1 x x z  
. As 1 c is positive this equation is globally exponentially stable i.e. 1 z vanishes exponentially, whatever the initial conditions.

If in addition k converges (to a finite value), then the PFC requirement is asymptotically fulfilled in average i.e. the (average) input current 1

x tends (exponentially fast) to its reference x : The first step in designing such a loop is to establish the relation between the ratio k (control input) and the output voltage 2

x . This is the subject of the following proposition.

Proposition 2. Consider the power rectifier described by (6a-b) together with the control law (10). Under the same assumptions as in Proposition 1, one has the following properties:

1) The output voltage 2 x varies, in response to the tuning ratio k , according to the equation:

C x u x u x C v z v k x e e 2 / ) ( 2 / ) ( 5 3 4 2 2 1 2 2      (11)
2) The squared voltage ( ) varies, in response to the tuning ratio k , according to the equation:
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) Squared DC-link voltage regulation:

The ratio k stands up as a control signal in the first-order system defined by (12). As we said before, the reference signal . To get a stabilizing control law for the system (15), consider the following quadratic Lyapunov function:

2 2 2 5 . 0 z V  (15)
It is easily checked that the time-derivative 2

V  can be made negative definite in the state 2 z by letting:
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Bearing in mind the fact that the first derivative of the control ratio k must be available (Proposition 1), we suggest
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C. Motor speed and rotor flux norm regulation

We are interested in the problem of controlling the rotor speed and flux norm for the induction machine described by (6c-g). The speed reference ref  is any bounded and derivable function of time and its two first derivatives are available and bounded. These properties can always be achieved filtering the reference through second-order linear filters. The flux reference ref  is fixed to its nominal value. The controller design will now be performed in two steps using the backstepping technique [START_REF] Krstic | Nonlinear and adaptive control design[END_REF]. First, introduce the tracking errors:
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Step 1. It follows from (6c) and (6f-g) that the errors 3 z and 4 z undergo the differential equations:
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In ( 20) and (21), the quantities ) (  and 1  , respectively. Nevertheless, we retain the expressions of 1  and 1 as first stabilizing functions and introduce the new errors:
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Then, using the notations ( 22) to ( 27), the dynamics of the errors 3 z and 4 z , initially described by ( 20)-( 23), can be rewritten as follows:
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Similarly, the time-derivative of 3

V can be expressed in function of the new errors as follows:
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Step 2: The second design step consists in choosing the actual control signals, 2 u and 3 u , so that all errors (

6 5 4 3 z , z , z , z
) converge to zero. To this end, we should make how these errors depend on the actual control signals ( 2u , 3 u ). We start focusing on 5 z ; it follows from (26) that:
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For convenience, the above equation is given the following compact form:
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Similarly, it follows from (27) that, 6 z undergoes the following differential equation:
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Equation ( 34) is in turn given the following compact form:
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To analyze the error system, composed of equations ( 28), (32) and (36a), let us consider the following augmented Lyapunov function candidate:

) ( 5 . 0 2 6 2 5 3 4 z z V V    (37)
Its time-derivative along the trajectory of the state vector ( 3 z , 4 z , 5 z , 6 z ) is:
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Using ( 29), ( 32) and (36a), equation (28) implies:
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to the right side of (39a) and rearranging terms, yields:
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where 5 c and 6 c are new arbitrary positive real design parameters. Equation (39b) suggests that the control signals ), gives the control law: 
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which never vanish in practice because of the machine remnent flux. Substituting the control law (42) to ( 32 , u u

) on the right side of (41) yields: 
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As this is a negative definite function of the state vector ( 3 z , 4 z , 5 z , 6 z ), it follows that the speed and flux tracking errors (i.e. ) converge globally asymptotically to zero. This result will now be used to establish the performances of the whole control system. To this end, let us first introduce the following notations: 
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Theorem 1 (main result). Consider the system including the AC/DC/AC power converters and the induction motor connected in tandem, as shown in Fig. 1. For control design purpose, the system has been represented by its average model (6a-g). Consider the controller defined by the control laws (10), ( 17) and ( 40) where all design parameters, namely , , , c c c c c c andd are positive. Then, one has the following results: 1) The resulting closed-loop system undergoes the statespace equation: 
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V. CONCLUSION

We have addressed the problem of controlling associations including an AC/DC rectifier, a DC/AC inverter and induction motor. The system dynamics have been described by the averaged seventh order nonlinear state-space model (6a-h). We have formally established that the proposed controller achieves the objectives it has been designed to: (i) almost unitary power factor; (ii) well regulated DC-link voltage (v dc ); (iii) satisfactory rotor speed reference tracking over a wide range of load torque variation; (iv) tight regulation of the rotor flux norm. These results have been confirmed by a simulation study.
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  II. MODELING THE 'AC/DC/AC CONVERTER-INDUCTION MOTOR' ASSOCIATION The controlled system is illustrated by Fig 1. It includes an AC/DC boost rectifier, on one hand, and a combination 'inverter-induction motor', on the other hand. The inverter is a DC/AC converter operating, like the AC/DC rectifier, according to the known Pulse Wide Modulation (PWM) principle.

Fig. 1 .

 1 Fig.1. AC/DC/AC drive circuit with three-level inverter

  voltage in αβ-coordinate (Park's transformation of the 3 phase stator voltages). The inverter is featured by the fact that the stator αand β-voltage can be controlled independently. To this end, [7] :

  PFC requirement: the rectifier input current e i must be sinusoidal and in phase with the AC supply voltage e v . As there are three control inputs at hand, namely 1 u , 2 u and 3 u , we will further seek two additional control objectives: (iii) Controlling the continuous voltage dc v making it track a given reference signal dcref v . This generally is set to a constant value equal to the nominal voltage entering the inverter. (iv) Regulating the rotor flux norm ) its nominal value.

  be easily checked that the time-derivative 1

1 :

 1 . The properties of such control law are summarized in the following proposition. Proposition Consider the system, next called current (or inner) loop, composed of the current equation (6a) and the control law (10

 2 )

 2 DC link voltage regulation:The aim is now to design a tuning law for the ratio k in (7) so that the rectifier output voltage not mandatory) chosen to be the constant nominal inverter input voltage amplitude (i.e the nominal stator voltage).a) Relationship between k and 2

  virtual control signals. If these were the actual control signals, the error system (20)-(21) could be globally asymptotically stabilized letting

  actual control signals, they cannot be let equal to 1

  zero the two quantities between curly brackets (on the right side of (41)). Letting these quantities equal to zero and solving the resulting second-order equation system with respect to (

  worths to note that the matrix

2 

 2 equal to its nominal value.Then, there exists a *  so that, if are illustrated by Figs 2 to 5. Fig.2shows that the DC-link voltage dc v x  2 is well regulated and quickly settles down after each change in the speed reference or the load torque. Figs2 and 4show that the motor speed and the rotor flux norm converge to their respective references perfectly. The tracking quality is quite satisfactory for both controlled variables ( e i is all time in phase with the supply net voltage complying with the PFC requirement. Fig 5 shows that the ratio k takes a constant value after transient periods following the changes in references signals and load torque.

Fig. 2 .Fig. 3 .Fig. 4 .Fig. 5 .

 2345 Fig. 2. DC-link voltage dc v Upper: reference and mesured DC-link