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On the p-adic closure of a subgroup of rational points on an Abelian variety

In 2007, B. Poonen (unpublished) studied the p-adic closure of a subgroup of rational points on a commutative algebraic group. More recently, J. Bellaïche asked the same question for the special case of Abelian varieties. These problems are p-adic analogues of a question raised earlier by B. Mazur on the density of rational points for the real topology. For a simple Abelian variety over the field of rational numbers, we show that the actual p-adic rank is at least the third of the expected value.
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Introduction

Let A be a simple Abelian variety over Q of dimension g, Γ a subgroup of A(Q) of rank ℓ over Z, p a prime number, log : A(Q p ) → T A (Q p ) the canonical map from the p-adic Lie group A(Q p ) to the p-adic Lie algebra T A (Q p ) (see § 2.1) and r the dimension of the Z p -space spanned by log Γ in T A (Q p ). We have r ≤ min{g, ℓ}.

Conjecture 1. Under these hypotheses, r = min{g, ℓ}. This conjecture trivially holds for an elliptic curve (g = 1). The real analog of this conjecture is related with a conjecture of B. Mazur [START_REF] Mazur | Speculations about the topology of rational points: an update[END_REF]. See also the conjectures by Yves André [START_REF] André | G-functions and geometry[END_REF][START_REF]Une introduction aux motifs (motifs purs, motifs mixtes, périodes)[END_REF]. Moreover, if ℓ > 2g(g -1), then r = g.

Theorem 2 is a special case of Theorem 2.1 of [START_REF]Dépendance de logarithmes dans les groupes algébriques[END_REF], where the simple Abelian variety A over Q is replaced by a commutative algebraic group G over a number field. Our special case enables us to produce a much simpler proof. In particular, the zero estimate is much easier here, since there is no algebraic subgroup of G to be taken care of. Also, the main difference between our proof and the two proofs in [START_REF]Dépendance de logarithmes dans les groupes algébriques[END_REF] is that we use an interpolation determinant in place of an auxiliary function (Proposition 2.7 of [START_REF]Dépendance de logarithmes dans les groupes algébriques[END_REF]) or in place of an auxiliary functional (Proposition 2.10 of [START_REF]Dépendance de logarithmes dans les groupes algébriques[END_REF]): we do not need the p-adic Siegel Lemma (Lemma 3.3 of [START_REF] Waldschmidt | Transcendance et exponentielles en plusieurs variables[END_REF]). The two proofs in [START_REF]Dépendance de logarithmes dans les groupes algébriques[END_REF] are dual to each other, and this duality is just a transposition of the interpolation determinant of the present paper.

Further notations and auxiliary results

We keep the notations of § 1. We select ℓ elements γ 1 , . . . , γ ℓ in Γ linearly independent over Z.

For T a positive integer, we denote by Z g (T ) the set of tuples t = (t 1 , . . . , t g ) in Z g with 0 ≤ t i < T (1 ≤ i ≤ g). Similary, for S ∈ Z >0 , Z ℓ (S) denotes the set of tuples s = (s 1 , . . . , s ℓ ) in Z ℓ with 0 ≤ s j < S (1 ≤ j ≤ ℓ). Further, Γ(S) will denote the set of s 1 γ 1 + • • • + s ℓ γ ℓ with s ∈ Z ℓ (S). Hence Γ(S) is a subset of A(K) with S ℓ elements.

The p-adic logarithm

We follow the paper by B. Poonen [14] which refers to N. Bourbaki [START_REF] Bourbaki | Lie groups and Lie algebras[END_REF] Chap. III, § 1 and § 7.6. Since Γ is a finitely abelian subgroup of A(Q p ) of rank ℓ, log Γ is also a finitely generated abelian subgroup of T A (Q p ) of the same rank ℓ over Z. The closure log Γ = log Γ with respect to the p-adic topology is nothing else than the Z p -submodule of T A (Q p ) spanned by log Γ, hence is a finitely generated Z p -module. The dimension of Γ as a Lie group over Q p is dim Γ := rk Zp log Γ.

Heights

A projective embedding

We fix an embedding ι of the Abelian variety A into a projective space P N over Q, with an image which is not contained into the hyperplane X 0 = 0, and so that the functions X 1 /X 0 , . . . , X g /X 0 are algebraically independent over A (recall that A has dimension g). We also assume that for s ∈ Z ℓ , ι(γ s ) does not lie in the hyperplane X 0 = 0 and we denote by (1 : γ s1 : • • • : γ sN ) the coordinates of ι(γ s ) in P N , so that γ sν ∈ Q for 1 ≤ ν ≤ N and s ∈ Z ℓ . For convenience, we also assume that the zero element of A has projective coordinates (1 : 0 : • • • : 0).

Absolute logarithmic height

Denote by P = {2, 3, 5, . . . } the set of positive prime numbers and by M Q the set of normalized places of Q indexed by P ∪ {∞}:

for c ∈ Q × we write c = ± p∈P p vp(c)
and we have

|c| v = |c| = max{c, -c} for v = v ∞ |c| p = p -vp(c)
for p ∈ P .

The product formula, in this very simple case, states that, for c ∈ Q \ {0},

v∈M Q |c| v = 1.
The absolute logarithmic height of c ∈ Q is defined as For N ≥ 1 and c = (c 0 :

h(c) = v∈M Q log max{1, |c| v }.
• • • : c N ) ∈ P N (Q), we set h(c) = v∈M Q log max{|c 0 | v , . . . , |c N | v }.
If c 0 , . . . , c N are rational integers, not all of which are zero, which are relatively prime, then

h(c) = log max{|c 0 |, . . . , |c N |}. Notice that for c ∈ Q, h(c) = h(1 : c).

Néron-Tate height

The projective embedding considered in § 2.2.1 is associated with a very ample line bundle on A, to which is associated a canonical height which is a quadratic function (see [START_REF]Lectures on the Mordell-Weil theorem[END_REF] Chap. 3 and [9] § B.5).

Lemma 5. For s ∈ Z ℓ (S), h(s 1 γ 1 + • • • + s ℓ γ ℓ ) = h(1 : γ s1 : • • • : γ sN ) ≤ cS 2 .

Upper bound for the height

We shall use the following result, which is a very simple case of Lemma 3.8. in [START_REF]Diophantine approximation on linear algebraic groups[END_REF] (where Q is replaced by a number field). We denote by L(f ) the length of a polynomial f (sum of the absolute values of the coefficients).

Lemma 6. Let ν 1 , . . . , ν L be positive integers. For 1 ≤ i ≤ L, let γ i1 , . . . , γ iνi be rational numbers. Denote by γ the point

γ ij 1≤j≤νi,1≤i≤L in Q ν1+•••+νL .
Further, let f be a nonzero polynomial in ν 1 +• • •+ν L variables, with coefficients in Z, of total degree at most N i with respect to the ν i variables corresponding to γ i1 , . . . , γ iνi . Then

h f (γ) ≤ log L(f ) + L i=1 N i h(1 : γ i1 : • • • : γ iνi ).
Proof. Let us write

f (X) = λ c λ L i=1 νi j=1 X λij ij ,
where X (resp. λ) stands for the

ν 1 + • • • + ν L -tuple (X ij ) 1≤j≤νi, 1≤i≤L (resp. (λ ij ) 1≤j≤νi, 1≤i≤L . Lemma 6 follows from the estimates |f (γ)| ≤ λ |c λ | L i=1 νi j=1 max{1, |γ ij |} λij ≤ L(f ) L i=1 max{1, |γ i1 |, . . . , |γ iνi |} Ni and |f (γ)| p ≤ max λ L i=1 νi j=1 max{1, |γ ij | p } λij ≤ L i=1 max{1, |γ i1 | p , . . . , |γ iνi | p } Ni
for p ∈ P .

p-adic analytic functions

Ultrametric power series

We follow [START_REF] Serre | Dépendance d'exponentielles p-adiques, Séminaire Delange-Pisot-Poitou[END_REF]. The field Q p is complete for the p-adic absolute value. Let

f = n1≥0 • • • nr ≥0 a n1,...,nr z n1 1 • • • z nr r = n∈Z r ≥0 a n z n be a formal series with coefficients in Q p . If R is a real number > 0, we set |f | R = sup n∈Z r ≥0 R |n| |a n |, where |n| = n 1 + • • • + n r .
We have

|f + g| R ≤ sup{|f | R , |g| R }, |λf | R = |λ| • |f | R and |f g| R = |f | R |g| R if |f | R and |g| R are finite. When |f | R is finite, the series f (z) converges in the polydisc |z i | < R. Moreover, it converges in the closed polydisc |z i | ≤ R when R |n| |a n | tends to zero. We have |f (z)| ≤ |f | R .
Since the residue field of Q p is infinite and the group of values of Q × p is dense, we also have

|f | R = sup |f (z)| for |z i | < R. If R ′ ≤ R, we have |f | R ′ ≤ |f | R (maximum modulus principle).

Ultrametric Schwarz Lemma

The purpose of the Schwarz's Lemma is to improve the maximum modulus principle by taking into account the zeros of f inside the polydisc

|z i | < R ′ .
With the method of interpolation determinants of Laurent [START_REF]Diophantine approximation on linear algebraic groups[END_REF], we need only to take into account the multiplicity of the zero at the origin. For this reason, the proof reduces to the one variable case (as a matter of fact, we shall use Lemma 7 only for the case of functions of a single variable).

Lemma 7. If f has a zero of multiplicity ≥ h at the origin, then for R ′ ≤ R we have

|f | R ′ ≤ R ′ R h |f | R .
Proof (following [START_REF] Serre | Dépendance d'exponentielles p-adiques, Séminaire Delange-Pisot-Poitou[END_REF]). Let z satisfy |f (z

)| = |f | R and |z i | ≤ R. Define g(t) = t -h f (tz) for t ∈ Q p with |t| ≤ 1. Since R ′ /R ≤ 1, we deduce |g| R ′ /R ≤ |g| 1 . Since |g| 1 = |f | R and |g| R ′ /R = (R/R ′ ) h |f | R , Lemma 7 follows.
A quantitative version of Lemma 7 is Lemma 3.4.p of [START_REF] Waldschmidt | Transcendance et exponentielles en plusieurs variables[END_REF].

Corollary 8. Let f 1 , . . . , f L be power series in Q r p with |f λ | R < ∞ and let z 1 , . . . , z L be points in the polydisc |z i | ≤ R ′ with R ′ ≤ R. Then the determinant ∆ = det f λ (z µ ) 1≤λ,µ≤L is bounded by |∆| ≤ L! R ′ R L 1+1/r L λ=1 |f λ | R .
Proof. Corollary 8 is an ultrametric version of Lemma 6.3 of [START_REF]Diophantine approximation on linear algebraic groups[END_REF]; it follows from Lemma 7 by means of Lemmas 6.4 and 6.5 of [START_REF]Diophantine approximation on linear algebraic groups[END_REF], according to which the function of one variable

Ψ(t) = det f λ (tz µ ) 1≤λ,µ≤L
has a zero of multiplicity greater than (n/e)L 1+1/n at the origin.

p-adic theta functions

Since the kernel of the logarithmic map log :

A(Q p ) -→ T A (Q p )
is the set of torsion points of A(Q p ), this map is locally injective near the neutral element of A(Q p ). Let U be an open neighborhood of (1 : 0 :

• • • : 0) in A(Q p ),
V be an open neighborhood of 0 in T A (Q p ) and θ : V → U be a local inverse of log:

u ∈ U =⇒ log u ∈ V and θ log(u) = u, v ∈ V =⇒ θ(v) ∈ U and log θ(v) = v.
By definition of r, log Γ is a Z p -submodule of T A (Q p ) of dimension r which contains the ℓ elements log γ j (1 ≤ j ≤ ℓ). Let e 1 , . . . , e r be a basis. Let R > 0 be a positive real number such that z 1 e 1 + • • • + z r e r ∈ V for any

z = (z 1 , . . . , z r ) ∈ Q r p with |z i | p ≤ R. For z = (z 1 , . . . , z r ) ∈ Q r p with |z i | p < R, define θ 1 (z), . . . , θ N (z) by θ(z 1 e 1 + • • • + z r e r ) = 1 : θ 1 (z) : • • • : θ N (z) .
Then θ 1 , . . . , θ N are power series in r variables with coefficients in Q p and radius of convergence ≥ R.

Write

log γ j = r i=1
η ji e i and y j = (η j1 , . . . , η jr ) ∈ Q r p (1 ≤ j ≤ ℓ).

Further, select M ∈ Z >0 such that max 1≤j≤ℓ 1≤i≤r |M η ji | p < R.
Then, for any s ∈ Z ℓ with M |s j for 1 ≤ j ≤ ℓ,

s 1 log γ 1 + • • • + s ℓ γ ℓ ∈ V and θ(s 1 log γ 1 + • • • + s ℓ log γ ℓ ) = 1 : γ s1 : • • • : γ sN .
Hence γ sν = θ ν (y s ) for all s ∈ Z ℓ with M |s j and for all ν with 1 ≤ ν ≤ N .

The zero estimate and the interpolation determinant

The zero-estimate of Masser-Wüstholz (Main Theorem of [START_REF] Masser | Zero estimates on group varieties. I[END_REF]) is valid for a quasi-projective commutative algebraic group variety over a field K of zero characteristic. We need it only for a simple Abelian variety, which makes the statement shorter, since there is no algebraic subgroup to worry about. Let again A be a simple Abelian variety of dimension g embedded into a projective space P N . When P ∈ K[Y 0 , . . . , Y N ] is a non-zero homogenous polynomial, we denote by Z(P ) the hypersurface P = 0 of P N (K).

Lemma 9 (Zero estimate).

There exists a constant c > 0 depending only on A and on the embedding of A into P N with the following property. Let γ 1 , . . . , γ ℓ be Z-linearly independent elements in A(K).

Let P ∈ K[Y 0 , . . . , Y N ] be a homoge- nous polynomial of total degree ≤ D, such that Z(P ) does not contain A(K) but contains Γ(S) = s 1 γ 1 + . . . + s ℓ γ s ; s ∈ Z ℓ (S) . Then D > c(S/g) ℓ/g .
Like in [START_REF]Dépendance de logarithmes dans les groupes algébriques[END_REF], § 2.b, we could replace the zero estimate by an interpolation lemma due to D.W. Masser ([11] and Theorem 2.1 of [START_REF]Dépendance de logarithmes dans les groupes algébriques[END_REF]). The idea is just to consider the transposed matrix.

Coming back to the notations of § 2 (recall in particular the integer M > 0 introduced in § 2.3.3), we deduce from Lemma 9: Corollary 10. There exist two integers c 1 > 1 and N 0 > 1, depending on A and γ 1 , . . . , γ ℓ , with the following property: if N is a positive integer with N ≥ N 0 and if we set

L = N ℓg , T = N ℓ , S = c 1 N g ,
then there exists a subset S = {s 1 , . . . , s L } of Z ℓ (S) with L elements s µ = (s µ,j ) 1≤j≤ℓ (1 ≤ µ ≤ L), such that M |s µ,j for 1 ≤ j ≤ ℓ and 1 ≤ µ ≤ L, and such that the determinant

∆ = det γ t1 s1 • • • γ tg sg s∈S, t∈Z g (T )
does not vanish.

Proof. Consider the matrix

γ t1 s1 • • • γ tg sg t,s
, where the index of rows is t ∈ Z g (T ), while the index of columns s runs over the elements in Z ℓ (S) for which M divides s j . Our goal is to prove that this matrix has maximal rank L. Consider a system of relations among the rows of the matrix t∈Z g (T )

p t γ t1 s1 • • • γ tg sg = 0 (s ∈ Z ℓ (S), M |s j )
with p t ∈ k for all t ∈ Z g (T ). The polynomial

t∈Z g (T ) p t X t1 1 • • • X tg g
has degree ≤ T in each of the variables X 1 , . . . , X g and vanishes at all points of γ s ∈ Γ(S) for which M |s j (1 ≤ j ≤ ℓ). Use Lemma 9 with γ 1 , . . . , γ ℓ replaced by M γ 1 , . . . , M γ ℓ . Taking c 1 > M g(g/c) g/ℓ , so that gN ℓ < c(c 1 N g /gM ) ℓ/g , it follows that this polynomial is 0, hence p t = 0 for all t ∈ Z g (T ).

4 Upper bound for the height and lower bound for the absolute value of the interpolation determinant

Under the assumptions of Theorem 2, we give an upper bound for the height of the determinant ∆ introduced in Corollary 10.

Proposition 11. There exists a positive integer c 2 > 1, depending on A and γ 1 , . . . , γ ℓ , such that, for all N ≥ N 0 ,

h(∆) ≤ c 2 LT S 2 .
Proof. From Lemma 5, we deduce, for any s ∈ Z ℓ (S), h 1 :

γ s1 : • • • : γ sN ≤ cS 2 .
Proposition 11 now follows from Lemma 6 with

ν 1 = • • • = ν L = g, N 1 = • • • = N L = T and L(f ) ≤ L!
Liouville's inequality (Lemma 4) implies:

Corollary 12. With the notations of Proposition 11,

log |∆| p ≥ -c 2 LT S 2 .
5 Analytic estimate: upper bound for the absolute value of the interpolation determinant Proof. Proposition 13 follows from Corollary 8 with the set of functions

{f 1 , . . . , f L } = θ t1 1 • • • θ tg g ; t ∈ Z ≥0 (T )
and the points

z µ = s µ1 y 1 + • • • + s µℓ y ℓ (1 ≤ µ ≤ L).
6 Proof of the main transcendence result However, one needs to take into account possible degeneracies occurring from the algebraic subgroups of G. We refer to [START_REF]Sous-groupes analytiques de groupes algébriques[END_REF] for precise statements.

Proof ot Theorem 2. Since T S 2 = c 2 1 L (1/g)+(2/ℓ) ,
In the case of a power of the multiplicative group G = G d m , the transcendence result yields lower bounds for the p-adic rank of the units of an algebraic number field (namely partial results towards Leopoldt's Conjecture).

• 7.3. Following [START_REF] Poonen | The p-adic closure of a subgroup of rational points on a commutative algebraic group[END_REF], consider a commutative algebraic group G over Q and a finitely generated subgroup Γ of G(Q) contained in the union of compact subgroups of G(Q p ). The number dim(Γ) can be defined exactly like in § 2.1 as the dimension of the Z p -submodule of the tangent space at the origine Lie(G) spanned by the image of Γ under the logarithmic map. Another function d(Γ) of Γ is introduced by B. Poonen in [START_REF] Poonen | The p-adic closure of a subgroup of rational points on a commutative algebraic group[END_REF]:

d(Γ) := min H⊂G dim H + rk Z (Γ/Γ ∩ H) ,
where the minimum is over all algebraic subgroups H of G over Q. The inequality dim(Γ) ≤ d(Γ) is always true. Here is an example where this inequality is strict (compare with Langevin's example in [START_REF]Dependence of logarithms on commutative algebraic groups[END_REF] p. 1201 and 1209 for G 3 m ). Consider an elliptic curve E over Q with three linearly independent algebraic points γ 1 , γ 2 , γ 3 in E(Q). Let Γ be the subgroup of E 3 (Q) generated by (0, γ 3 , -γ 2 ), (-γ 3 , 0, γ 1 ), (γ 2 , -γ 1 , 0). Then dim Γ = 2, while d(Γ) = 3.

To produce a lower bound for the p-adic rank amounts to produce lower bounds for the rank of certain matrices whose entries are p-adic logarithms of algebraic points. From a conjectural point of view, the answer is given by the structural rank introduced by D. Roy. See [START_REF]Diophantine approximation on linear algebraic groups[END_REF] for the case of linear algebraic groups.

• 7.4. Further applications of the algebraic subgroup theorem in the ultrametric case are given by D. Roy in [START_REF] Roy | On the v-adic independence of algebraic numbers[END_REF]. • 7.5. Our p-adic result Theorem 2 is an ultrametric version of [START_REF]Sous-groupes analytiques de groupes algébriques[END_REF][START_REF]Densité des points rationnels sur un groupe algébrique[END_REF] (see also [START_REF] Roy | Autour du théorème du sous-groupe algébrique[END_REF]).

In the Archimedean case, quantitative refinements are given in [START_REF]Density measure of rational points on abelian varieties[END_REF], they are based on the results of [START_REF]Approximation diophantienne dans les groupes algébriques commutatifs. I. Une version effective du théorème du sous-groupe algébrique[END_REF]. See also [START_REF] Ghosh | Diophantine approximation and automorphic spectrum[END_REF]. Since the method is "effective", it is also possible to produce quantitative refinements of Theorem 2. • 7.6. An alternative proof of the main result (Theorem 2) can be given by means of Arakelov's geometry and Bost slope inequality. See the papers by J.B. Bost [START_REF] Bost | Périodes et isogenies des variétés abéliennes sur les corps de nombres (d'après[END_REF] and A. Chambert-Loir [START_REF] Chambert-Loir | Théorèmes d'algébricité en géométrie diophantienne[END_REF].
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 4 c ∈ Q × , we write c = a/b where a ∈ Z \ {0} and b ∈ Z >0 are two relatively prime integers. Since min{v p (a), v p (b)} = 0 for all p ∈ P , we have, for all p ∈ P , max{|a| p , |b| p } = 1, which means max{1, |c| p } = |b| -1 p . Hence, by the product formula, p∈P max{1, |c| p } = b. Multiplying both sides by max{1, |c|} yields h(c) = log max{|a|, b}, which can be taken as an alternative definition for the absolute logarithmic height. Liouville's inequality is very simple in this context: If c is a non-zero rational number and p a prime number, then log |c| p ≥ -h(c).

Proposition 13 .

 13 There exists a positive integer c 3 > 1, depending on A and γ 1 , . . . , γ ℓ , such that, for all N ≥ N 0 , log |∆| p ≤ -c 3 L 1+1/r .

  In place of the rational number field and the prime number p, one may work with an algebraic number field and a finite place v, replacing Q p with the completion k v . One main difference is in § 2.2.2, where, in the case of a number field, one needs to introduce height functions on the field of algebraic numbers in place of the rational number field. See[START_REF]Diophantine approximation on linear algebraic groups[END_REF] Chap. 3 § 2, [9], § B.2, [18], Chap. 2, [4] Chap. 1, [10] Chap. 4.As pointed out in[START_REF] Poonen | The p-adic closure of a subgroup of rational points on a commutative algebraic group[END_REF] (Remark 6.4), one cannot deduce the general case of a number field from the special case of the rational numbers by means of the restriction of scalars. • 7.2. As mentioned in[START_REF]Sous-groupes analytiques de groupes algébriques[END_REF] ( § 6a p. 643), similar results hold when the simple Abelian variety A is replaced by a commutative algebraic group G. There is a condition in[START_REF]Sous-groupes analytiques de groupes algébriques[END_REF] for the ultrametric case that a subgroup of finite index of Γ is contained in a compact subgroup of A(k v ) -for an Abelian variety A, the group A(k v ) is compact and this condition is always satisfied. Let us write, like in[START_REF]Sous-groupes analytiques de groupes algébriques[END_REF],G = G d0 A × G d1 m × G ′ ,where G ′ has dimension d 2 (and therefore G has dimension d = d 0 + d 1 + d 2 ). Roughly speaking, in this general sitting, one replaces
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