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Abstract

Some convergence results on the kernel density estimator are proven for a class of linear pro-
cesses with seasonal effects. In particular we extend the results of Ho and Hsing (1996a) and
Mielniczuk (1997); Hall and Hart (1990) to the stationary processes for which the singularities of
the spectral density are not limited to the origin. We show that the convergence rates and the
limit distribution may be different in this context.

Keyword : Confidence band ; empirical process ; limit theorem ; mean integrated squared
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1 Introduction

Hosking (1981) introduced long memory processes with quasi periodic behaviour. This fact cor-
responds, for stationary processes, to spectral densities which exhibit singularities at non zero
frequencies. Many authors have contributed to the construction of fractional models with singu-
larities/poles outside the origin, see for instance, Gray et al. (1994, 1989); Hassler (1994); Viano
et al. (1995); Leipus and Viano (2000); Bisognin and Lopes (2009).

We can distinguish between two types of long memory: one regular and the other seasonal
according to whether the spectral density has a pole at the origin or outside the origin. From a
statistical point of view, the estimators of the long memory parameter have been adapted to yield
some estimates if seasonal effects are assumed. In a parametric context, the

√
n-consistency of

the maximum likelihood estimate or the Whittle estimate has been proved (see Hosoya (1997);
Giraitis et al. (2001) when the pole is unknown). Semi parametric estimates can be more or less
easily adapted to the seasonal case (see Hidalgo and Soulier (2004); Arteche and Robinson (2000,
1999); Hsu and Tsai (2009); Reisen et al. (2006); Whitcher (2004)).

When we consider empirical process related statistics the situation is more delicate. The
normalisation and the limit distribution can be different according to whether the memory is
regular or seasonal. An important literature is devoted to the convergence of the empirical process,
see for instance Ho and Hsing (1996b); Giraitis and Surgailis (1999) in regular case and Ould Haye
(2002) Ould Haye and Philippe (2003) in seasonal case.

In this paper we give some convergence results on the kernel estimator of the marginal density
f . Let (X1, · · · , Xn) be an observed sample from f , the kernel estimator of f is defined by

f̃n(x) =
1

nmn

n∑

j=1

K
(x−Xj

mn

)
. (1.1)
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where mn is the bandwidth and K is a kernel function.
Consider the following infinite moving average process,

Xn =
n∑

j=−∞

b(n− j)ξj , n ≥ 1 (1.2)

where

• the sequence (b(k))k has the form

b(n) = n−(α+1)/2
∑

j∈J

aj
(
cosnλj + o(1)

)
, (1.3)

where α ∈ (0, 1) and λj 6= 0 for all j ∈ J a finite subset of N.

• (ξn)n is a sequence of independent and identically distributed random variables with zero
mean and finite variance Eξ20 = σ2 < ∞.

From Giraitis and Leipus (1995), the covariance function r of (Xt) defined in (1.2) has the
form

r(n) = n−α
∑

j∈J

aj
(
cosnλj + o(1)

)
. (1.4)

Note that the condition on the coefficient α ensures that
∑ |r(n)| = ∞, thus the process has

a long-memory. But
∑

r(n) may be finite, and in any case |∑ r(n)| = o
(∑

r(n)2
)
. This fact

characterises seasonal long memory and the asymptotic behavior of many statistics (see below for
the empirical process) can be drastically different when α < 1/2. This is mainly due to the fact
that X2

t will also have a long memory. We focus on this case.
A large class of linear processes satisfying these conditions is obtained by filtering a white noise

(ξi) as follows:

Xt = G(B)ξt with G(z) = g(z)

m∏

j=−m

(
1− eiλj z

)(αj−1)/2
, m ≥ 1, (1.5)

where B is the backshift operator and where g is an analytic function on {|z| < 1}, continuous on
{|z| ≤ 1} and g(z) 6= 0 if |z| = 1. Indeed taking

0 < αj < 1, αj = α−j , λ−j = −λj , j = 0, . . . ,m, and

0 = λ0 < λ1 < . . . < λm < π,

the condition (1.3) is then satisfied with

α = min{αj , j = 0, . . . ,m}, J = {j ≥ 0 : αj = α}.

We consider the empirical process associated with the process (Xn)n≥1 defined by

Fn(x) =
1

n

n∑

j=1

1{Xj≤x}.

Ould Haye and Philippe (2003) proved the following results for the linear process (Xn) defined
in (1.5). Assume that Eξ40 < ∞, the cumulative distribution function of ξ0 is 5 times differentiable
with continuous bounded and integrable derivatives on R. Denote

dn = n1−α, and D =

√
(2− 2α)(1 − 2α)

4Γ(α) cos(απ/2)
.
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Assume that α < 1/2.
Then, as n tends to infinity,

d−1
n [nt]

(
F[nt](x)− F (x)

)
=⇒ F ′′(x)

2
R(t), (1.6)

where R is a linear combination of independent Rosenblatt processes with the same parameter α

R(t) = Rα,Λ(t) = D−1
∑

j∈J

cj

(
R

(1)
j (t) +R

(2)
j (t)

)
, (1.7)

where Λ = {λj , j ∈ J}, and where

• c0 = h0/2, cj = hj if j 6= 0 and

hj = g(eiλj )
∏

ℓ 6=j

(
1− ei(λℓ−λj)

)(α−1)/2
,

• R
(i)
j (t), i = 1, 2 and j ∈ J are Rosenblatt processes with parameter 1 − α, independent

except for j = 0, R
(1)
0 (t) = R

(2)
0 (t).

The paper is organized as follows. In Section 2, we establish a limit theorem for the kernel
estimate. This extends one of Ho and Hsing (1996a)’s results, in particular we show the contribu-
tion and the effect of the singularities of the spectral density outside the origin to the convergence
rate and the limit distribution. Then we apply our limit theorem to construct confidence bands
for the density function.

Similarly to Hall and Hart (1990); Mielniczuk (1997), we provide in Section 3, the asymptotic
behavior of the mean integrated squared error, and we show that the equivalence can be modified
when the singularities of the spectral density are not limited to the origin.

2 Asymptotic distribution of the kernel estimator

Hereafter, we assume that the kernel K is a continuous function with compact support and∫
K(x)dx = 1. Concerning the bandwidth mn, we assume that mn → 0 and nmn → ∞, as

n tends to infinity.
The equality

f̃n(x) − Ef̃n(x) =
1

mn

∫

R

K
(x− u

mn

)
d
(
Fn(u)− F (u)

)
(2.8)

clearly shows the relationship between the estimate f̃n(x) and the empirical process Fn(x). The
process f̃n(x) is sometimes called the empirical density process.

For every integer n ≥ 1, We define the following statistics

Yn,1 =

n∑

k=1

Xk, Yn,2 =

n∑

k=1

∑

s<r

brbsξk−sξk−r , (2.9)

and

Sn,2(x) = n
(
Fn(x) − F (x)) + F ′(x)Yn,1 −

1

2
F ′′(x)Yn,2. (2.10)

Remark 1 For linear processes defined in (1.5), the following equivalences as n tends to infinity,
have been proved by Ould Haye and Philippe (2003)

Var(Yn,2) ∼
1

4
Var

( n∑

j=1

(X2
j − E(X2

1 ))
)
∼ Cn2−2α. (2.11)
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and

Var(Yn,1) = Var
( n∑

j=1

Xj

)
∼ Cn2−α0 . (2.12)

Therefore (2.12) and (2.11) imply that the convergence rate obtained in Proposition 2.1 is
smaller than the convergence rate of X̄n.

Let us define the class of Parzen kernels of order s.

Definition 2.1 A kernel function K is said to be a Parzen kernel of order s ≥ 2 if it satisfies the
following conditions

1.
∫
R
K(u)du = 1,

2. for every 1 ≤ j ≤ s− 1,
∫
R
ujK(u)du = 0,

3.
∫
R
|us||K(u)|du < ∞.

Bretagnolle and Huber (1979) proved the existence of such kernels, for which, an explicit construc-
tion can be found in Gasser and Müller (1979).

Proposition 2.1 Consider a process (Xn) defined in (1.5). Assume that Eξ40 < ∞, the cumu-
lative distribution function of ξ0 is 5 times differentiable with continuous bounded and integrable
derivatives on R. Assume that α < (1∧α0)/2. Let K be a Parzen kernel of order 4 having bounded
total variation. Assume that the bandwidth has the form

mn = n−δ, where
α

4
< δ <

α

2
.

Then, as n tends to infinity

nαsup
x∈R

|f̃n(x)− f(x)| d−→ sup
x∈R

∣∣∣f
′′(x)

2

∣∣∣|Rα,Λ|. (2.13)

where Rα,Λ = Rα,Λ(1). Moreover,

nα(f̃n(x)− f(x))
Cb(R)
=⇒ −f ′′(x)

2
Rα,Λ, (2.14)

where
Cb(R)
=⇒ denotes the convergence in Cb(R), the space of continuous bounded functions.

Proof:
The difference between f̃n and f can be expressed as

f̃n(x) − f(x) = f̃n(x)− Ef̃n(x) + Ef̃n(x) − f(x)

=
1

mn

∫
K(u)d

(
Fn(x−mnu)− F (x−mnu)

)
+

∫ (
f(x−mnu)− f(x)

)
K(u)du.

We first replace Fn − F by its expression in (2.10). Then we apply the integration by parts
formula on the first integral. For the second, we apply the Taylor-Lagrange formula. There exists
a real number u∗ such that |u∗ − x| < |mnu| and

f̃n(x) − f(x) =
−1

nmn

∫
Sn,2(x −mnu)dK(u) +

Yn,1

n

∫
f ′(x−mnu)K(u)du

− Yn,2

n
f ′′(x)

∫
K(u)du+

Yn,2

n
mn

∫
f (3)(u∗)uK(u)+

+

∫ (
−mnuf

′(x) +
m2

nu
2

2
f ′′(x)− m3

nu
3

6
f (3)(x) +

m4
nu

4

24
f (4)(u∗)

)
K(u)du

=:an(x) + bn(x) + cn(x) + dn(x) + en(x).
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Now, a proof similar to that of Theorem 2.2 in Ho and Hsing (1996a) allows us to write for
2δ < α

nα+δ−1sup
x∈R

|Sn,2(x)| a.s.−→ 0, as n → ∞. (2.15)

And, thus we have

nαsup
x∈R

|an(x)| P−→ 0, as n → ∞ (2.16)

where
P−→ denotes the convergence in probability.

For the sequences bn(x), dn(x), en(x), we get the same convergence in probability as in (2.16)
by bounding the variances. To obtain the bounds, we start from the variances of Yn,1 and Yn,2

defined in (2.12) and (2.11), and we use the fact that K is a Parzen kernel and that f is 4 times
differentiable and bounded derivatives. We get, as n tends to infinity,

Var(nαsup
x∈R

|bn(x)|) ≤ n2α−2 Var
(
Yn,1sup

x∈R

|f ′(x)|
∫

|K(u)|du
)

= Cn2α−2n2−α0 = Cn2α−α0 −→ 0,

Var(nαsup
x∈R

|dn(x)|) ≤ n2α−2 Var
(
Yn,2mnsup

x∈R

|f (3)(x)|
∫

|uK(u)|du
)

= Cn2α−2n2−2αn−δ −→ 0,

nαsup
x∈R

|en(x)| ≤ sup
x∈R

|f (4)(x)|n
α−4δ

24

∫
u4|K(u)|du = O(nα−4δ) −→ 0,

These four convergences in probability imply that both sequences

nαsup
x∈R

|f̃n(x) − f(x)| and nαsup
x∈R

|f ′′(x)|
∣∣Yn,2

n

∣∣ = nαsup
x∈R

|cn(x)|

have the same limit as n tends to infinity. According to Lemma 2.1 in Ould Haye and Philippe
(2003), this common limit is equal to

sup
x∈R

∣∣∣f
′′(x)

2

∣∣∣|Rα,Λ|.

Hence (2.13) is proved. According to (2.11), we notice that the rate n−α given in (2.13) is the
convergence rate of n−1

∑n
j=1(X

2
j − E(X2

1 )).
Similarly, as n tends to infinity, the finite-dimensional distributions of

nα(f̃n(x)− f(x)) and − nαf ′′(x)
Yn,2

n
= nαcn(x)

converge simultaneously to the finite-dimensional distributions of −(f ′′(x)/2)Rα,Λ. This concludes

the proof of (2.14) because (2.13) implies the tightness of nα(f̃n(x) − f(x)).

Remark 2 We clearly see that the choice of the class of Parzen kernels allows the bias Ef̃n(x)−
f(x) to become negligible. If K is not a Parzen kernel, the contribution of the bias en(x) is not
negligible with respect to bn(x). Therefore, (2.13) is false for a standard kernel unless we replace
f̃n(x)− f(x) by f̃n(x)− Ef̃n(x) in (2.13).

Remark 3 The result (2.13) in Proposition 2.1 can be applied to obtain a goodness of fit test on
the marginal density.
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Remark 4 The result (2.13) in Proposition 2.1 provides confidence bands for f which depend
on the derivative f ′′. In general, f ′′ is not available, and thus the confidence band cannot be
calculated. Then f ′′ can be replaced by its kernel estimate given by

f̃ ′′
n (x) =

1

nm3
n

n∑

j=1

K ′′
(x−Xj

mn

)
.

(note that it is necessary to assume that the kernel function K is twice differentiable.)

Proposition 2.2 Under the same hypotheses as in Proposition 2.1 and if the kernel function K
is twice differentiable and its derivative K ′′ is continuous, then for each interval [a, b] on which
f ′′ is positive, we have

2nα sup
x∈[a,b]

∣∣∣ f̃n(x) − f(x)

f̃ ′′
n (x)

∣∣∣ d−→ |Rα,Λ|. (2.17)

In other words, as n tends to infinity, for every t > 0, we have

P
{
f̃n(x) −

tf̃ ′′
n (x)

2nα
≤ f(x) ≤ f̃n(x) +

tf̃ ′′
n (x)

2nα
, a ≤ x ≤ b

}
→ P

{
|Rα,Λ| < t

}
. (2.18)

In Proposition 2.3, we give a consistent estimate of the quantiles of process Rα,Λ. Using (2.18),
this allows us to obtain asymptotic confidence band for the density f(x) which is valid for every
x ∈ [a, b].

Proof :
Let φ be the function defined on Cb(R) by

φ(g) = sup
x∈[a,b]

∣∣∣ g(x)
f ′′(x)

∣∣∣

Since φ is continuous, (2.14) ensures the following convergence :

2nα sup
x∈[a,b]

∣∣∣ f̃n(x) − f(x)

f ′′(x)

∣∣∣ d−→ |Rα,Λ|, as n → ∞. (2.19)

Now, we prove that the difference

Yn(x) := nα
( f̃n(x)− f(x)

f ′′(x)
− f̃n(x) − f(x)

f̃ ′′
n (x)

)

satisfies
sup

x∈[a,b]

|Yn(x)| P−→ 0, as n → ∞.

This convergence is obtained as follows. We rewrite Yn(x) as

|Yn(x)| = nα
∣∣∣ f̃n(x)− f(x)

f ′′(x)

∣∣∣
∣∣∣ f̃

′′
n (x)− f ′′(x)

f̃ ′′
n (x)

∣∣∣.

and by (2.19), it is enough to prove that

sup
x∈R

∣∣∣ f̃
′′
n (x)− f ′′(x)

f̃ ′′
n (x)

∣∣∣ P−→ 0, as n → ∞. (2.20)

The difference between f̃ ′′
n and f ′′ can be written as

f̃ ′′
n (x)− f ′′(x) =

−1

nm3
n

∫
Sn,2(x−mnu)dK

′′(u) +
Yn,1

n

∫
f (3)(x −mnu)K(u)du−

− Yn,2

n

∫
f (4)(x−mnu)K(u)du+

∫ (
f ′′(x− hu)− f ′′(x)

)
K(u)du.
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by replacing f with f ′′ and f̃n with f̃ ′′
n and following the same lines as the proof of Proposition

2.1. Then, we get
sup
x∈R

|f̃ ′′
n (x) − f ′′(x)| = O

(
n−(2δ∧(1−3δ))

)
.

Since 0 < δ < 1/4, we have

sup
x∈R

|f̃ ′′
n (x)− f ′′(x)| P−→ 0,

moreover, the derivative f ′′ satisfies

inf
x∈[a,b]

|f ′′(x)| > 0.

Thus, we get (2.20). This concludes the proof.

Proposition 2.3 Fix β ∈ (0, 1). Let c(α,Λ, β) be the quantile of order β of the process Rα,Λ

defined in (1.7). If (αn,Λn) be consistent (in probability) estimators of (α,Λ). then

c(αn,Λn, β)
P→ c(α,Λ, β) (2.21)

Remark 5 In the references given in the introduction, the parametric and semi parametric meth-
ods provide estimators of (α,Λ) which satisfy the condition required in Proposition 2.3.

Proof : We want to show (2.21) which will be obtained if we show that the application (γ, θ) 7→
c(γ, θ, β) is continuous, as (αn,Λn)

P→ (α,Λ). To prove this continuity we prove that the mappings
g, h below are continuous,

((0, 1)× [0, π]|J|, |.|) g→ (Cb(R), ‖.‖) h→ ((0, 1), |.|),

where ‖.‖ is the uniform metric, and in the following decomposition Fγ,θ is the distribution function
of Rγ,θ.

(γ, θ) 7→ [g(γ, θ) = Fγ,θ] 7→ [h(Fγ,θ) = c(γ, θ, β)].

Continuity of g can be proved as follows. Consider a deterministic sequence (γn, θn) such that
(γn, θn) → (γ, θ) as n → ∞. Then to prove that Fγn,θn → Fγ,θ uniformly it will be enough to
show that Rγn,θn =⇒ Rγ,θ. To obtain the latter weak convergence it will suffice to show that
every sequence of Rosenblatt variables (Rγn

) with parameter γn converges weakly to a Rosenblatt
variableRγ with parameter γ, asRγn,θn is a linear combination of independent Rosenblatt variables
Rγn

with the coefficients cj/D that are continuous functions of γn, θn. We have from Major (1981)

Rγn
=

∫ ∫

R2

ei(x+y) − 1

i(x+ y)
Wn(dx, dy)

where
Wn(dx, dy) = |x|(γn−1)/2|y|(γn−1)/2W (dx, dy)

with W (dx, dy) being the standard Gaussian random measure, and since

|x|(γn−1)/2|y|(γn−1)/2 → |x|(γ−1)/2|y|(γ−1)/2

then we have the required convergence.
Now to prove the continuity of h it is enough to note that the quantile function is continuous (with
respect to the uniform metric) over the class of monotonic continuous distribution functions, i.e.
if ‖Fn − F‖ → 0 then h(Fn, β)) → h(F, β). Of course here we do have ‖Fγn,θn −Fγ,θ‖ → 0, as we
just established that Rγn,θm =⇒ Rγ,θ. �
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3 Asymptotic mean integrated squared error (MISE)

The mean integrated squared error (MISE) of the estimate f̃n is defined by

∫

R

E
(
f̃n(x) − f(x)

)2
dx.

For a wide class of linear processes including the processes with short and regular long memories,
Hall and Hart (1990) and Mielniczuk (1997) studied the asymptotic behavior of the MISE. In
particular, they established the following equivalence, when n tends to infinity,

∫

R

E
(
f̃n(x) − f(x)

)2
dx ∼

∫

R

E0

(
f̃n(x) − f(x)

)2
dx+Var(Xn)

∫

R

f ′(x)2dx (3.22)

where E0 denotes the expectation with respect to the distribution of n independent random vari-
ables distributed from the density f . In particular, the equivalence (3.22) shows that the conver-
gence rate of the MISE cannot be faster than the convergence of Var(Xn). In other words, the
convergence rate of the kernel density estimates is bounded from above by the convergence rate
of the empirical mean. This is the optimal rate.

Hereafter, we assume that the distribution of the innovation (ξk) satisfies

[Z1] E|ξ1|m < ∞

[Z2] for some δ > 0 and C < ∞ the characteristic function of ξ1 satisfies

|Eeiuξ1 | ≤ C(1 + |u|)−δ (3.23)

Theorem 3.1 Let (Xn) be a linear process defined in (1.2) and (1.5) such that Eξ40 < ∞. Assume
that α < (1 ∧ α0)/3 and the kernel K is a bounded symmetric density function. Then the MISE
satisfies, as n tends to infinity,

MISE(f̃n) ∼
∫

R

E0

(
f̃n(x) − f(x)

)2
dx+

1

4
Var

( 1

n

n∑

j=1

(X2
j − E(X2

1 ))
) ∫

R

f ′′(x)2dx (3.24)

where E0 denotes the expectation with respect to the distribution of n independent random variables
distributed from the density f .

Remark 6 The variance Var
(

1
n

∑n
j=1(X

2
j − E(X2

1 ))
)

is also equivalent to 4Var( 1nYn,2) (see

Ould Haye and Philippe (2003)). Equation (3.24) shows that this term is a ceiling rate of MISE
independently of the choice of the kernel and bandwidth.

Proof :
It consists in adapting the proof of Mielniczuk (1997) to the seasonal case. Hereafter, we denote

by ĝ the Fourier transform of g. Using Hall and Hart (1990) decomposition of the MISE, we have

MISE(f̃n) =

∫

R

E0

(
f̃n(x) − f(x)

)2
dx+

+
1

nπ

n−1∑

j=1

(1 − j/n)

∫
|K̂(bt)|2

{
Re (E(eit(X1−Xj+1))− |f̂(t)|2

}
dt (3.25)

:= MISE0 +Wn

Let fj be the joint density of (X1, Xj+1). We extend the expansion of fj obtained by Giraitis
et al. (1996) to the order 2 as follows: there exists hj such that

fj(x, y) = f(x)f(y) + r(j)f ′(x)f ′(y) +
1

2
r(h)2f ′′(x)f ′′(y) + hj(x, y) ∀(x, y) ∈ R

2 (3.26)
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where r is given in (1.4).
We have

E(eit(X1−Xj+1)) =

∫
eit(x−y)f(x)f(y) dxdy + r(j)

∫
eit(x−y)f ′(x)f ′(y) dxdy+

+
1

2
r(h)2

∫
eit(x−y)f ′′(x)f ′′(y) dx dy +

∫
eit(x−y)hj(x, y) dxdy

= |f̂(t)|2 + r(j)|f̂ ′(t)|2 + 1

2
r(j)2|f̂ ′′(t)|2 + ĥj(t,−t). (3.27)

Similarly to Mielniczuk (1997), Wn in (3.25) can be written as

Wn =
2

n

n−1∑

j=1

(1− j/n)r(j)

∫
|Kmn

⋆ f ′|2(t) dt+ 1

n

n−1∑

j=1

(1 − j/n)r(j)2
∫

|Kmn
⋆ f ′′|2(t) dt+

+
1

nπ

n−1∑

j=1

(1− j/n)

∫
|K̂(bt)|2Re ĥj(t,−t) dt

where Kmn
(x) = m−1

n K(xm−1
n ), and where f ⋆ g is the convolution of f and g. Moreover we have,

for ℓ = 1, 2, ∫
|Kmn

⋆ f (ℓ)|2(t) dt =
∫

f (ℓ)(t)2 dt+ o(1), n → ∞.

We obtain

Wn =
2

n

n−1∑

j=1

(1− j

n
)r(j)

(∫
f ′(t)2 dt+ o(1)

)
+

1

n

n−1∑

j=1

(1− j

n
)r(j)2

(∫
f ′′(t)2 dt+ o(1)

)
+

+
1

nπ

n−1∑

j=1

(1− j

n
)

∫
|K̂(bt)|2Re ĥj(t,−t) dt. (3.28)

According to Giraitis and Surgailis (1990), we have

Var
( 1

n

n∑

j=1

(X2
j − E(X2

1 ))
)
=

2

n2

∑

1≤i,j≤n

r2(i− j) +O(n−1),

=
2

n2
(nr(0) + 2

n−1∑

j=1

(n− j)r(j)2) +O(n−1)

=
4

n

n−1∑

j=1

(1− j/n)r(j)2 +O(n−1) := γ(n) (3.29)

Moreover, using the form of r given in (1.4) and the fact that α < 1/3, we get

γ(n) =
4

n

n−1∑

j=1

(1− j/n)j−2α(
∑

k∈J

ak
(
cos jλk + o(1)

)
)2 +O(n−1)

=
2

n

n−1∑

j=1

(1− j/n)j−2α
∑

k∈J

a2k +O(n−1)

=
2

n
n1−2α

(
1

1− 2α
− 1

2− 2α

)∑

k∈J

a2k +O(n−1)

= n−2α 1

(1− 2α)(1− α)

∑

k∈J

a2k +O(n−1) ∼ Cn−2α (3.30)

9



As α < (1 ∧ α0)/3 and using (2.12), we get

2

n

n−1∑

j=1

(1− j/n)r(j) =
1

n2
Var(Yn,1)− r(0)n−1 = O(−α0) +O(n−1) = o(n−2α). (3.31)

From (3.28), (3.29), (3.30) and (3.31), we get

Wn =
1

4
Var

( 1

n

n∑

j=1

(X2
j − E(X2

1 ))
) ∫

f ′′(t)2 dt+ o(n−2α)+

+
1

nπ

n−1∑

j=1

(1 − j/n)

∫
|K̂(bt)|2Re ĥj(t,−t) dt.

Since r(j)2 behaves asymptotically as j−2α, and

1

nπ

n−1∑

j=1

(1− j/n)

∫
|K̂(bt)|2Re ĥj(t,−t) dt ≤ 1

nπ

n−1∑

j=1

(1− j/n)

∫
|ĥj(t,−t) dt| (3.32)

the proof is completed using the following lemma proven below.

Lemma 3.1 Under the same assumption of Theorem 3.1,

∫
|ĥj(t,−t)| dt = O(j−2α−ǫ). (3.33)

for ǫ an arbitrary positive number smaller than
1− 3α

10
.

�

Proof of Lemma 3.1 By definition of hj in (3.26), we have

ĥj(x, y) = f̂j(x, y)− f̂(x)f̂(y)(1 − xyr(j) +
1

2
x2y2r(j)2)

We split the integral

∫

R

|ĥj(t,−t)| dt =
∫

|t|>jǫ
|ĥj(t,−t)|dt+

∫

|t|<jǫ
|ĥj(t,−t)| dt (3.34)

where ǫ is an arbitrary positive number smaller than
1− 3α

10
.

Under assumption (3.23), Giraitis et al. (1996) proved for the regular long memory that for
arbitrary k

|f̂j(x1, x2)| ≤ c(k)(1 + |x|)−k

for all x = (x1, x2) ∈ R
2 and

|f̂(x)| ≤ c(k)(1 + |x|)−k

for all x ∈ R.
Their proof can be adapted to the seasonal case i.e. when the coefficients (bj)j∈N satisfies

(1.3). Using their notation, it suffices to construct a finite set J1 such that for all j ∈ J1 :
|b−j | > 2|bt−j|+ c1 where c1 does not depend on t. Since (|bj |)j∈Z is not summable, there exists
a subsequence (ju)u∈Z such that b−ju 6= 0. We can take J1 a subset of {ju : u ∈ Z} with
[δ|J1|] = k + 3. Indeed, for j ∈ J1, we have |b−j| > C(J1)|j−(α+1)/2|, and for t large enough there
exists c̃1

|j|−(1+α)/2 > 2/C(J1)|t− j|−(1+α)/2 + c̃1.

10



Therefore, there exists c1 such that for all j ∈ J1,

|b−j | > 2|bt−j|+ c1.

For all k′, the first integral in (3.34) satisfies

∫

|t|>jǫ
|ĥj(t,−t)| dt ≤ j−ǫk′

∫

|t|>jǫ
|t|k′ |ĥj(t,−t)| dt = O(j−ǫk′

).

Therefore we can take any arbitrary k′ such that k′ > (2α+ ǫ)/ǫ.
For the second integral in (3.34), it is enough to show that

sup
|u|<jǫ

|ĥj(u)| = O(j−2α−2ǫ). (3.35)

The proof is quite similar to that of equation (2.20) in Giraitis et al Giraitis et al. (1996)
adding the terms of order two in the expansion.

We write the difference f̂j(x, y) − f̂(x)f̂ (y) from products of the characteristic function φ of
ξ1.

f̂j(x, y)− f̂(x)f̂ (y) =
∏

I1

∏

I1

∏

I1

φ(xb−i + ybt−i)−
∏

I1

∏

I1

∏

I1

φ(xb−i)φ(ybt−i) := a1a2a3 − a′1a
′
2a

′
3

= (a′1 − a1)a2a3 + (a′2 − a2)a
′
1a3 + (a′3 − a3)a

′
1a

′
2

where I1 = {|i| < j2ǫ}, I3 = {|t − i| < j2ǫ} and I3 = Z − (I1 ∪ I2). We will deduce (3.35) from
|ai| < 1, |a′i| < 1 and the following facts, for all u < tǫ

ai − a′i = O(j−2α−2ǫ, i = 1, 2 (3.36)

a3 − a′3 = a′3(−xyr(j) +
1

2
x2y2r(j)2) +O(j−2α−2ǫ). (3.37)

Similarly to Giraitis et al. (1996), we prove (3.36) with i = 1 (or similarly for i = 2) as follows

|a1 − a′1| ≤
∑

|i|≤j2ǫ

|φ(xb−i + y ∗ bj−i)− φ(xb−i)φ(y ∗ bj−i)|

≤
∑

|i|≤j2ǫ

|xb−i|

As |i| ≤ j2ǫ and x ≤ jǫ, we have

|xb−i| ≤ Cjǫj−(1+α)/2 = j−2α−2ǫO(1)

since ǫ <
1− 3α

10
<

1− α/2

6
when α < 1/3.

To prove (3.37), we follow the same calculations as Giraitis et al. (1996) page 325. Since
|xb−i|+ |ybj−i| = o(1), we write a3 − a′3 of the form

a3 − a′3 = a′3(e
Qj(x,y) − 1) = a′3(Qj(x, y) +

1

2
Qj(x, y)

2 + o(Qj(x, y)
2))

where

Qj(x, y) =
∑

i∈I3

Ψ(xb−i, ybj−i) = −xy
∑

i∈I3

b−ibj−i +O(
∑

i∈I3

(xb−i)
2|ybj−i|+ |xb−i||ybj−i|2)

:= −xy
∑

i∈I3

b−ibj−i +Rn

11



and
Ψ(x, y) = log(φ(x+ y))− log(φ(x)) − log(φ(y))

and we show that

Qj(x, y) = −xyr(j) +O(
∑

I1∪I2

|x||y||b−i||bj−i|+
∑

i

x2|y||b−i|2|bj−i|) =

Qj(x, y)
2 = x2y2r(j)2 + x2y2(

∑

i∈I1∪I2

b−ibj−i)
2 − 2x2y2 − xy

∑

i∈Z

b−ibj−i

∑

i∈I1∪I2

b−ibj−i

+R2
n − 2Rnxy

∑

i∈I3

b−ibj−i

For |x| < jǫ et |y| < jǫ we have

∑

I1∪I2

|x||y||b−i||bj−i| = j2ǫ−(1+α)/2O(1) = j−2α−2ǫO(1)

since ǫ < (1− 3α)/8 and

∑

i

x2|y||b−i|2|bj−i| = j−α/2−1/2+3ǫO(1) = j−2α−2ǫO(1)

since ǫ < (1− 3α)/10. These asymptotic behaviors ensure that for |x| < jǫ et |y| < jǫ we have

a3 − a′3 = a′3(xyr(j) +
1

2
x2y2r(j)2 +O(j−2α−2ǫ)).
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