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1. Introduction.

The problem we study can be defined as foliows: {n three-dimensional space, we
conslder two homogeneous medla - "alr* and "water" - separated by plane Interface, There Is
a point source of sound in "alr" at height h above the Interface. Its emlssion Is given by a
function F(1) of time. We are Interested In the bsehaviour of pressure In water, at time t,
depth z, and distance r from a vertical line going through the source.

This problem has been discussed Innumerable times, both for monochromatic and
translent sources [1-6]. The feature of Interest to us Is the existence, first recognized In
the monochromatic regime, of contributions to the total solution called lateral waves, They
fend to be concentrated near the Interface, and have propertles of propagation and
attenuation different from waves In homogensous madla. They decrease exponentlally with
depth, and thelr attenuation length is frequency-dependent. Consequently, thelr penetration
depth decreases with frequency. For a recent discussion, ses e.g. [7]. It should be mentloned
that this attenuation does not correspond to absorption of energy; a lateral wave ls merely
a contribution to an elastic propagation.

in the case of time-limited sources, one car see the contributions of lateral waves
arrlving at times different from the "geometric" contributions. *At sufflclently shallow
depths, they can contribute significantly to the the total acoustic field.

The classlcal methods of rasolution, while well adapled to the case of monochromatic
sources, are less sulted to the description of translents. This Is due to the fact that waves
of different frequencies both follow different paths and undergo different -attenuations. In
such time-and-frequency dependent situations, It ls natural to apply wavelet transform .
techniques. As a matter of fact, the maln motivation for the introduction of wavelet
methods In J. Morlet's work was the need, in geophysles, to study frequency-dependent
propagation phenomena. 2

In the first part of thls paper we shall brlefly describe the time behavlour of the
wavelet transform of the acoustlc fleld at a fixed polnt under watér. (This Is not the same
as attempting to use wavelet techniques to solve the partial differential equations of the .
propagation problem). it Is straightforward to wrlte down an expression for the wavelst
transform of the propagator for our problem. This expression Is much smoather than the
propagator Kself, and allows selective reconstitutions with arbitrary precision. It has a
natural decomposition Into three contributions corresponding to branch-points of the
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natural decomposition into three contributions corresponding to branch-points of the
integrand.

These contributions, which we study separately, are obtained without the help of
stationary phase approximations which are used in the standard definition of lateral waves.
Nevertheless, the main features of the geometric and lateral waves can be seen in our
decomposition. In order to avoid possible confusions we enclose our names in quotation
marks. The expressions, given below, have been numerically evaluated. The results are
discussed and displayed graphically.

In a second part, we use the different contributions to obtain a formula for
reconstruction of the time-dependent source.

2. Expressions for the propagator.

All quantities of interest can be calculated from the scalar acoustic potential
®(r,z,1). In the case described above, its Fourier transform with respect to time is given by
the integral (1) below, where the notations are as follows:

ci: sound velocity in air; n: the refraction index for water: one has n <1,
m : ratio of densities of the two media: one has m >1.

Ié((o)—\!— J.eith t)ydt ; Jo: Bessel function,
’E
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where N(w,u,z) = exp{ i sgn{w) l-c—-1-l--[h\/1-u2 +z¥n2-u?] };

and D(u) = my1-u2 + Yn2 -u?,
Here, for u > n, the expression vn2-u2 is defined to mean | sgn(co)\f!(n2 ~u2)|,

Similarly, for u >1, we define V1-u2 as i sgn(m)\/m -u2)|.

We shall divide the integral over u into three contributions, corresponding to the
branch-points in the integrand:

(2) ¢=(b1+(b2+(b3

The first contribution, which we call the "geometric’, is defined by (1) where the integral
over u goes from O to n. The second, or "lateral" contribution corresponds to n < u < 1; the
last one, "evanescent", corresponds to u >1. These names have been chosen by analogy with
the terminology used in the case of the monochromatic source.

3. Wavelet transform of the propagator: formulas.

In order to study the behaviour of the three components of &, we introduce their
continuous wavelet transform with respect to an analyzing wavelet g(t), which we assume
progressive (i.e. without Fourier components for negative «; i.e. g{t) is what is known as an
analytic signal). With the conventions of the present paper, the wavelet transform of each
of the three components (2) is given by:



o5

(3) (Lo)(b,a) =a Jé‘i(r,z.w) daw) e-dede, (= 1..3)
0

We have evaluated these expressions in the case where ﬁ(oa) = const, i.e. where the
source emits a §-function pulse. The analyzing wavelet, in frequency space, was chosen as

2
A o - 5.5
glw) = exp| - (-—2**—*)“-']; this is the "standard Morlet wavelet” which has been extensively

used (See e.g. [8)]). For all practical purposes, it is admissible and progressive. In our
analytic and numerical evaluation, we do not make any use of asymptotic estimates.

4. Wavelet transform of the propagator: numerical results.

In the numerical evaluation of the propagator and of its wavelet transform, we have
used algorithms of the Romberg type, adapted to the somewhat singular behaviour of the
integrand at the boundary.

In all the graphic representation, it is the level lines that are displayed. The modulus
of the transform is shown in logaritmic scale, with a dynamic speen of 40db. The phase
representation is linear, between -r and mn. The color scale is in increasing order : mauve,
blue, green, yellow, orange, red and black. For phases, mauve has been replaced by red, for
the sal of better visualization.

The values of m, n chosen for the computation are respectively 800 and 0.2266

The figures 1p (p for phase) and im (m for modulus) correspond to an observation
point directly under the source (i.e r= 0), at a finite depth z under the interface (z/n = 0.2).
The functions displayed are the phase and the modulus, respectively, of the wavelet
transform of the contribution @4, considered as a function of time. The moment of arrival of
this contribution can be seen as the vertical line of constant phase on Fig 1p, corresponding
to the abscissa a little over 3.0, The same abscissa appears as a line of maximum modulus
on any horizontal line on Figure 1m. This result is a very clear indication of the arrival of a
discontinuity. Quantitatively, the position of this discontinuity corresponds exactly to the
calculated time of arrival.

In figures 2m and 3m the point of observation is at a finite radial distance from the
source (namely r/h = 1), and at a shallow depth (z/h = 0.1). In figure 2m, one sees the
modulus of the wavelet transform of the "geometric' contribution @;. The figure 3m, which
uses exactly the same coordinate system and graphical conventions as 2m, displays the
modulus of the wavelet transform of the “lateral" contribution ®,. It is very Instructive to
compare the two pictures. One notices that the "geometric" confribution arrives before the
"surface contribution” , in agreement with theory. The figure 4m describes the "lateral”
contribution at r/h = 2. ,

We have also calculated, independently, the contributions to the propagator. The
results, for the modulus of "lateral” contribution, are shown in Figs. 5 and 6 for different
positions of the observation point.

A more systematic and quantitative discussion is in preparation [9].
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Figure 1p : Phase of the wavelet transform of the
"geomnetric” contribution. The observation point is under the source,
r/h = 0 at a depth of z/h = 0.2. The smallest dilation parameter is
equal to 0.3. The number of volces per octave is 6 in a range of b
octaves.

Figure im : Modulus of the wavelet transform of the
"geomelric" contribution with the same parameters of the figure

Ly Figure 2m : Modulus of the wavelet transform of the
“geometric" contribution at a radial distance from the source r/h =
1 and a shallow depth of z/h = 0.1. Here, the smallest dilation
parameter has been taken equal to 0.15, with 5 voices per octave.
The number of octaves is 6. : '
Figure 3m : Modulus of the wavelet transform of the
"lateral” contribution at the observation point of the“geometric”
coniribution seen in figure 2m. The analysis of the signal was
performed with the same scale parameters and the same graphical
conventions as in figure 2m.
Figure 4m : Modulus of the wavelet transform of the
lateral contribution where the radial distance is v/h = 2, The signal
was analyzed with scale parameters equal to those of figure 2m,
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Figures 5, 6: Modulus of the contribution of lateral waves to the propagator (Green’sfunction)
for rih=1 and r/h=2 respectively.

tag = artefact due to the decomposition into geometric and lateral contribution seen [9]
for a detailed explanation.

ty , tp = delays appearing in formula (4).

ty = time of arrival of the "lateral" wave,

5. A reconstruction formula.

We now return to the consideration of a point source with arbitrary time variation
F(t). Our aim is to reconstruct F(t) from information obtained through "underwater
listening". It turns out that there exists a simple reconstruction formula that involves the
three contributions, evaluated at all depths for a fixed horizontal distance r. The notations
being as above, define P(r,z,t) as the pressure obtained from the total acoustic potential &.

The formula to be written is valid asympotically as r/h -->ee, Consider I(r,i) = jP(r,z,t)dz.

Define t -ﬁih—% and t h\/1~n2+_rw
2= 01 i 01 02‘

We have then:

(4)  Nr,t) = C(r,h)F(t-t;) + K(r,h) F(t-t)



where C(r,h) and K(r,h) can be explicitly calculated. If t,-t;is larger than the duration of
the emitted sound F(t), we obtain the exact signal emitted in air repeated twice but with
different amplitudes. We have not yet performed any numerical evaluations of (4).
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