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Abstract: This paper proposes a methodology to develop a decision-making aid tool which purpose is to 
assess the dependability and performances of an industrial system. This model is based on a new 
formalism, called the probabilistic relational model (PRM) which is adapted to deal with large and 
complex systems. The objective is to evaluate system’s performances in order to optimize the enterprise 
maintenance strategies. The methodology is formalized from functional, dysfunctional and informational 
studies of the technical industrial systems. This methodology is applied, for modeling a water heater 
system to estimate its performances (i.e. reliability). 
Keywords: Probabilistic relational model, maintenance, system performances

1. INTRODUCTION 

Nowadays high competitiveness makes that enterprises 
search higher performances at lower costs. To achieve this 
goal it is necessary to optimize the operations of the 
industrial system (system of interest) and its support systems 
such as the maintenance system. As a consequence, the 
importance of the maintenance function has increased, due to 
its role in improving availability, performance efficiency, 
products quality, on-time deliveries, environment and safety 
requirements, and total plant cost effectiveness at high levels 
(Alsyouf, I. 2007). In order to improve business 
performances, maintenance is thus directly related to risk 
analysis and dependability which allow to forecast the gaps 
between nominal and non-nominal operations of the system 
(degradation, failure, etc). 
 
There are several works in the maintenance, however, it is 
somewhat “under-developed” ” (McKone et al., 2001) with a 
lack of effective methodologies and the integration of 
standard methods in manufacturing companies. Maintenance 
is composed of a set of activities for which it is difficult to 
find procedures and information support systems in one place 
to ease the improvement process (Crespo, 2007). For this 
reason, our goal is to develop a methodology taking into 
account different conflicting criterion such as availability, 
safety and costs, etc., (Kiker et al., 2005) in a single model in 
order to optimize maintenance strategies. To face this 
challenge, a first step is to take into account the interrelations 
between the system of interest (such as the production one) 
and its support system (in this case the maintenance one) to 
assess performances. This paper explains the main concepts 
of an approach to formalize a model required to evaluate risk 
analysis, maintenance and dependability. The originality of 
this formalization is to unify multiple and different kinds of 
knowledge in one model.  
 

2. PROBLEM STATEMENT 

Our challenge is to formalize a generic model of complex 
systems to evaluate maintenance strategies. It allows to assess 

the global performance integrating various dimensions such 
as technical, organizational, human, informational, decisional 
and financial dimensions correlated with system's behavior 
and nowadays environmental factors which are necessary to 
quantify failure scenarios and risky situations. Furthermore, 
while modeling these factors, it is required to take into 
account the knowledge integration of diverse natures such as 
qualitative (organizational and human analyses) and 
quantitative (technical analyses) knowledge with several 
abstraction levels (Muller, 2007). 
 
In that way, to estimate and to improve performances such as 
the reliability and safety of systems, Boudali and Dugan 
(2005b), Langseth and Portinale (2007) show the increasing 
interest on the use of Bayesian Networks. Some of their 
benefits are that they allow: to model complex systems, to 
make predictions as well as diagnostics, to compute exactly 
the occurrence probability of an event, to update the 
calculations according to evidences and to represent 
multimodal variables. Nevertheless, one of the scientific 
issues of this method is their limitation by the number of 
variables used in a model (Koller and Pfeffer, 1998). 
 
Thus, our proposal consists mainly in formalizing a 
methodology to define an extension of Object Oriented 
Bayesian Networks called the Probabilistic Relational Model 
(Koller and Pfeffer, 1998) to model technical knowledge of 
an industrial system in order to help decision-making for risk, 
maintenance and dependability domains. The network is not 
defined by a graph but in a language. The proposed 
methodology has originality on formalizing, by means of 
PRM, the models from prior knowledge on the primary 
system functioning, malfunctioning and informational point 
of view to estimate the overall performance of the process 
(reliability and compliance of output flows). 
 
The idea is to formalize the interactions between an industrial 
system (system of interest) and the support system (such as 
the maintenance system) using processing and data models 
such as SADT, AMDEC, HAZOP, etc. (Figure 1). From the 



 

formalized knowledge, it is necessary to establish a coding 
semantic with the required knowledge and programming 
rules to obtain a generic maintenance model which enables to 
predict or diagnose the impact of the influencing factors on 
the system global performances.  

 
Figure 1: Methodology to formalize knowledge within a 

PRM  

This research work is developed within the SKOOB project 
(http://skoob.lip6.fr/doku.php?id=public:texte_anglais_de_pr
esentation) sponsored by the French National Research 
Agency. This project focuses on the development of a generic 
model based on PRM (Getoor et al., 2007) which enables to 
solve the formalism of complex models in risk analysis, 
maintenance and dependability, applied to various socio-
economic systems of strategic importance (nuclear, food 
industries, medical or social organizations). 

3.- PROPOSITION OF PRM APPROACH 

As discussed in the section 2, bayesian networks (BN) appear 
to be a solution to model complex systems in our domain of 
interest (Medina-Oliva et al., 2009). Nonetheless, one of the 
weak points is that BN are not adequate for dealing with very 
large complex systems. The Object-Oriented Bayesian 
Networks (OOBNs) extended the language of BNs with these 
additional concepts (Weber and Jouffe, 2006). However, the 
language of OOBNs is quite restricted, in a way they are not 
able to represent arbitrary relations between objects and 
uncertainty over system structure which is necessary in our 
domains (Pfeffer et al., 1999). 
 
An extension of the OOBNs, the Probabilistic Relational 
Model (PRM) formalism allows to model real-world 
situations. This language is able to represent the notion of an 
object and the notion of a class of objects that captures 
properties common to an entire set of similar objects, to 
inherit attributes and behaviors of classes, to take advantage 
of the aggregation properties of the set of objects through 
quantifier attributes, to formalize important types of 
uncertainty that cannot be accommodated within the 
framework of traditional BN or OOBN: uncertainty over the 
set of entities present in a model, and uncertainty about the 
relationships between these entities (Koller and Pfeffer, 
1998). Another advantage of the PRM is their inference 
aspect. Actually, it is possible to make queries so the 
inference is made in a specific compiled part of the model. It 

is not necessary to calculate the whole model that is never 
built but that is described in a language. (Pfeffer et al., 1999; 
Getoor et al., 2007 ):  
 
To create a generic, complex and big size model to evaluate 
risk, maintenance and dependability it is essential to use a 
compact representation of knowledge (Figure 1a). To assess 
the influencing factors in these big size models, the PRM 
seems to be an efficient solution since the knowledge must be 
divided into groups of “local knowledge”, that could be 
added according to the needs in order to form a whole 
coherent model (Figure 1c). 

4. KNOWLEDGE FORMALISATION  

The proposed modeling approach consists, from functioning 
systemic analysis, (a) in representing the abnormal operation 
(malfunctioning) (Muller, 2007), (Weber P., Jouffe L. 2006), 
(b) in representing the informational point of view and then 
(c) in formalizing and unifying these results in a unique 
model by means of the language based on PRM (Figure 1b). 
 
System functioning modeling 
 
The functional modeling of an industrial system consists in 
formalizing, by qualitative causal relationships, the 
interactions between the functions performed by each of the 
sub-systems until the component level (elementary 
functions). This type of formalization can be supported by a 
method such as the Structured Analysis and Design 
Technique (SADT). 
 
The system functioning modeling is based on the principle of 
activity and sub-activities until elementary activities, 
supported by components, are emerging; plus the notions of 
system’s theory (Mayer, 1996). Each activity (Figure 2) 
fulfils finality, which is to modify a “product” carried out by 
the manufacturing system. It produces or consumes flows 
such as “Having to Do” (HD) materializing the Input/Output 
(I/O) finality, “Knowing How to Do” (KHD) materializing 
the I/O knowledge, “being Able to Do” (AD) representing 
I/O energies, resources, activity support and finally “Wanting 
to Do” (WD) materializing the I/O  triggers. 
 

 

Activity 
HD having to 
be transformed 
by activity 

AD having to be 
used by activity 

AD supporting the activity 

WD having to 
trigger activity 

KHD allowing to know 
how to do activity 

HD transformed 
by activity 

AD having to 
be recycled RWD Report on 

the activity state 
in relation to WD 

 
Figure 2: Flows and Activity Representation 

For example, the output flow WD is a report (RWD) that 
represents the informational result of the Input HD product 
flow transformed by the activity. 
 
System Malfunctioning Modeling  

The functional model could be used to develop by duality the 
malfunctioning analysis, whose objectives are to identify the 
degraded and failure states of the components and of the 



 

flows, and then to determine the causes and consequences of 
these states on the industrial system behavior.  

The degradation is spread to the rest of the system through 
the flow exchanging between processes, according to the 
causality principle:  

- The potential cause of the degradation of a process is 
the deviation of an input flow attribute or the 
deterioration of its support. 

- Contrarily, the potential effect of the degradation of a 
process is the deviation of an attribute of its output 
flows or its support.  

 
The industrial system is in degradation or failure mode when 
there is a flow deviation and/or a deterioration of the supports 
of the process: the flow deviation is linked to the qualitative 
or quantitative deviation of a flow attribute compared to its 
nominal value and the support deterioration is related to the 
apparition of a physical mechanism of deterioration (Léger 
and Iung, 1998). 
 
The dysfunctional analysis also involves the identification of 
groups of elementary events or combination of events that 
lead to a failure event, as well as, the identification of the 
logical links between essential components to perform the 
system mission. 
 
For this aspect, there are used the following dependability 
methods: 

- FMECA: to model failure modes of the functions, 
failure modes of the components, failure consequences 
(impact on the flow and other functions) and the 
criticality of the failure. 

- HAZOP: to model flow deviation, cause of flow 
deviation and failure consequences (impact on the 
flow). 

- Fault tree (FT), reliability block diagram or Bayesian 
networks (BN) to model the logical links of events or 
logical links between components.  

 
System Flow Informational Modeling  
 
Each flow is characterized by the state of the variables related 
to its morphologic, spatial or temporal properties of the 
objects that composed it (i.e. objects and flow of objects) and 
by the flow variables that are express as the quantity of 
objects per time unit (such as a flow rate) (Mayer, 1996). So, 
the state variables and the flow variables can be regroup in 
one denomination called flow attribute. In that way, to 
measure the performance of a function, it is assume the 
hypothesis that it can be evaluated directly from the flow 
attributes. The object representation allows to identify these 
flow properties or attributes, and it can be represented as 
shown on an entity-relationship diagram (Figure 3) 

 
Figure 3: Extract of an entity-relationship diagram of a 

function and its flows  

Unification of Technical knowledge in a PRM model 
 
To model the different aspects of a system in a PRM, it is 
required to take into account the different types of knowledge 
previously identified (Figure 4). 

 
Figure 4. Technical Knowledge Formalization 

To integrate this knowledge within a PRM, it is incorporated 
as new variables of a network or as a part of the required 
information to complete a conditional probabilities table 
(CPT) for these variables. The knowledge integration is based 
on the following rules (Figure 1b): 
1.- Formalization of the network structure from the functional 
analysis (input and output variables of a process). The input 
and output variables are defined from the functional analysis 
(different kinds of input flows on the SADT) and from the 
informational analysis (input flow attributes on the entity-
relationship diagram). Then, it is possible to compile a PRM 
into a Bayesian network (grounding) (Figure 5). 
2.- Definition of the input and output variable states, as it is 
described in the malfunctioning analysis. The states of input 
and output variables are defined on the malfunctioning 
system analyses of the system, such as failure modes or flow 
deviations (methods FMEA or HAZOP). 

 
Figure 5: Network structure from functional and 

informational analyses 
3.- Definition of the conditional probabilities given in the 
malfunctioning analysis (logical links between components), 
combinatory logic or expertise.  
The conditional probabilities are related to the combinatory 
logic, to the frequency of failures defined on the 
malfunctioning analysis or to the expert’s judgment. 
Moreover, to calculate the conditional probability of support 
of a function which is supported by two or more parallel 
components, it is possible to obtain the reliability of the 
support (AD support flow) of this function by means of a 
dynamic bayesian network, fault tree or a reliability block 
diagram (Figure 6). 
 
In Figure 6 it is shown how to integrate in a CPT the 
variables and the conditional probabilities according to the 



 

different system’ point of view: functioning view, 
malfunctioning view and the informational view. 
 
Also, it is important to know that:  

- To represent the input flow (energy, information or 
material flow) of a function, there could be several 
variables for each flow.  

- To define an output flow, there are necessary several 
CPT based on the input flows. There must be one CPT 
for each output flow. 

 
To integrate the different kinds of knowledge in large and 
complex models, the SKOOB project is developing a 
language to represent PRM models (Figure 1c). 

 

 
Figure 6: Knowledge integration in a CPT 

This language is inspired in Java language, because it is one 
of the more common languages used in the present. The 
characteristics of SKOOB language are based on the 
principles of the PRM such as: compilations units like 
variables, models and classes (declaration of attributes, of 
references and of conditional probability table (CPT), 
specialization, quantifiers or aggregators). To illustrate the 
language we are developing the notion of class: 
- Declaration of a class: Classes correspond to a type of 
entity in the domain and provide reusable probability models 
that can be applied to many different objects. 
In the SKOOB language a class is declared by the following 
way: 
class Name_of_the_class { 
  // Body of the class 
} 

The CPT in the SKOOB language is written in the following 
order: 
[1.0, 0.0, // P(OK | true, OK) (state=X1), P(OK | true, NOK ) (state=X2), 
   0.0, 1.0] // P(NOK | true, OK) (state=1-X1), P(NOK | true, OK) (state=1-X2) 
 

5. APPLICATION 

To show the feasibility of the proposed knowledge 
formalization and the integration of the different kinds of 
knowledge into a PRM an application is illustrated. A 
classical example of a water heater process is presented in 
order to assess the reliability and the compliance of the 
output flow attributes. The objective of the thermal process 
(show in Figure 7) is to ensure a constant water flow rate 
with a given temperature. The process is composed of a tank 
equipped with two heating resistors R1 and R2. The system 

inputs are the water flow rate Qi, the water temperature Ti 
and the heater electric power P that is controlled by a 
computer. The outputs are the water flow rate Qo and the 
temperature T. 

 
Figure 7: Water heater process 

System Functioning Modeling: SADT model 
Figure 8 presents the diagram A-0 of the SADT related to the 
process. This figure depicts the interaction between the 
process and the external environment through the AD, HD 
and RHD flows. The main functionality of the process is to 
provide warm water. 

 
Figure 8: Diagram A-0 of the SADT 

Then the diagram A0 describes the four functions that are 
necessary to perform the main task of the system: 
- to transform pressure into Qi (A1), 
- to control V and P (A2), 
- to transform Qi into H and Ti into T (A3), 
- to transform H into Qo (A4). 
When decomposing function A3 ‘to transform Qi into H and 
Ti into T’ one of the elementary functions is “to heat water” 
supported by the component HEATING RESISTOR. The 
input flows of the function are: HD storage water, AD 
electric power, WD order T, AD heating resistors. The output 
flows are represented by the RHD water temperature T and 
the HD water temperature T. 
 
System Malfunctioning Modelling: FMEA, HAZOP, dynamic 
bayesian networks. 
For this case, the study will be applied to the function “to 
heat water”, so the component of this function is indexed in 
the FMEA analysis (Table 1). The failure modes of the 
component are defined as well as their effects. The causes are 
linked with the component states or the unavailability of the 
electric energy required to supply the component. 

 
Table 1: Extract of the FMEA of the function “to heat water” 



 

Then, it is necessary to study the possibilities of flow 
deviation and their causalities through an HAZOP study 
(Table 2). The flow deviation is linked to the qualitative or 
quantitative variation of an attribute compared to its nominal 
value and it is a complementary study of the FMEA since the 
mal-functioning of an industrial system is caused when there 
is a flow deviation (HAZOP) and/or a deterioration of the 
supports of the process (FMEA). 

 
Table 2: Extract of the HAZOP of the function “to heat 

water” 

Since the heating resistors “R1” and “R2” work on parallel to 
fulfill the function “to heat water”, it is possible to obtain the 
reliability of the support (AD support flow) of this function. 
The state of each heating resistor was defined as follow: 80% 
is available, 5% works in a maximum level, 5% there is 
power loss in it and 10% the heating resistor is unavailable. 
So with this information, it is possible to build a dynamic 
bayesian network as shown in the Figure 9. 

   
Figure 9: DBN of the parallel heating resistors 

The result of support reliability of the function “to heat” 
shows that the AD support flow of this function is available 
92% of the time, 5% works in a maximum level, 0,75% there 
is power loss in them and 2,25% the heating resistors are 
unavailable (results obtained with the software Bayesialab). 
Moreover, it could be possible to use fault trees or reliability 
block diagrams in these cases. They can describe the logical 
links of events in order to obtain the reliability of the support 
of a function in cases where there are redundancy or k/n 
relations between components. Their limitation is that they 
represent boolean variables, that is why it was not 
appropriated for this example.  
 
System Flow Informational Modeling: Entity-relationship 
diagram 
The informational point of view let identify the flow 
properties and attributes (Figure 10). 

 
Figure 10: Extract of the entity-relationship representation of 

the flows of the “to heat water” function 

Unification of Technical knowledge in a PRM model 
Finally, it is shown the integration of the previous kinds of 
knowledge within the CPT of the variable: “water 
temperature” and its transformation into the SKOOB 
language (Figure 11). 
 
This part of the CPT shows the link between the information 
integration available in the CPT and a part of the SKOOB 
language that allows to convert knowledge into a PRM 

 
Figure 11: Knowledge integration of the variable “Water 

temperature” in a CPT 
 
Finally, the SKOOB language is developed for this 
application. A part of it is illustrated as follow:  
type typeState OK,NOK;  
type typeStateHR OK, Maximun_level, Power_loss, NOK; //States of the heating resistors 
coming from FMEA 
type typeStateRHDtoheat OK, Maximun, Losspower, NOK; // States of the function “To heat 
water from Ti to T” coming from the FMEA  
type typeStateWL OK, More, Less, No; // States of the water rate flow coming from the 
HAZOP 
class Flow{ 
boolean state { [1.0,0.0] }; 
} 
class Input_variable extends Flow{ 
} // To represent all the input variables such as AD and WD. 
class Abletodo extends Input_variable { 
}// AD- Support flow represented by material, energy, human or software flow. 
class Watingtodo extends Input_variable { 
}// WD- Materialising the trigger of the function 
class Waterlevel { 
  typeStateWL state_waterlevel { 
// OK More Less No 
[0.85,0.05, 0.05, 0.05] };  
}//Having to Do- Main input flow of the function “To heat water from Ti to T”- The level is an 
attribute coming from the entity- relationship diagram /  States of the water rate flow coming 
from the HAZOP 
class Heatingresistor { 
typeStateHR state_heatingresistor{ 
// OK Maximun_level Power_loss NOK  
[0.80, 0.05, 0.05, 0.1] };  
} // AD-Equipments that support the function “To heat water from Ti to T” / States of the 
heating resistors coming from FMEA/ Conditional probabilities coming from the DBN-  
Figure 9 
class RHDtoheat { 
Waterlevel wl; 
Flow Abletodo; 
Flow Wantingtodo; 
Heatingresistor heatingresistor; 
typeStateRHDtoheat state_RHDtoheat dependson wl.state_waterlevel, Abletodo.state, 
Wantingtodo.state, heatingresistor.state_heatingresistor {[ 
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,… // First line 
]}; // States of the function “To heat water from Ti to T” coming from the FMEA  
} 
//INSTANCIATON 
system m{ 
//Function// 
Waterlevel waterlevel; 
RHDtoheat rhdtoheat; //elementary function of the system // 



 

// Definition of all input flows of the function “To heat water”// 
rhdtoheat.wl = waterlevel;  
Input_variable OrderT; 
rhdtoheat.Wantingtodo = OrderT; 
Heatingresistor heatingresistor; 
rhdtoheat.heatingresistor = heatingresistor; 
Abletodo electricpower; 
rhdtoheat.Abletodo = electricpower; 
Then, it is possible to compile a PRM into a Bayesian 
network (Figure 12). 
 
Use of the model 

a. As a prognosis model: 
The PRM allows the analysis of the influencing flows on the 
functions states and on the output flow states. The objective 
is to forecast the impacts of input flows failures or 
degradations on the functions (Figure 12). There is obtained 
the marginal probability that the function is performed 
properly (61,30%) given the prior probabilities of the input 
flows. 

 
Figure 12: Prognosis in a Bayesian network for the water 

heater process 
b. As a diagnosis model: 

The diagnosis starts when the “RWD to heat water” is in 
abnormal functioning (state= maximum level of heating) for 
example. Initially, the input flows are checked to see which is 
the variable that has more probability of been in an abnormal 
functioning. For this case the water level has a probability of 
been in an non-nominal state of 4,03%, the electric power has 
0%, the order T 0% and the heating resistors of 99,59%. The 
checking leads suspect that the heating resistors are the most 
probable cause that the function is not realized, because its 
probability of been in an abnormal functioning is the highest 
(99,59%).  
 
6. CONCLUSION AND FURTHER WORK 
The proposed model based on the functioning (SADT), 
malfunctioning (FMECA, HAZOP analysis, 2TBN) and 
informational studies (entity- relationship diagram) help to 
improve the automatic generation of a model to assess the 
reliability and the output flow compliance of a technical 
system.  
 

The difference of the PRM when comparing with other 
classical methods is their capacity to deal with large complex 
domains. Also this model allow to deal with issues such as 
prediction or diagnostic optimization, data analysis of 
feedback experience, deviation detection and model updating.  
 
However, this methodology is a first step to gather technical 
information in order to evaluate risk analysis, maintenance 
and dependability. As further work, some other factors 
should be incorporated in the model such as human, 
organizational and environmental factors. It is also necessary 
to manipulate uncertainties within the parameters and the 
knowledge of the model. 
 
Finally, to validate the model by applying it to a real system 
in order to show industrial feasibility and to confirm its added 
value compared to the traditional computerized decision-
making tools. 
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