
HAL Id: hal-00550025
https://hal.science/hal-00550025

Submitted on 23 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language-based Approach for Software Specialization
Tegawendé F. Bissyandé

To cite this version:
Tegawendé F. Bissyandé. Language-based Approach for Software Specialization. 2010 EuroSys Doc-
toral Symposium, Apr 2010, Paris, France. pp.1-2. �hal-00550025�

https://hal.science/hal-00550025
https://hal.archives-ouvertes.fr


1

Language-based approach for Software

Specialization
Tegawendé F. Bissyandé

LaBRI, University of Bordeaux

France

Email: {bissyand}@labri.fr

Research proposal—Research advances in electronics have
lately enabled the deployment of devices with various capabilities.
These equipments are more and more used as basic entities
integrated in larger systems where their functional autonomy is
highly appreciated. Such systems, present in most infrastructures
of our daily environment, are widely used in various fields such
as mobile telephony, automobile industry, aeronautics, domotics
and recently medicine.

Applications running in these systems must interact with their
environment so as to offer services that are better suited to the
evolving context. To do so, they benefit from the capacities of
middleware which, thanks to the high level services offered, ease
the application development by hiding hardware, protocol and
system heterogeneity.

Besides, embedded systems are much more constrained in
terms of memory, energetic and computing resources. Further-
more, applications in embedded systems must often fulfil specific
requirements for soundness and real-time capabilities. Existing
commercial off-the-shelf middleware are therefore not suited
as is to all the needs stated above. Yet designers of software
for embedded systems increasingly use general-purpose off-the-
shelf middleware/libraries to provide sophisticated functionalities
while meeting time-to-market and reliability requirements.

Our project aims at planning out a novel approach to automate
the specialization of software according to the needs of the appli-
cations that will make use of them. Practically, we suggest a tight
coupling between applications and middleware for a deployment
time specialization that takes into account the application needs
and the execution context.

We are carrying this study at the LaBRI laboratory in
Bordeaux, France under the supervision of Laurent Réveillère. To
give a better overview of the kind of issues we plan to address, we
summarize in the following preliminary results1 obtained during
our master thesis internship. A short paper on this work is under
submission for publication in IEEE Embedded Systems Letters.

SUMMARY OF CURRENT WORK

In recent years, software developers have been producing

more and more sophisticated software to be embedded in

every device incorporating a processor. These developers must

meet a number of constraints, including robustness and the

need to reduce cost and time-to-market. One solution to meet

these constraints is to use off-the-shelf libraries. Nevertheless,

such libraries are often general purpose, and contain many

features that are not needed by a specific application. Their

use in the final deployed software thus incurs significant - and

unnecessary - overhead in the memory footprint of the soft-

ware. While ROM sizes are frequently higher than RAM sizes,

1This is a joint work with Laurent Réveillère, Julia L. Lawall and Gilles
Muller

considerations such as space, weight, power consumption and

price imply that limiting both the code and data memory usage

of an embedded system is critical.

In the world of desktop computing, the mix of applications

varies frequently, and these applications vary significantly in

their functionalities. Thus, in this setting, it is useful for

libraries to provide many features, that can be shared among

different applications in various permutations. On the other

hand, in embedded systems, such as routers, washing machines

and coffee makers, the set of applications is typically fixed, or

varies extremely rarely. This makes the generality of libraries

cumbersome in the final software although this property can be

required in the design phase to promote code reusability (see

the design of PURE [7]). A solution to reduce the memory

footprint in the embedded system setting is then to specialize

each shared library used in an embedded system with respect

to the requirements of the set of applications that make use of

its functionalities.

We propose an approach to automatically specialize libraries

at the source code level according to the needs of a set

of applications. Our approach works in two steps: first it

identifies the functions of a library that can be called directly or

indirectly from a given set of applications, and then it removes

the implementations of all other functions from the library. A

similar strategy is applied to data structure fields, to further

reduce the memory usage. This approach is complementary to

most previous code compaction techniques [2], [4], [5], which

are designed to be applied to compiled code. In particular, we

find that we obtain a better rate of compaction by combining

our approach with the compaction provided by gcc than what

is achieved by either technique alone. Our approach can also

be used for code understanding and easier debugging, as the

application developer is no longer faced with library code that

is not relevant to the considered applications.

Our approach: We propose a specialization process that

is carried out without any intervention from the application

programmer in the form of annotations or similar techniques.

Our compaction tool SpecTool removes from the library’s

code all the functions and data (statements and fields of data

structures) that will not be needed by any of a given set of

applications.

SpecTool performs the specialization in three steps. In the

first step, an analyser collects for each application information

about its use of the functionalities provided by the library. In

the second step, the collected information is merged to define



2

library file
original runtime system customized runtime system reduction rate

LOC gcc gcc + strip LOC gcc gcc + strip LOC gcc gcc + strip

libz2zrt.so.0.0.0
3,751

172 Kb 48 Kb
2,611

128 Kb 36 Kb
30.4 %

25.6 % 25.0 %
libz2zrt.a 236 Kb 68 Kb 184 Kb 48 Kb 22.0 % 29.4 %

TABLE I: Specialization of z2z runtime for the tunnel of SMTP over HTTP (LOC := Lines of Code)

a unified usage signature of the library. This global signature

is then used to generate a set of transformation rules [8]

matching code fragments that can be safely removed from

the library. Finally, in the third step, the Coccinelle2 source

code transformation engine applies the rules to automatically

generate a specialized version of the library.

Case study: Our work was motivated by the issues of

memory footprint encountered in the z2z project [3]. Z2z

provides a generative approach to network protocol gateway

construction to address the problem of protocol incompatibility

in a domotics environment. Z2z gateways rely on two kinds of

libraries: the z2z runtime system, which is shared by all z2z

gateways, and external libraries, which provide functionalities

such as parsing that are specific to a given protocol.

The z2z runtime system provides a number of low-level

network-related functionalities that are common to a range of

protocols. These include support for a wide variety of net-

work transport protocols (e.g, UDP or TCP), communication

modes (e.g., synchronous or asynchronous), and protocol types

(e.g., binary or text-based). Nevertheless, any given gateway

implementation is not likely to use all of these functional-

ities. Deploying the complete runtime system with one or

even several gateways on an embedded system will therefore

require more memory than necessary. For instance, the z2z

implementation of the SMTP/HTTP tunnel is composed of

two distinct gateways (SMTP to HTTP and HTTP to SMTP)

that use the z2z runtime system differently. Table I shows that

we achieve an average reduction rate of 25% for the static and

dynamic libraries in this setting.

There are also opportunities for footprint reduction in the

case of external libraries used by a z2z gateway. Network

message parsing is not provided by z2z, and thus it is nec-

essary to use an external parser. Libraries including parsers

already exist for many network protocols. For example, the

camera gateway developed with z2z to enable a SIP [9]

based telephony client to receive images from an IP-camera

accepting only RTSP [10] for negotiating the parameters of

the video session, uses an external library, oSIP,3 to parse SIP

messages. However oSIP includes not only a parser, but also

all the functionalities that an arbitrary SIP application may

need. Therefore, including the entire library in the runtime

program significantly increases the gateway memory footprint.

Because of the internal dependencies of the library, it is

difficult to safely extract by hand the minimal fraction of code

that is required.

Related Work: There has been much attention paid to

code-size reduction, especially in the context of embedded

systems. The techniques available in the literature include two

main families extensively reviewed in [2]:

2http://coccinelle.lip6.fr/
3http://www.gnu.org/software/osip/

• Lossless compression techniques [6], which are applied

to program code in order to produce an equivalent but

smaller representation.

• Compaction techniques, that were described by Bell

et al. [1] as irreversible compression techniques. Most

compaction techniques are directly applied to native code

or produce executables from source code.

The main drawbacks of compression techniques lie in the fact

that they can introduce processing delays since the compressed

code must be decompressed before execution.

Native code compaction techniques are usually based on

classical compiler optimizations, such as elimination of un-

reachable code, dead code and redundant code inside a

program [4], [5]. Our tool instead performs a specialization

according to the needs of a collection of unrelated programs.

It is noteworthy that our source-code compaction technique

is not incompatible with the other techniques. Indeed, since

our work is applied to the source code, the compiled libraries

can always be reduced again and/or optimized with efficient

compiler infrastructures such as the Low Level Virtual Machine

(LLVM).4

REFERENCES

[1] T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[2] A. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and K. Karsisto.
Survey of code-size reduction methods. ACM Comput. Surv., 35(3):223–
267, 2003.

[3] Y.-D. Bromberg, L. Réveillère, J. L. Lawall, and G. Muller. Auto-
matic generation of network protocol gateways. In Middleware ’09:

Proceedings of the 10th ACM/IFIP/USENIX International Conference on

Middleware, pages 21–41, Urbana Champaign, IL, USA, 2009. Springer-
Verlag New York, Inc.

[4] K. D. Cooper and N. McIntosh. Enhanced code compression for embed-
ded risc processors. In PLDI ’99: Proceedings of the ACM SIGPLAN

1999 conference on Programming language design and implementation,
pages 139–149, Atlanta, GA, USA, 1999.

[5] H. He, J. Trimble, S. Perianayagam, S. Debray, and G. Andrews. Code
compaction of an operating system kernel. In CGO ’07: Proceedings

of the International Symposium on Code Generation and Optimization,
pages 283–298, San Jose, CA, USA, Mar. 2007. IEEE Computer Society.

[6] C. Lefurgy, E. Piccininni, and T. Mudge. Reducing code size
with run-time decompression. In Sixth International Symposium on

High-Performance Computer Architecture (HPCA-6), pages 218–228,
Toulouse, France, Jan. 2000.

[7] D. Lohmann, W. Schrder-Preikschat, and O. Spinczyk. On the design
and development of a customizable embedded operating system. In
Proceedings of the International Workshop on Dependable Embedded

Systems, pages 1–6, Florianopolis, Brazil, October 2004.
[8] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting

and automating collateral evolutions in Linux device drivers. In EuroSys

2008, pages 247–260, Glasgow, Scotland, Mar. 2008.
[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261, Internet Engineering Task Force, June 2002.

[10] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol
(RTSP). RFC 2326, Internet Engineering Task Force, Apr. 1998.

4http://llvm.org


