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Propagation of transient waves through a stratified fluid medium:
Wavelet analysis of a nonasymptotic decomposition of the
propagator. Part I. Spherical waves through a two-layered system

G. Saracco™?

C.N.R.S., Laboratoire de Mécanique et d’Acoustique, Equipe Ultrasons, 31 Ch. J. Aiguier, 13402

Marseiile Cedex 09, France

(Received 27 February 1991; revised 28 March 1993; accepted 20 September 1993)

The propagator for the problem of transient waves in a stratified fluid medium has a natural
decomposition into three contributions. These contributions are studied in detail by analytic and
numerical methods and the results are compared with experiment. Since the individual
contributions have dispersive character, they are analyzed with the help of continuous wavelet

transforms.

PACS numbers: 43.20.Bi, 43.20.Fn, 43.20.Hq, 43.30.Dr

INTRODUCTION

This paper deals with the propagation of transient
waves through a stratified fiuid medium in three dimen-
sions. We suppose that the properties of the medium
{sound velocity and density) depend on the depth only.
The source is located in the medium with lower velocity.
Our main concern is the definition, description, and caleu-
lation of “interface” contributions for transient sources.

(1) In order to motivate our approach, we start with a
discussion of known results, which have been obtained in a
somewhat different context.

For the case of a monochromatic source this problem
has been extensively studied.'!" The interface contribu-
tion, called “lateral wave’ has been examined theoretically
by Gerjuoy, Brekhovskikh, and others. This wave contri-
bution’ appears—as a correction to geometrical
acoustics—in the estimation of the reflected acoustic po-
tential with the help of the steepest descent method, in the
asymptotic limit where the dimensionless parameter wR/¢
is large. (Here, o is the circular frequency, R is the dis-
tance between the source and the observation point, and ¢
is the propagation velocity in the medium containing the
source. )

The same methods apply to the transmitted field,
where however the physical behavior is different. Here the
lateral contribution is predominant in subcritical transmis-
sion, i.e., under conditions of total reflection. (“Total re-
flection” is a term of geometrical acoustics, which is here
only the asymptotic limit.) The amplitude of the lateral
contribution is an exponentially decreasing function of
depth and depends on frequency. Consequently, for non-
harmonic sources, it gives rise to an effective
dispersion.“le

The above statements have been confirmed by numer-
ical and expetrimental work. In particular, it was possible
to separate experimentally the various contributions (in an
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acoustic tank, for the air-water interface), and to show
that—for audible frequencies between 3 and 5 kHz—the
lateral contribution is not negligible in some regions, in
agreement with numerical evaluations of the pressure
field."

This contribution corresponds to the echo gallery wave
(whispering wave), that appears in problems of scattering
in curved fluid-solid interfaces (e.g., spheres).'>"*

(2) We come now to the case of a transient source
(arbitrary time dependence). The consideration of such
sources is often necessary for experimental reasons. For
instance, in the study of propagation of audible signals it is
often necessary to emit short wave trains in order to avoid
spurious effects due to reflections on walls. Furthermore,
the study of time-dependent sources is necessary in order
to convert the dispersive properties of surface contribu-
tions into time delays.

It then becomes necessary to define appropriately the
various contributions in transient situations, to calculate
them precisely, and to study their importance in compari-
son to the classical geometric waves. Thig is the main aim
of this paper.

“There exist many methods for analyzing transient sig-
nals. Most works combine classical numerical methods
with either a Fourier transform'>"7 or with a spectral anal-
ysis of a differential self-adjoint operator'®'® or with the
Cagniard-De Hoop method.”** Some use numerical
methods based on fourth-order finite-difference schemes in
time and space.”® If we want to make an exact calculation
of the different contributions of the field while staying close
to the physics of the phenomena, we must use a linear
time-frequency or time-scale method. One class of such
methods, the wavelet transforms,**** has been used re-
cently with success in several domains. The signal is de-
composed into a basis of functions well localized simulta-
neously in time and frequency. This transform is
nonparametric. The total energy of the signal is preserved.

(3) The main points of this paper are the following:

(a) The Green’s function G(x,p,z,?) for our problem
has a standard integral representation, given below, in (4).
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Consequently G can be decomposed into its three natural
contributions corresponding to intervals between branch
points in an integrand, and given below, in (5)—(7). They
give rise to different “propagation modes.” By analogy
with the monochromatic case,'""'? we call them “geomet-
ric,” “surface,” and “evanescent” or “third” contribution.

We want to stress the fact that this decomposition is
valid in general, and does not depend on any assumption of
asymptotic nature. This means that our use of the word
“geometric” can be misleading. For this reason, we keep it
in quotes.

The same decomposition holds for a solution with an
arbitrary source, which is discussed in Sec. L.

(b) The individual contributions are of “dispersive na-
ture,” i.e., their effective propagation velocity depends on
frequency. It is convenient to analyze such functions
through continuous wavelet transforms, and in Sec. I1I we
shall perform such an analysis. By using the properties of
the analyzing wavelet (regularity and progressivity) and
general properties of the wavelet transform (isometry and
linearity ) we obtain methods for numerical computation of
each contribution. These methods are precise and robust
due to the “regularizing” properties of the wavelet trans-
form. The transform of the Green’s function is more reg-
ular than the Green’s function itself,*>*° but still allows a
precise localization of various wave fronts, and selective
reconstruction of the pressure field.

|. DECOMPOSITION OF ACOUSTIC POTENTIALS
INTO THREE CONTRIBUTIONS

The problem is three-dimensional in space. There are
two fluid media separated by a plane interface z=0. The
first two spatial variables are written as r= (x,y). The me-
dium of lower velocity ¢, is the half-space z<0 and con-
tains a source s(r,z,t). It is convenient to consider a whole
family of such sources s(r,z—Ah,t), labeled by a *height
parameter” h, where A varies in a suitable interval. We
assume the following:

(i) s is a product: s(r,z—h,t) =F(t)Q(r,z—h), where
F and @ are real.

(ii) For each z,A,Q(r,z—h) is radially symmetric, i.e.,
depends only on r=|r|.

(iii) Q(r,z—h)=0 for z>>0 and for all  in the interval
that we consider.

(iv) The source vanishes if ¢ is negative or larger than
some T. F(t)=0if 1<0, or if t>T (T >0).

We define the Fourier transform with respect to the
first two spatial variables r=(x,y) and the time variable ¢
as:

. 1 )
. i(et—pr)
D (p,z,w) 4T2 e ff D(r,z,t)e dr do.

In order to keep the notations simple, we shall use the same
notation for the Fourier transform with respect to the vari-
able r only

5 1 .
D(p,z,1) =y f D(r,z,t)e "M dr.
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Similarly,

- 1 )
D(r,z,w)= ®(r,z,0) e’ do.
(r,za)) EJ' (I'Z )e @

If @ is radially symmetric, it can be written in terms of )
as

O (r,z,t)= 2 ¢ Mt & (p,z,0)

0=—2c p=0

XJo(ur)p du do,

where p=|p| and J is the Bessel function of order zero.
The propagation will be described in terms of the sca-
lar acoustic potential W. Let us write:

av av oV v
atr’ _(Bx’ay’az)'

The wave equation in a stratified fluid medium in
which the velocity (¢) and the density (p) depend on only
one spatial variable—the depth z—and are piecewise con-
stant, can be written as'®!”

1
p(2)V- (p(z)

The initial conditions are
¥(r,z0)=0, D¥(rz0)=0.

The problem is to find ¥ satisfying the two above condi-
tions, the classical boundary conditions for fluid media
(continuity of the pression and of the normal velocity) and
such that: (i) W(rz,t) is real and (ii) W(rz¢)=0 for t <0
(causality).

Taking into account a two-layered pattern, we denote
by n the refraction index (ratio of celerities), n=c;/¢c, <1,
and by m the ratio of the densities m=p,/p,, 4, and 4,
are the coefficient of reflection and transmission.

The solution to this problem is well known (Sommer-
feld and Wells) see Cagniard.”” The acoustic potential in
the two media i8

DY =

V\I‘) —c X 2) DW= —s(r,z—h,t). (1)

U1 (12,0) = A (,0) e @ Eilp)2

isgn()F(0)Q(u,z)
o K ()

e sk (o) [2+hl ;<)

B (1,2,0) =4y (o) e/ F K2 - (750),

where K;(p,0) = \/o)z/cﬁ-—p.,z and ?m[KJ,—]}O, for @>0,
Jj=12 [Rk: sgn(w)K is continuous in @=0]. The values
of the coefficients of reflection 4, and of transmission 4,
are

isgn(@)F(0)Q(p,2) [mK,(p,0) —K;(1,0) ]

A (pw)= .
1(p,0) . Jinl(m,p) [mE () + Ky (o) ]
Xer’ sgn(m)k’l(,u,ﬁ))fl’
isgn(o)F(0)Q(p,z)  ese@Kilmalk
Ay (o) = '
oy (mK, (1,0) + K3 (1,0))
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FIG. 1. Three regions in the (p,») plane.

From now on, we restrict our attention to the transmitted
field, and write W for ¥,. Written out in full, it is

\f;( ) isgﬂ(&))ﬁ'(a})é(p,z) o Bl (pho)h
IAHOT= w2 (MK, (11,0) + K (11,0))
% er‘ sgn(ca)Kg_(,u,m)z. (2)

One can verify directly that @(p,z,m) and “i'l(p,z,m) sat-
isfies

(54

6] ¥ j(wz,0) verifies  the I:{ermitian symmetry:
V(pz,0) = V;(u,z, — @); (ii) ¥;(p,z,0) is analytic in
the complex half-plane Im(w) >0.

For any fixed z, the behavior of W(u,z,w) depends on
whether any one of the functions K,K is real or imagi-
nary. This distinction will be crucial in our decomposition
of the acoustic potential ¥ into three contributions, corre-
sponding to different kinds of propagation. We consider, in
the p,o plane, the three regions V', ¥2, V° (see Fig. 1):

¥ (p,2,0) = —§(p,z2—ho);

o e e
i) V. ,U,<W (Kl,,Kg real);

||

2
@
] <M2<(c1)2 (K, real, K, imaginary);

(C2)2

(i) V%

2
@
(iii) V> %iqﬁ (K,,K, imaginary).

The restriction of the transmitted acoustic potential to
these three regions gives a decomposition:

Y=yl w2yl
Geometric type:
VzeR, Pl=¥ if (,u,co)eVl, and otherwise W'=0;
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i sgn{w) Flw)0(n,2)
T2

xpli sgn(w) Joi/c—ph)

{(mK, (p,0) + K (11,@))

X expli sgniw) o/ —p’l.

Y(p,z0)=

e
X

Surface type:
vzeR, ¥2=¥ if (u,@)eV? and otherwise P2—0:

i sgn(w)F(0)0(1n2)
29T

Xexp[i‘ sgn{w) Jco!/cij —p’h]

{(mK, (p,0) +iKy(p0))

X exp(— \2—0/c; z).

Vi (p,z,0) =

Third type:

~

vzeR, ¥ =¥ if (p,0)eV?, and otherwise ¥*=0:

9 )_ﬁ("’)é(uz) exp(— i — o /ch)
2,0 “m—(mlﬁ(#,m).i.xz(ﬂ,wn

X exp(— yp— /e 7).

We can remark that each of the contributions satisfies
the wave equation (1), but not necessarily the causality
condition. These contributions correspond to different
“modes” or propagation types. We can give the following
physical interpretation.

(1) The first type corresponds to geometrical acous-
tics. The waves corresponding to this contribution are the
direct reflected or transmitted contributions corresponding
to a homogeneous medium. They satisfy the classical laws
of ray theory, whence the name “geometric” contributions,
in analogy with the terminology of the harmonic case.

(2) The second term takes into account interface phe-
nomena. With respect to classical ray theory, it is a cor-
rection to geometrical acoustics. In the case of a mono-
chromatic source, it is easy to obtain an asymptotic
expression for this contribution with the help of high-
frequency approximations such as saddle-point or
stationary-point method. They are well known, and are
obtained with the help of an additional integration path
around a branch point, corresponding to over-critical an-
gles (incidence angle). However, in the transient case,
these waves have essentially not been studied except exper-
imentally. The simultaneous space and frequency depen-
dence of the “surface” potential implies, as a consequence,
the fact that these contributions can no longer be brought
into correspondence with a high-frequency asymptotic ex-
pression and with a particular branch point. These contri-
butions describe a dispersive phenomenon due to the in-
homogeneity of the medium (the interface). They will be
called “inhomogeneous” or “surface” contributions.

(3) The third term takes into account contributions
that do not correspond to a propagation (they are rapidly

G. Saracco: Stratified fluid media-wavelet analysis 1193



attenuated). We shall call them “evanescent” contribu-
tions. In the presence of a second interface, they become
guided waves.'®

Returning to the radial horizontal space variable r (in-
stead of the absolute value p of the wave vector), we have

a isgn(w) |2 . ® uw
\P(r,z,m)=—g;—w &F(m)ia)] J- - JO(T)

X Q(u,2)N(0,14,2) —— u du, (3a)

D(u)

where u=pc,/|®|, p is the spatial frequency and  is the
temporal frequency,

N(a),u,z)—exp(:sgn(m) (hy1— w -z \n*— )

D(u)=myl—u+ (3b)

with the determination defined by

\hrzi—ui define as 7sgn(w) ‘I]nz—u:h for u>n,

and

n—u

JT—1? define as isgn(w)|1—#’[, for u>1.

(Jy is the Bessel function of order zero),

We can remark that the variable « appears naturally in
the harmonic case, as the sine of the incidence angle 8 of a
plane wave (u=sin 8)."! (Decomposition of the incident
spherical monochromatic wave in plane waves.) Here the
approach is different, due to the dependence of # on the
spatial frequency i and on the temporal frequency @ [cf.
(30)].

However, the integral over the variable # can still be
decomposed into three contributions that correspond to
the branch points in the integrand:

Pty 9 4,

u<n n<u<l u>l

The first contribution defined by the interval [0,n] is
the “geometric” contribution. The second one correspond-
ing to values of u between [n,1] is the called “lateral” or
“surface” contribution, in analogy with the terminology of
the harmonic case. The last one, corresponding to values u
[1,0], is the “evanescent” contribution.

We should notice that the second contribution arises in
the harmonic case from an additional integral around the
branch point n, whereas it is given here as the contribution
of the interval n<wu <1 to the integral over the variable u.

Il. DECOMPOSITION OF THE GREEN'S FUNCTION

Our aim is to calculate separately each contribution
and to study its dependence on the properties of the source
and on the position of the observation point. Consequently
we shall study partial Green’s functions for the direct prob-
lem, i.c., the case of an impulse point source.

If we assume that the source signal is an impulse, that
is, F(w)=C", expression (3) corresponds to the Green’s
function in Fourier—Hankel space:
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@

G’(r,;:r)—1 J-( €

=0

()
XJU( )u du

Since the potential and the source satisfy the Hermit-
ian symmetry [i.e., ‘I’(r,z,m) = ll’ (r,z, — w)], it is not
necessary to define the Green’s function for values of © <0.
A real and causal solution can be obtained by taking into
account the hermiticity and analyticity of the potentials.
We consider here complex solutions, so as to study the
modulus and phase of each contribution.

With the help of an inverse Fourier transform over the
time variable, we can obtain an expression of the various
contributions at any point of space and time. The expres-
sion contains, however, a double integral. Since the inte-
grals over two variables (# and ) are independent, we can
change the order of integration. A first evaluation of the
integral over ! allows us to reduce the calculation of the
propagator to the evaluation of a one-dimensional integral
over the variable u.

We wish to emphasize the calculation of the propaga-
tor associated with “surface” contributions for large radial
distances. These contributions—often neglected in the case
of a fluid-fluid interface—are important in the study of an
inverse problem.”'”

el‘N(u.a).z)
m 1=t n* —u*

Julu{;]n.(
=il

n

dw. (4)

A. “"Geometric” contribution

Let us define

1—u \fnz—uz ur
B=t— h— z and a=—.
C) 5 5]

From expressions (3) and (4), using Ref. 31, we ob-

=1 n
G (rzl)ﬁ*" f 8

e Jumo ml—u+ n*—u*

tain

%l |7 e tiama )d
e e u.
(aB w=0 DYREIER

We can derive the expression in the sense of distribu-
tions (cf. Appendix A):

n u
(@ o=;o Lo AT+ i
X (L, @Y Ha—B)+ KT $)H(f—a))du.
(3)

Here, the notation { , ) represents the evaluation of a
functional f by a test function ¢, i.e., formally (f.,¢)
= [ f(x)¢(x)dx, and H is the Heaviside function:

(a+B)~*? 1
Va—B ' atB

X J-w [¢(x)—¢(0)]x‘3’2dx), a<p,
0

=3
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(a+B) 1
VB—a \/a+ﬁ‘

=3

X j': [¢(wx)~¢(0>1x*”2dx), a>B.

The case where the function 8—« is zero corresponds
to the arrival of the wave front of the ‘“geometric”
contribution.!"!* Here, this means it corresponds to the
passage of a § function at the observation point. Asymp-
totically, the function B—a represents the phase associated
to the “geometric” contribution. Let us denote by #,,, the
time associated with the arrival of the wave front at an
arbitrary observation point (7,z). The expression for this
point is given by a study of the function f(u):

J— ynl—u?  ur
fl)=B—a=0c1=7(u)= h+ % z+;1—.

This function has an extremum at » = huy/ 1{1—1:02
+ zuy/ 1}n2—u3. The value of 7(u) at that point is such
that:

zZn

m(uo(r))= ”11_ Y-

uo Ca nz — Uy

We find here the trajectory corresponding to Fermat’s
principle in accordance with the results obtained in the
harmonic case with the help of the method of stationary
phase [t,.,=7(1)].

One can remark that for u=0, 7(u) =h/c|+2z/c;="7.
This value corresponds to the minimum time that the wave
can take in order to arrive at the point (r=0,z). We are
now in the situation where the point of the observation is
directly under the source.

u=n, 7(u) = 1—n*/c, h + r/c, = t;. This time
corresponds to a wave arriving at a critical angle and ver-
ifying Fermat’s principle in analogy with the results ob-
tained in the harmonic case.

B. “Surface” contribution

The “lateral” contribution that we shall calculate nu-
merically can be written as:

& =i ula*— (c+id)?] ¥ (c+id)
(rat)= e J-,,=,, m1—u4iJu’—n’ e

(6)
where
J1—12 \}ui—ni
B'=c+id=t— h+i( z)
€1 Cy
and
ur
=
4|

This function does not have singularities. Indeed we
always have a— (c+id)=5=0. The arrival time of the wave
front associated with the “lateral” contribution is obtained
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through the study of the function ¢ —Re[c+id]=0. That
is, 7(u) = ur/c; + (\/l—ui/c,)h

This function has an extremum at 7 = hug/ \1— ug
At this point one has 7(uy) = huy/c, \flaug. We find, in
accordance with the results obtained by the saddle point
method,"!! a distance corresponding to the direct path of a
plane wave at the interface. Let £, be the time correspond-
ing to this path:

_ hh‘o B \Jh -|-;
ol o

The values of the variable 7 at the limits of the inte-
gration interval are

1}1—nz
c

r r
T(n)=t= h+c2’ f(l)—cl :

At the lower limit (w=n), we find the same expression
t, as the one obtained for the “geometric” contribution.
The analysis of the “lateral” contribution shows a partial
contribution from the “geometric” part. It appears mostly
at time ¢, We see, furthermore, that we can make an anal-
ogy between the times calculated by stationary phase’'!
and the times obtained by the study of the function 7(u).
Figure 2(a) represents the modulus of the acoustic poten-
tial associated with the surface contribution and Fig. 2(b)
represents its phase, for the case where the reduced vari-
able r/h=2 and z/h=0.1.

On the other hand, even though the sum of the three
contributions G= G'+ G*+ G° verifies the conditions of an-
alyticity, the expressions associated with the partial contri-
butions lose this last property due to the truncation of the
integral over the variable u [u=u(®)]. This explains the
“artifact” that appears at time 7,=¢;—2r/c, (cf. Fig. 2).

The analysis of the “lateral” or “surface” contribution
shows a partial contribution of the “geometric’” contribu-
tion, It is present mostly at the time #,. We see in addition
that we can make an analogy between the times obtained
by the method of stationary phase (classical method) !
and the times obtained through the study of the function

7(u).

C. “Evanescent” or “third” contribution

In this case the integral over the variable @ corre-
sponds to a real and decreasing exponential:

1 @ u
G’ (ra,t) = oy J; 1 m\/u ——1+\/u —n?
X [(e+it)2+a?] ~¥2(e+it)du, (7
where
Juil—n® P —1 ur
B =it+e=it+ z+ h and a=—
€ €y €

This function has no singularities and can be numeri-
cally computed. We can remark that if we use a classical
method (the asymptotic approximation for harmonic case
for example) for the field this contribution does not ap-
pear. We can see here that it exists, but its influence is

G. Saracco: Stratified fluid media-wavelet analysis 11985
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FIG. 2. (a) Modulus of the acoustic potential associated to the “surface”
or “lateral” contribution: 7, is the time artifact due to the partition of the
field into “‘geometric,” “surface,” and “evanescent” contributions (i.e.,
loss of the analyticity property of the partial potential). This time does
not correspond to a physical solution, t,=¢,—2r/¢; (no-causal solution);
ty,t, are the times corresponding (by analogy to a decomposition of a
spherical wave into an infinite sum of plane waves) to plane waves arriv-
ing under critical incidence following Fermat's principle, and plane waves
arriving with an overcritical angle [t; = h(\1—n%/¢;) + nr/e, and 1,
= (P+h*/¢}); and 1, =time corresponding to the arrival of the “lateral”
contribution (f,,=1,+2zn/c;). (b) Phase of the acoustic potential associ-
ated to the “surface™ or “'lateral” contribution: t, is the time artifact due
to the contributions of the field into “geometric,” *“‘surface,” and “eva-
nescent” contributions (i.e:, loss of the analyticity property of the partial
potential). This time does not correspond to a physical solution,
t,=t,—2r/¢; (no-causal solution); f;,f; are the times corresponding (by
analogy to a decomposition of a spherical wave into an infinite sum of
plane waves) to plane waves arriving with an undereritical incidence
following Fermat’s prnciple, and plane waves arriving with an overcrit-

ical angle (1, = A \fl—ni/c, + nr/e;and t; = [P+ Hk/e,); and b, is the
time corresponding to the arrival of the “lateral” contribution
((;n:l2+2n/cl).

negligible. It is very soon attenuated independently of the
observation point. This attenuation depends, however, on
frequency.

The study of those contributions has shown that they
have a different dependencies on time and on frequency.
We see that it is appropriate to use a time-frequency
method for their characterization. There exist many meth-
ods for analyzing a transient signal. We want however to
make an exact calculation, while keeping in mind the phys-
ics, this leads us to use a linear transform in which the
signal is decomposed into a basis of functions that are well
localised simultaneously in time and in frequency. The
wavelet transform, a time-and-scale method, satisfies these
requirements.***> We shall now study, in the time-and-
scale space, the behavior of the acoustic pressure field.
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. DECOMPOSITION OF GREEN'S FUNCTION INTO
ELEMENTARY WAVELET CONTRIBUTIONS

Assuming that the source emits an impulsive signal,
we can decompose the propagator with the help of the
wavelet transform into a sum of elementary wavelet
contributions.>*2° This decomposition depends, on one
hand, on the properties of the wavelet transform and, on
the other hand on the properties of the analyzing wavelet
that we choose. Let us assume that the analyzing wavelet
g(t) is regular and progressive (cf. Appendix B).

Then the linearity of the transform will allow us to
study separately each one of those contributions and to
calculate them separately. The wavelet transform of the
propagator is more regular than the propagator itself, be-
cause of the regularity of the analyzing wavelet.

One obtains a local analysis at Aw/w=C***" This
method is consequently different from the classical analysis
at Aw=C*" such as the window-Fourier transform, or Ga-
bor transform?® and well adapted to the detection of dis-
continuities (e.g., wave front).

One can reconstruct selectively with any desired pre-
cision the total transmitted acoustic field. The total field
will be obtained by simple summation of the contributions,
in distinction to nonlinear methods such as the Wigner—
Ville distribution.

Moreover, the isometry property will allow us to in-
terpret the square modulus of the transform as an energy
density.”® We can choose at will the analyzing wavelet
while keeping it progressive, which is necessary in the
study of propagation phenomena, and this will allow us in
addition to have a physical interpretation of the phase of
the transform.

Finally this transform is invertible, that is, we can re-
construct the signal starting from the values of its trans-
form. We shall see how this property will be used in the
study of the inverse problem.

Let g(#) be the analyzing wavelet, a the dilation pa-
rameter, and b the translation parameter. We can write the
wavelet transform in Fourier space. The wavelet transform
of the transmitted acoustic potential is

(LD) (ba)= JEJ-DO (f)(r,z,w)g:(afﬂ)e_"bm dw,
0

7 is the complex conjugate of g, with our choice of analyz-
ing wavelet (Morlet wavelet):

2
g(n) =exp(1'(ogt)exp( —5‘;1) -+ correction terms,

(m'—cuo)2

g(w) :exp( —Tr—) ++correction terms,

and the condition
£(0)=0,
A. Decomposition of the “geometric” contribution

The role played by the test function ¢(x) in Eq. (5)
will be played in (8) by the analyzing function g. The
distribution has been replaced by a smooth function of two

for w<0.
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variables. The singular nature of the distribution is mani-
fested in the asymptotic behavior of its wavelet transform
for small scales (a—0). This is an advantage in numerical
calculations. On the other hand, the asymptotic behavior
of the transform (cone pointing towards the singularity)
still allows a localization of the wave front.

The expression is, in that case,

i [2a (n u
LG") (b, =—'-J:f
( )(b.a) L VT Ju=o m;}lui—k ;iniui

X ( J:;o coﬁ(am)e"‘_”@(“).fo(n(u))dm)du

(8)

This formula has been numerically evaluated for different
positions of the hydrophone.

B. Decomposition of the “surface” contribution

For this particular contribution we have obtained by
the use of the expression®!

—1 1 u
st |
Shasiaa) mac; Jumn mI—2+iJi—n?

—b
J-g(_t__;__) [a2(c+id)2]3/2

X(c+id)dtldu,

z, and a=§£. (9)
1

X

The time-scale analysis allows us a correct study of the
frequency and time behavior of this contribution.

C. Decomposition of the “third” contribution

The expression for this contribution is

1 ® u
3 —
(LG )(b’a)_ﬂ';facl fu:l mu* — 1+ Ju*—n’

[f ( )[(e+zt)2+a2] -3/2

X (e+it)dt|du

u ot \fui— ur
e= h and a=—.
(5] €

(10)

Even though this contnbution is negligible for the val-
ues of the parameters m,n that we will use, we shall take it
into account in our numerical evaluations.

IV. NUMERICAL EVALUATION AND INTERPRETATION
OF RESULTS

The theoretical study of different contributions that
constitute the transmitted field is combined with a numer-
ical study. We calculate numerically each one of the three
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contributions, We do this exactly, that is, without using
asymptotic approximations. This evaluation can be done
separately thanks to the wavelet transform with respect to
the analyzing wavelet g(#). Each one of the contributions
requires the evaluation of a double integral. The algorithms
that we have used are of Romberg’s type adapted to the
singularities of the integral (algorithm HP*!). Using the
reduced variables x=r/h, y=z/h, and Ay=1/h, in the ex-
pressions (8) and (9), we are led to introduce a new vari-
able 7y=h/c,. This variable corresponds to the unit time
that the wave needs to come from the source to the inter-
face. The new parameters of dilation and translation « and
B can then be written as follows:

21

8 b i @
=— with v=— =
To (00, 20 1'0

a
a=—,
To

The curves of constant modulus and the phase of the
wavelet transform are represented as level lines. The level
lines of the modulus vary logarithmically with a dynamic
range of 32 dB. The levels increase from white to black.
The lines of constant phase are linearly coded between —m
and 7. The abscissa is the translation parameter refered to
the unit time 7o=Ah/c;.

The ordinate is the dilation parameter divided by this
unit time. The signal is analyzed over 6 octaves starting
with the dilation parameter 0.15. Each octave is decom-
posed linearly into five voices.

We now analyze for particular positions of the obser-
vation point (hydrophone) the transmitted signal through
the interface.

A. Case where the observation point is located
under the source

1. “Geometric” contribution (x=0, y=0.2) (Fig. 3)

The emitted signal is an impulse. The analysis of the
wavelet transform shows a concentration of energy at the
time where the discontinuity of the signal appears. It is at
the time #y=1,.,. One can see this on the lines of constant
modulus, where the modulus is maximum. The analysis of
the phase of the transform shows that the lines of constant
phase converge all towards the same time corresponding to
the exact arrival time of the “geometric” contribution.

Quantitatively, we have

h z
rga,:;:-;-l-n c—] —=(14ny)=1.045.

We obtain for the representation of the modulus [Fig.
3(a)] and the phase [Fig. 3(b)] of the wavelet transform,
the analog of the wavelet transform of an impulse 8. The
interface appears transparent to the propagated signal
(that is, there is no deformation but only a decrease of the
amplitude as 1/R and loss of energy by reflection). We find
here again, the characteristics of the “geometric” contri-
bution in the harmonic case.

2. "Surface” contribution (x=0, y=0.2) (Fig. 4)

The analysis of the modulus of wavelet transform of
the “surface” or “lateral” contribution shows that this con-
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(a) (b)

FIG. 3. (a) Modulus of the wavelet transform of the acoustic potential
associated to the “geometric” contribution. The observation point is just
under the source at a radial distance r/h=0, and at a depth z/h=0.2. (b)
Phase of the wavelet transform of the acoustic potential associated to the
“geometric” contribution at the same observation point (#/h=0, z/h
=0.2).

tribution exists for incidence angles less than the critical
angle (contrary to what one is led to believe by a classical
study in the harmonic case and stationary phase), but that
the energy associated to this contribution is negligible (ra-
tio of 107°) compared to the “geometric” contribution.
Nevertheless, we can calculate for this wave the arrival
time in a precise way, and in this case the arrival time is the
same as the arrival time of the “geometric” contribution
(far = lgeo=1.045).

3. “Evanescent” contribution

Independent of the coordinate of the observation
point, this contribution is negligible. It has no special con-
centration of energy. We shall show it for illustration por-
poses for the value x=1.5, y=0.1 (Fig 7).

FIG. 4. Modulus of the wavelet transform of the acoustic potential asso-
ciated to the “surface” contribution. The observation point is just under
the source at a radial distance r/h=0, and at a depth z/h=0.2.
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B. Case where the observation point is located at a
radial distance larger than the sine of the
critical angle (r/h>0.25)

We are now in a region where the “surface” contribu-
tion is important with respect to the “‘geometric” contri-
bution (incidence angle greater than the critical angle).

1. “Surface” contribution (x=r/h=1, x=1.5, and
y=z/h=0.1) (Fig. 5)

The analysis of the modulus of the wavelet transform
allows us to see a very important phenomenon, namely a
concentration of energy at small values of the scale param-
eter for particular times ¢, and ¢, [Fig. 5(a) and (b)].
These times are in agreement with the theoretical study of
the “surface” propagator. The “echo” at time t, corre-
sponds to the direct trajectory of the wave that arrives
under incidence higher than critical at a point M of the
interface just under the hydrophone. The time ¢, corre-
sponds to the trajectory of a wave satisfying Fermat’s prin-
ciple. Quantitatively, if x=r/h=1, we have to find an en-
ergy concentration at times #, f, f5;, Where

h\/l—mi r t
. et AT T ]
cy C  Tp
,/?Jrhi t
h=——— D= B+ 1=1.414,
1 0

zZ ha B
tk,tzl‘;-l-;'z :>‘r_0=t_0+yn= 1.436.

Notice also the artifact time:

hl—n* r
t=——— =—=0.747.

€ € To
As we already mentioned, energy concentration at the
time ¢, corresponds to a loss of analyticity of the spatial
solution due to the truncation of the integral over the vari-
able u and consequently over the variable @. We observe
the same phenomenon for the “geometric” contribution
(Sec. IV B 2) and in the study of the partial propagator
(Sec. II). A summation over the three contributions makes
this artifact disappear.® These phenomena of echos asso-
ciated to the times ¢t,#, will turn out to be important when
we study the inverse problem.’>* Figure 5(c) represents
the modulus of the wavelet transform of the real part of the
surface contribution (#/h=1, z/h=0.1). It corresponds to
the pressure measured at a hydrophone. We obtained for

r/h=1.5:

Dt

4 143
—~=1.314, —=1.807, —=1.829,

and —=0.634.
To To To 5

i

To

2. “Geometric” contribution (x=r/h=1 and x=1.5,
and y=z/h=0.1) (Fig. 6)

The analysis of the modulus of the transform of this
contribution shows a concentration of energy at some def-
inite times. If the scale parameter is small, the lines of
constant phase, where the modulus is maximum converge
towards two discontinuities of the signal [the arrival time

G. Saracco; Stratified fluid media-wavelet analysis 1198



diialion
ega
(a)

dilikina ‘l: 1EHR
hys

(c)

FIG. 5. Modulus of the wavelet transform of the acoustic potential asso-
ciated to the “surface” contribution. The observation point is located at a
radial distance larger than the sine of the critical angle and at the depth
2/h=0.1. (a) r/h=1: the different arrival times are ;=1.28, ;=1.414,
ha=1.436, 1,=0.747; (b) r/h=1.5, the different arrival times are
t,=1.314, 1,=1.802, 1,,=1.829, 1,=0.634; (c) Modulus of the wavelet
transform of the real part of the “surface” contribution at the observation
point 7/h=1 (radial distance) and z/h=0.1 (depth).

of the “geometric” contribution (7,,) and of an echo (#;)].
We have a second concentration of energy at the artifact
time f,~0.634. Quantitatively we have for »/h=1:

h m? lgeo
byeo= + =
A [ P T g

| yn?

=1.19,

i Jliu2+ N —irt
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In[l-ﬂi r
==
Cy (45

!
s N 1—=n‘4-xn=1.2,
To

Iy
—= 1l —=n*—xn=0.747.
For r/h=1.5 we obtained

/ § 4 t
£0_ 122, —+=1288, and —=0.634.
To To T0 .

3. “Evanescent” contribution (x=1.5, y=0.1) (Fig. 7)

Even though this contribution is very soon attenuated
and does not correspond to a propagation phenomenon, we
shall give here a representation of the modulus and the
phase of its wavelet transform.

V. APPLICATION OF WAVELET TRANSFORM:
EXPERIMENTAL RESULTS

In order to verify our results we shall compare them to
experiment. The chosen example will be a plane air-water
interface. Since time is very important here, there are some
special precautions to be taken. The experimental signal
(that is, a source signal measured at a microphone and a
transmitted signal measured at a hydrophone), will be ac-
quired in such a way that synchronism is assured. The time
t=0 will be given by a fixed reference microphone associ-
ated with a pulse generator, which will start the D/A con-
verter. The source signal and the transmitted signal are
sampled synchronously and stored in a bichannel (multi-
plexed) of the D/A converter.

A. Choice of the source

An ideal source that would allow us to put into cor-
respondence the theoretical results with the experimental
results would be a perfect impulse (that is a perfectly flat
frequency response). Of course such a source does not
exist. However this impulse model can be approached with
the help of sources that emit very short signals. We have
chosen to use a mechanical point source. The generation of
the acoustic signal is performed by a percussion system,
which acts on an explosive charge (firecracker). The char-
acteristics obtained in such a way allow us to identify the
source with an impulse generator in a frequency domain
between 500 Hz and 9 kHz. The support in time is of the
order of 8 10~* s. The wavelet analysis of the source
signal has confirmed those results (Fig. 9).

A preliminary study of the source has allowed us to
verify that the generated wave has a behavior compatible
with the spherical wave model (1/R behavior).

B. The acquisition setup

The synchronous acquisition of transmitted and of ref-
erence signal is performed by the D/A converter with a
sampling rate of 10 pus. The time reference is connected to
the emission with the help of a pulse generator that starts
the acquisition,
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FIG. 6. Wavelet transform of the acoustic potential associated to the
“geometric” contribution at a depth z/A=0.1 and a radial distance r/h
=1: (a) modulus and (b) phase. Wavelet transform of the acoustic po-
tential associated to the “geometric” contribution at a depth z/A==0.1 and
a radial distance »/h=1.5: (¢) modulus and (d) phase.
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FIG. 7. (a) Modulus of the wavelet transform of the acoustic potential associated to the “evanescent” contribution at the depth 0.1 and radial distance
r/h=1.5; and (b) phase of the wavelet transform of the acoustic potential associated to the “‘evanescent” contribution at the depth 0.1 and radial distance

r/h=15.

The generator is activated by the signal received at a
microphone in the neighborhood of the source. The nu-
merical signals are then transferred to a computer in order
to be treated numerically. The scheme of the experiment is
shown in Fig. 8.

For each experiment, the temperature of the media is
measured in order to calculate the correction to the prop-
agation velocities (¢;=344 m/s and ¢,=1485.4 m/s,
n=c;/c;=0.2322). The densities of the media are p,=1.2
kg/m’ and p, =998 kg/m’, respectively. Their ratio is then
m=p,/p;=831.

The preamplifiers of the hydrophones have been ad-
justed in such a way that the ““digitalization” is performed
with maximal dynamics. The acquisition was made over
2048 samples corresponding to a duration of 20 ms. This is
compatible with the decrease due to the propagation and
the duration of the transmitted signal.

C. Experimentation

We analyze here the behavior of the transmitted total
pressure field. The source is at 1 m from the water surface.
The hydrophone is in a region that corresponds to an in-
cidence angle that is higher than critical (r=1 m and
r=15m,z=0.1 m).

1. Analysis of the source signal (Fig. 9)

We have first analyzed the source signal by a wavelet
transform performed with respect to analyzing the Morlet
wavelet. The analysis has been performed over 6 octaves
starting with the scale parameter ¢=0.8, which corre-
sponds to the useful frequency band of the signal. The
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analyzing wavelet oscillates at a mean frequency of 8130
Hz, for a dilation parameter of 1. Each octave has been
decomposed into five voices. The abscissa represents the
time in milliseconds and the ordinate is the dilation param-
eter in logarithmic scale. The graphical representation is
the same as the one used in numerical evaluations.

Figure 9(a) represents the modulus of the wavelet
transform of the source signal. Although the signal shows
some increase in amplitude around 16 kHz (scale param-
eter around 2), we can consider that it is an impulse signal
in the useful frequency band under consideration.

There is a concentration of energy around the time 17
ms corresponding to the arrival time of the impulse signal
to the reference microphone.

Impulse saurce

Microphone of
trigger action

graphical

output Hydrophone

of measure Hydrophone

of reference

| Preamp]

t

Preamplifier

Computer Voice A Voice B
of data : bi-channe! Impulse
processing Digitalizer Generator

trigger action of
acquisition

FIG. 8. Scheme of the experiment.
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FIG. 9. (a) Modulus of the wavelet transform of the experimential im-
pulse signal (source signal). The analysis has been performed over 6 oct
starting with the scale parameter a=0.8. For =1, the analyzing wavelet
oscillates at mean frequency of 8.130 kHz. (b) Phase of the wavelet
transform of the experimental impulse signal (source signal).

We notice—at small scales (high frequencies) and at
times earlier than the arrival of the source signal—another
impulse of small energy. It corresponds to the recording of
the motion of a switch that synchronously activates the
measuring instruments. It does not interfere with the anal-
ysis of the emitted and transmitted signals. Furthermore,
we can see, after the emission of the signal, its reflections
on the wall of the room in which the experiment was con-
ducted, mixed with ambient noise.

The phase of the wavelet transform of the emitted sig-
nal is presented Fig. 9(b). It can be used to determine with
precision the exact arrival time of the signal.

2. Analysis of the transmitted signal (Flg. 10)

The analysis of the modulus of the wavelet transform
of the pressure field shows—in agreement with the results
of numerical simulations (for small values of the scale
parameter)—a concentration of energy at iwo definite
times, corresponding to the arrival of a wave, followed by
an “echo” [Fig. 10(a) and (b)]. We can also see echos
created by reflections on the walls of the acoustic tank
(=2 m). The wavelet transform allows us to separate
them from the transmitted signal. They appear in different
times and frequencies.
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FIG. 10. Modulus of the wavelet transform of the total transmilted signal

(experimental acoustic pressure field): (a) r=1m, z=0.1 m, h=1m; (b)
r=1.5m, z=01m, h=1m.

For the observation point located at r=1m, z=0.1 m,
the theoretical value of these times is

" i—=n? 28
L= o +L‘2_ .2 ms,
\f;z+h2 z
Lh=——=41 ms=/, (tm=t2+—=4.18 ms |.
4] %]

That is, with the experimental values calculated from
the moment of the beginning of the source signal (14 ms):
tH,=17.5 ms,

ty=18.1 ms~t; (f=18.18 ms).

These values correspond exactly to the obtained exper-
imental values [see Fig. 10(a)]. Similarly, other measures
have shown a good correlation between theoretical and
experimental results,

For the observation point located at r=1.5 m, z=0.1
m, the theoretical values of the arrival times are

2

l—n® r
ti=h —=3.83 ms,
Cy Cy
Ny 2
t2=5‘_=524 ms= I (t]at=t2+_:5'3 IHS).
1 €
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The theoretical values calculated from the moment of
the beginning of the experimental source signal (14 ms)
are

t4=17.83 ms, £,=19.24 ms=1t,.

The experimental values are

H=178 ms, =194 ms=1ty.

The value obtained for the time #; is in agreement with
our calculation but for the arrival time f, we observe a
relative error of 8%. In this case we have a motion of the
maximum of the energy due to the existence of closed re-
flected echos (ambient noise) [see Fig. 10(b)]. Other mea-
sures have shown a good correlation between theoretical
and experimental results for a radial distance 1 m<r
<1.5m.

Nevertheless, the study by wavelet transforms of the
transmission of an impulse wave through the interface has
shown the appearance of local phenomena of short dura-
tion and low energy. These phenomena are due to the in-
homogeneity of the media (interface) which creates the
“surface’ contribution. They turn out to have a fundamen-
tal role in the study of the inverse problem.’***

VI. CONCLUSION

This method can be extended to more general situa-
tions (the study of surface waves in a scattering problem
generated by a two-layered elastic media, or the study of
acoustic propagation through a stratified fluid media).

The decomposition of the propagator into its natural
components, together with a use of wavelet techniques,
allows a precise study of the surface waves in the case of
general time-dependent sources.

The study of the direct problem has allowed us to
demonstrate the existence, at some scales and for large
radial distances from the sources, of a very short transient
phenomenon (an “echo™). This phenomenon has been
confirmed by experiments. By analogy of the propagator
with the reconstruction formula for wavelet transforms, we
can establish a reconstruction formula for the time-
dependence of the source signal from simultaneous mea-
sures of the transmitted pressure along a vertical,'»*»*
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APPENDIX A: “GEOMETRIC” CONTRIBUTION

From expressions (3) and (4), we obtain for the geo-
metric contribution:
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—1 n u
Gli(rzt)=— f

am Ju=0 m\fl%uzﬁ— \/nz—uz

x(% fmioe*"“ﬁ.fo(ma)dw)du, (A1)

where

JI=u*  Afp = ur
h— z and a=—,
€ € €1

B=t—
The integral on the variable o is explicitly known:*!
I'a,B)= fm e~ “BJ\(wa)dw

=0

1
= , for a>p with >0,
a—p

i
=W, for a<p.

Let

P | n u
1 —
i (r’z’t)Hc,ﬂ' J:,:g ml—u*+ Jn*—u?

i H(a—p) H(B—a) d
Xdﬂ( \/az_ﬁz"" Jﬁzﬁaz) U,

where H is the Heaviside function. We can write

1 1 1
l p=—ct =
1 (aaﬁ)—\{az_ﬂz \/G—Fﬁ \faﬁﬁ"

with ¢>f and f>0.

This function presents a singularity for S=a. Let

d 1
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1 1 1
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), for a>p

and
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We obtain, if we write X | =a—f3, where a>f3,

), for a<p.

(Fxs)= [ B@-s01-tax

with —1<A<0.
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The notation (,) represents the evaluation of a functional f
by a test function ¢, i.e., formally (f,¢)= [ f(x)d(x)dx.

In this case the convergence is assured for X | =0. We
deduce a similar relation for (d/dB) (X’l ), if we write
(& 9(x)) = (XA B(—x)):

d
(I+’¢) <—Il(a,ﬁ),¢), for a>B:

(I_.)= (d—ﬁfl(aﬁ) ¢>) for a<p.

Here, (d/dB){X".} are defined as ordinary functions for
a=B. For a=p, the Dirac distribution § appears:

@t 1
a0 =3 (T

x f i [¢(x>—¢co>]x-3’2dx), a<B,
0

(a+p)"* |1

B—a  Ja+B
X j - [¢(—x)—¢(0)]x‘3’2dx), .
O .

We obtain finally:

==~

1 n u
(G4)= or J,_,=o myl—u+ i

X [y . 0)H(a—B)+i{l_,0)H(B—a)]du.

(A2)

APPENDIX B: CONTINUOUS WAVELET TRANSFORM

The main difference between this time-scale linear
method and the classical time-frequency methods lies in
the fact that a time dilation is used instead of a frequency
translation. The window in time, defined by the wavelet
itself (analyzing function), is then automatically adapted
to the scale in which the signal is analyzed. This method is
therefore better adapted to the detection of singularities
that the other classical linear time-frequency methods, as
for example the Gabor’s transformation [analysis at
Af=C"instead of Af/f=C" (Ref. 25)]. Besides, the ar-
tifacts present in the Wigner-Ville distribution (due to its
bilinearity) disappear here since the wavelet transform is
linear. By the choice of a suitable complex-valued wavelet
without spectral components for negative frequencies, we
can work with the modulus and the phase of the transform,
which carry complementary information.>>*¢

This transformation gives us the decomposition of an
arbitrary signal into a sum of elementary contributions of
wavelets. These contributions or “windows” all have the
same shape and are obtained by dilation (contraction) D’
and translation T from an original wavelet (analyzing
wavelet).

They form a two-parameter family g(b,a)(p)
=T?'DBWP) (p being a space or time variable), where
(b,a) belongs to open half-plane a> 0.
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Let s(p) be an arbitrary one-dimensional signal and
g(p) be the analyzing wavelet. The wavelet transform is
written as

Lybia)= f s(o)T*D[(p) 1dp

fs(p)g( )dp, acR™*, beR.

Here, g represents the complex conjuguate of g (a de-
pends only on the chosen normalization, ie., a=—1/2
with the L? normalization).

There are many possible choices of wavelets g(p).
However, they have to satisfy a—not very restrictive—
admissibility condition:

2
it

where § is the Fourier transform of g. In practice, this
means g(0) =0, i.e., g is of zero mean, [g(p)dp=
An admissibility condition is necessary, since it gives
rise to a transform that is isometric, in the following sense:
There exists a constant C, depending only on the
wavelet g, such that for every signal s(p) one has

dbd
[1swra=c;*[ [ 15601 T

A 2
Co=2m f Igl(zl) | dow

This expression allows us to define the square modulus
of the wavelet transforms, as a density of energy spread in
the time-scale half-plane (b,a). In other words, one has
conservation of signal energy. Therefore, an inversion for-
mula exists that allows us to reconstitute the signal. It is
written as

da db
s(p):Rel J-J.S(ba)a 12 (Pa ) ig ],

where Re is the real part. This is not the only possible
inversion formula, one also has

(B1)

da
.c(p):Re[Kg‘ f a8 (p,a) 7],
where

§(w)

K,=(m)'"? P ld and K0

and where the wavelet is assumed to satisfy

g(w)
J‘ 'ﬁ' dw < « (and550).

This formula has the advantage of reconstructing the
signal by a one-dimensional integral over the scale param-
eter.

We should make the following remark: Independently
of the choice of the wavelet, the wavelet transform giving
rise to exact reconstruction formulas of the signal, all the
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information carried by the signal can be found in its wave-
let transform. We do not need any “a priori” knowledge of
the signal in order to apply the transform, since it is a
nonparametric method. However, when we want to study
some special characteristics of the signal, we shall choose
an analyzing wavelet that is appropriate to the phenome-
non to be observed.

We can also impose additional restrictions on g, de-
pending on the problem to be solved. We shall require here
the wavelet to be a complex-valued wavelet and progressive
[¢(@)=0 for @ <0], and to be well localized in time and in
frequency space. On the one hand, we can work with two
complementary pieces of information of the wavelet trans-
form: its modulus and its phase. On the other hand, the
progressivity property of the wavelet allows us to define
without artifact the precise phase of the wavelet transform.
(For instance, for a monochromatic signal, the phase o0s-
cillates with the same pulsation of the periodic signal an-
alized.)

The wavelet used here will be of a Morlet type, i.e., a
modulated Gaussian:

g(p) =exp(im(p)exp(Hp2/20).

We have seen that the wavelet has to be admissible
(B1). Numerically, this will hold if @, is greater than or
equal to 5.5.

On the one hand the properties of this wavelet will
allow us to calculate the propagator and to analyze the
different contributions of the acoustic transmitted pressure.
On the other hand, and this is the most important, the
linearity of the transform will allow us to study separately
the various contributions of the refracted field. The total
field is obtained by summation of the contributions, This
transformation, applied to wave propagation, allows us to
analyze the signal while keeping track of time and fre-
quency characteristics.
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