
HAL Id: hal-00549869
https://hal.science/hal-00549869v1

Preprint submitted on 22 Dec 2010 (v1), last revised 24 Nov 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergence of distributed asynchronous learning vector
quantization algorithms

Benoît Patra

To cite this version:
Benoît Patra. Convergence of distributed asynchronous learning vector quantization algorithms. 2010.
�hal-00549869v1�

https://hal.science/hal-00549869v1
https://hal.archives-ouvertes.fr


Convergence of distributed asynchronous

learning vector quantization algorithms.
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Abstract

Motivated by the problem of effectively executing clustering algo-
rithms on very large data sets, we address a model for large scale dis-
tributed clustering methods. To this end, we briefly recall some stan-
dards on the quantization problem and some results on the almost sure
convergence of the Competitive Learning Vector Quantization (CLVQ)
procedure. A general model for linear distributed asynchronous algo-
rithms well adapted to several parallel computing architectures is also
discussed. Our approach brings together this scalable model and the
CLVQ algorithm, and we call the resulting technique the Distributed
Asynchronous Learning Vector Quantization algorithm (DALVQ). An
in-depth analysis of the almost sure convergence of the DALVQ al-
gorithm is performed. A striking result is that we prove that the
multiple versions of the quantizers distributed among the processors
in the parallel architecture asymptotically reach a consensus almost
surely. Furthermore, we also show that these versions converge almost
surely towards the same nearly optimal value for the quantization cri-
terion.

Keywords — k-means, vector quantization, distributed, asynchronous,
stochastic optimization, scalability, distributed consensus.
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1 Introduction

Distributed algorithms arise in a wide range of applications, including telecom-
munications, distributed information processing, scientific computing, real
time process control and many others. Parallelization is one of the most
promising ways to harness greater computing resources, whereas building
faster serial computers is increasingly expensive and also faces some physical
limits such as transmission speeds and miniaturization. One of the challenges
proposed for Machine Learning is to build scalable applications that quickly
process large amounts of data in sophisticated ways. Building such large
scale algorithms attacks several problems in a distributed framework, such
as communication delays in the network or numerous problems caused by
the lack of shared memory.

Clustering algorithms are one of the primary tools of unsupervised learning.
From a practical perspective, clustering plays an outstanding role in data
mining applications such as text mining, web analysis, marketing, medical
diagnostics, computational biology and many others. Clustering is a sepa-
ration of data into groups of similar objects. As clustering represents the
data with fewer clusters, there is a necessary loss of certain fine details, but
simplification is achieved. The popular Competitive Learning Vector Quan-
tization (CLVQ) algorithm (see Gersho and Gray [18]) provides a technique
for building reliable clusters characterized by their prototypes. As pointed
out by Bottou in [11], the CLVQ algorithm can also be viewed as the on-line
version of the widespread Lloyd’s method (see Lloyd’s [25] for the definition)
which is referred to as batch k-means in [11]. The CLVQ also belongs to
the class of stochastic gradient descent algorithms (for more information on
stochastic gradient descent procedures we refer the reader to Benveniste et
al. [5]).

The analysis of parallel stochastic gradient procedures in a Machine Learn-
ing context has recently received a great deal of attention (see for instance
Langford et al. [38] and Mac Donald et al. [27]). In the present paper, we
go further by introducing a model that brings together the original CLVQ
algorithm and the comprehensive theory of asynchronous parallel linear al-
gorithms developed by Tsitsiklis [37], Tsitsiklis et al. [36] and Bertsekas
and Tsitsiklis [6]. The resulting model will be called Distributed Asyn-
chronous Learning Vector Quantization (DALVQ for short). At a high level,
the DALVQ algorithm parallelizes several executions of the CLVQ method
concurrently on different processors while the results of these algorithms are
broadcast through the distributed framework asynchronously and efficiently.
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Here, the term processor refers to any computing instance in a distributed
architecture (see Bullo et al. [13, Chapter 1] for more details).

For a given time span, our parallel DALVQ algorithm is able to process much
more data than a single processor execution of the CLVQ procedure. More-
over, DALVQ is also asynchronous. This means that local algorithms do not
have to wait at preset points for messages to become available. This allows
some processors to compute faster and execute more iterations than others,
and it also allows communication delays to be substantial and unpredictable.
The communication channels are also allowed to deliver messages out of or-
der, that is, in a different order than the one in which they were transmitted.
Asynchronism can provide two major advantages. First, a reduction of the
synchronization penalty, which could bring a speed advantage over a syn-
chronous execution. Second, for potential industrialization, asynchronism
has greater implementation flexibility. Tolerance to system failures and un-
certainty can also be increased. As in the case with any on-line algorithm,
DALVQ also deals with variable data loads over time. In fact, on-line algo-
rithms avoid tremendous and non scalable batch requests on all data sets.
Moreover, with an on-line algorithm, new data may enter the system and be
taken into account while the algorithm is already running.

As a striking result, we prove that multiple versions of the quantizers, dis-
tributed among the processors in a parallel architecture, asymptotically reach
a consensus almost surely. Furthermore, we also show that these versions con-
verge almost surely towards (the same) nearly optimal value for the quanti-
zation criterion. These convergence results are similar in spirit to the most
satisfactory almost sure convergence theorem for the CLVQ algorithm ob-
tained by Pagès in [29].

The paper is organized as follows. In Section 2 we review some standard
facts on the clustering problem. We extract the relevant material from Pagès
[29] without proof, thus making our exposition self-contained. In Section 3
we give a brief exposition of the mathematical framework for parallel asyn-
chronous gradient methods introduced by Tsitsiklis et al. in [36] and Bert-
sekas and Tsitsiklis [36, 6]. The results of Blondel et al. [8] on the asymptotic
consensus in asynchronous parallel averaging problems are also recalled. In
Section 4, our main results are stated and proved.
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2 Quantization and CLVQ algorithm

2.1 Overview

Let µ be a probability measure on R
d with finite second-order moment. The

quantization problem consists in finding a “good approximation” of µ by a set
of κ vectors of Rd called quantizers (or prototypes). Throughout the docu-
ment the κ quantizers will be seen as the components of a

(
R

d
)κ
-dimensional

vector w = (w1, . . . , wκ). To measure the correctness of a quantization
scheme given by w, one introduces a cost function called distortion, defined
by

Cµ(w) =
1

2

∫

Rd

min
1≤ℓ≤κ

‖z− wℓ‖2 dµ(z).

Under some minimal assumptions, the existence of an optimal quantizer vec-
tor w◦ ∈ argminw∈(Rd)

κ Cµ(w) has been established by Pollard in [31] (see

also Sabin and Gray [34, Appendix 2]).

In a statistical context, the distribution µ is only known through n indepen-
dent random observations z1, . . . , zn drawn according to µ. Denote by µn the
empirical distribution based on z1, . . . , zn, that is, for every Borel subset A
of Rd

µn(A) =
1

n

n∑

i=1

1{zi∈A}.

Much attention has been devoted to the convergence study of the quantiza-
tion scheme provided by the empirical minimizers

w◦
n ∈ argmin

w∈(Rd)
κ
Cµn(w).

The almost sure convergence of Cµ (w
◦
n) towards minw∈(Rd)

κ Cµ(w) was proved

by Pollard in [30, 31] and Abaya and Wise in [2]. Rates of convergence and
nonasymptotic performance bounds have been considered by Pollard [32],
Chou [14], Linder et al. [24], Bartlett et al. [4], Linder [23, 35], Antos [1] and
Antos et al. [3]. Convergence results have been established by Biau et al. in
[7] where µ is a measure on a Hilbert space. It turns out that the minimiza-
tion of the empirical distortion is a computationally hard problem. As shown
by Inaba et al. in [20], the computational complexity of this minimization
problem is exponential in the number of quantizers κ and the dimension of
the data d. Therefore, exact computations are untractable for most of the
practical applications.
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Based on this, our goal in this document is to investigate effective methods
that produce accurate quantizations with data samples. One of the most
popular procedure is Lloyd’s algorithm (see Lloyd [25]) sometimes refereed
to as batch k-means. A convergence theorem for this algorithm is provided
by Sabin and Gray in [34]. Another celebrated quantization algorithm is the
Competitive Learning Vector Quantization (CLVQ), also called on-line k-
means. The latter acronym outlines the fact that data arrive over time while
the execution of the algorithm and their characteristics are unknown until
their arrival times. The main difference between the CLVQ and the Lloyd’s
algorithm is that the latter run in batch training mode. This means that
the whole training set is presented before performing an update, whereas the
CLVQ algorithm uses each item of the training sequence at each update.

The CLVQ procedure can be seen as a stochastic gradient descent algo-
rithm. In the more general context of gradient descent methods, one cannot
hope for the convergence of the procedure towards global minimizers with
a non convex objective function (see for instance Benveniste et al. [5]). In
our quantization context, the distortion mapping Cµ is not convex (see for
instance Graf and Luschgy [19]). Thus, just as in Lloyd’s method, the iter-
ations provided by the CLVQ algorithm converge towards local minima of Cµ.

Assuming that the distribution µ has a compact support and a bounded
density with respect to the Lebesgue measure, Pagès states in [29] a result
regarding the almost sure consistency of the CLVQ algorithm towards critical
points of the distortion Cµ. The author shows that the set of critical points
necessarily contains the global and local optimal quantizers. The main diffi-
culties in the proof arise from the fact that the gradient of the distortion is
singular on κ-tuples having equals components and the distortion function
Cµ is not coercive. This explains why standard theories for stochastic gradi-
ent algorithm do not apply in this context.

2.2 The quantization problem, basic properties

In the sequel, we denote by G the closed convex hull of supp (µ), where
supp (µ) stands for the support of the distribution. Observe that, with this
notation, the distortion mapping is the function C :

(
R

d
)κ −→ [0,∞) defined

by

C(w) ,
1

2

∫

G

min
1≤ℓ≤κ

‖z− wℓ‖2 dµ(z), w = (w1, . . . , wκ) ∈
(
R

d
)κ

. (2.1)
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Throughout the document, with a slight abuse of notation, ‖.‖ means both
the Euclidean norm of Rd or

(
R

d
)κ
. In addition, the notation Dκ

∗ stands for

the set of all vector of
(
R

d
)κ

with pairwise distinct components, that is,

Dκ
∗ ,

{
w ∈

(
R

d
)κ | wℓ 6= wk if and only if ℓ 6= k

}
.

Under some extra assumptions on µ, the distortion function can be rewritten
using space partition set called Voronöı tessellation.

Definition 2.1 Let w ∈
(
R

d
)κ
, the Voronöı tessellation of G related to w is

the family of open sets {Wℓ(w)}1≤ℓ≤κ defined as follows:

• If w ∈ Dκ
∗ , for all 1 ≤ ℓ ≤ κ,

Wℓ(w) =

{
v ∈ G

∣∣∣∣ ‖wℓ − v‖ < min
k 6=ℓ

‖wk − v‖
}
.

• If w ∈
(
R

d
)κ \ Dκ

∗ , for all 1 ≤ ℓ ≤ κ,

– if ℓ = min {k | wk = wℓ},

Wℓ(w) =

{
v ∈ G

∣∣∣∣ ‖wℓ − v‖ < min
wk 6=wℓ

‖wk − v‖
}

– otherwise, Wℓ(w) = ∅.

As an illustration, Figure 1 shows Voronöı tessellations associated to a vec-
tor w ∈ ([0, 1]× [0, 1])50 whose components have been drawn independently
and uniformly. This figure also highlights a remarkable property of the cell
borders, which are portions of hyperplanes (see Graf and Luschgy [19]).

Observe that if µ(H) is zero for any hyperplane H of Rd (a property which
is sometimes referred to as strong continuity) then, using Definition 2.1, it is
easy to see that the distortion takes the form:

C(w) =
1

2

κ∑

ℓ=1

∫

Wℓ(w)

‖z− wℓ‖2 dµ(z), w ∈
(
R

d
)κ

. (2.2)

The following assumption will be needed throughout the paper. This as-
sumption is similar to the peak power constraint (see Chou [14] and Linder
[35]). Note that most of the results of this subsection are still valid if µ
satisfies the weaker strong continuity property.
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Figure 1: Voronöı tessellation of 50 points of R2 drawn uniformly in a square.

Assumption 2.1 (Compact Supported Density) The probability mea-
sure µ has a bounded density with respect to the Lebesgue measure on R

d.
Moreover, the support of µ is equal to its compact convex hull G.
The next proposition states the differentiability of the distortion C, and
provides an explicit formula for the gradient ∇C whenever the distortion is
differentiable.

Proposition 2.1 (Pagès [29]) Under Assumption 2.1, the distortion C is
continuously differentiable at every w = (w1, . . . , wκ) ∈ Dκ

∗ . Furthermore,
for all 1 ≤ ℓ ≤ κ,

∇ℓC(w) =

∫

Wℓ(w)

(wℓ − z) dµ(z).

Some necessary conditions on the location of the minimizers of C can be
derived from its differentiability properties. Therefore, Proposition 2.2 below
states that the minimizers of C have parted components and that they are
contained in the support of the density. Thus, the gradient is well defined
and these minimizers are necessarily some zeroes of ∇C. For the sequel it is

convenient to let
◦

A be the interior of any subset A of
(
R

d
)κ
.
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Proposition 2.2 (Pagès [29]) Under Assumption 2.1, we have

argmin
w∈(Rd)

κ
C(w) ⊂ argminloc

w∈Gκ
C(w) ⊂

◦

Gκ ∩{∇C = 0} ∩ Dκ
∗ ,

where argminlocw∈Gκ C(w) stands for the set of local minimizers of C over
Gκ.

For any z ∈ R
d and w ∈

(
R

d
)κ
, define

H(z, w) ,
(
(wℓ − z)1{z∈Wℓ(w)}

)
1≤ℓ≤κ

. (2.3)

On Dκ
∗ , the function H may be interpreted as an observation of the gradient.

With this notation, Proposition 2.1 states that

∇C(w) =

∫

G

H(z, w)dµ(z), w ∈ Dκ
∗ . (2.4)

Let ∁A stands for the complementary in
(
R

d
)κ

of a subset A ⊂
(
R

d
)κ
.

Clearly, for all w ∈ ∁Dκ
∗ , the mapping H(., w) is integrable. Therefore,

∇C can be extended on
(
R

d
)κ

via the formula

h(w) ,

∫

G

H(z, w)dµ(z), w ∈
(
R

d
)κ
. (2.5)

Note however that the function h, which is sometimes called the average
function of the algorithm, is not continuous.

Remark 2.1 Under Assumption 2.1, a computation for all w ∈ Dκ
∗ of the

Hessian matrix ∇2C(w) can be deduced from Theorem 4 of Fort and Pagès
[16]. In fact, the formula established in this theorem is valid for cost func-
tions which are more complex than C (they are associated to Kohonen Self
Organizing Maps, see Kohonen [21] for more details). In Theorem 4, letting
σ(k) = 1{k=0}, provides the result for our distortion C. The resulting formula
shows that h is singular on ∁Dκ

∗ and, consequently, that this function cannot
be Lipschitz on Gκ.

2.3 Convergence of the CLVQ algorithm

The problem of finding a reliable clustering scheme for a dataset is equivalent
to find optimal (or at least nearly optimal) minimizers for the mapping C.
A minimization procedure by a usual gradient descent method cannot be
implemented as long as ∇C is unknown. Thus, the gradient is approximated
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by a single example extracted from the data. This leads to the following
stochastic gradient descent procedure

w(t+ 1) = w(t)− εt+1H (zt+1, w(t)) , t ≥ 0, (2.6)

where w(0) ∈
◦

Gκ ∩ Dκ
∗ and z1, z2 . . . are independent observations distributed

according to the probability measure µ.

The algorithm defined by the iterations (2.6) is known as the CLVQ algo-
rithm in the data analysis community. It is also called the Kohonen Self
Organizing Map algorithm with 0 neighbor (see for instance Kohonen [21])
or the on-line k-means procedure (see MacQueen [26] and Bottou [10]) in
various fields related to statistics. As outlined by Pagès in [29], this algo-
rithm belongs to the class of stochastic gradient descent methods. However,
the almost sure convergence of this type of algorithm cannot be obtained by
general tools such as Robbins-Monro method (see Robbins and Monro [33])
or the Kushner-Clark’s Theorem (see Kushner and Clark [22]). Indeed, the
main difficulty essentially arises from the non convexity of the function C,
its non coercivity and the singularity of h at ∁Dκ

∗ (we refer the reader to [29,
Section 6] for more details).

The following assumption set is standard in a gradient descent context. It
basically upraises constraints on the decreasing speed of the sequence of steps
{εt}∞t=0.

Assumption 2.2 (Decreasing steps) The (0, 1)-valued sequence {εt}∞t=0

satisfies the following two constraints:

1.
∑∞

t=0 εt = ∞.

2.
∑∞

t=0 ε
2
t < ∞.

An examination of identities (2.6) and (2.3) reveals that if zt+1 ∈ Wℓ0 (w(t)),
where ℓ0 ∈ {1, . . . ,M} then,

wℓ0(t+ 1) = (1− εt+1)wℓ0(t) + εt+1zt+1. (2.7)

The component wℓ0(t + 1) can be viewed as the image of wℓ0(t) by a zt+1-
centered homothety with ratio 1− εt+1 (Figure 2 provides an illustration of
this fact). Thus, under Assumptions 2.1 and 2.2, the trajectories of {w(t)}∞t=0

stay in
◦

Gκ ∩ Dκ
∗ . More precisely, if

w(0) ∈
◦

Gκ ∩ Dκ
∗
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then,

w(t) ∈
◦

Gκ ∩ Dκ
∗ , t ≥ 0, almost surely (a.s.)

Figure 2: Drawing of a portion of a 2-dimensional Voronöı tessellation. For
t ≥ 0, if zt+1 ∈ Wℓ0 (w(t)) then wℓ(t+1) = wℓ(t) for all ℓ 6= ℓ0 and wℓ0(t+1)
lies in the segment [wℓ0(t), zt+1]. The update of the vector wℓ0(t) can also be
viewed as a zt+1-centered homothety with ratio 1− εt+1.

Although ∇C is not continuous some regularity can be obtained. To this
end, we need to introduce the following materials. For any δ > 0 and any
compact set L ⊂ R

d, let the compact set Lκ
δ ⊂

(
R

d
)κ

be defined as

Lκ
δ ,

{
w ∈ Lκ | min

k 6=ℓ
‖wℓ − wk‖ ≥ δ

}
. (2.8)

The next lemma that states on the regularity of ∇C will prove to be ex-
tremely useful in the proof of Theorem 2.2 and throughout Section 4.

Lemma 2.1 Assume that µ satisfies Assumption 2.1 and let L be a compact
set of Rd. Then, there is some constant Pδ such that for all w and v in Lκ

δ

with [w, v] ⊂ Dκ
∗ ,

‖∇C(w)−∇C(v)‖ ≤ Pδ ‖w − v‖ .

The following lemma, called G-Lemma in [29] is an easy-to-apply convergence
results on stochastic algorithms. It is particularly adapted to the present
situation where the average function of the algorithm h is singular.

Theorem 2.1 (G-Lemma, Fort and Pagès [17]) Assume that the follow-
ing conditions are satisfied:
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1.
∑∞

t=1 εt = ∞ and εt −−−→
t→∞

0.

2. The sequences {w(t)}∞t=0 and {h (w(t))}∞t=0 are bounded a.s.

3. The series
∑∞

t=0 εt+1 (H(zt+1, w(t))− h(w(t))) converge a.s. in
(
R

d
)κ
.

4. There exists a lower semi-continuous function G :
(
R

d
)κ −→ [0,∞)

such that
∞∑

t=0

εt+1G(w(t)) < ∞, a.s.

Then, there exists a connected component Ξ of {G = 0} such that

dist (w(t),Ξ) −−−→
t→∞

0, a.s.

The interest of the G-Lemma depends upon the choice of G. In our context,
a suitable lower semi-continuous function is Ĝ defined by

Ĝ(w) , lim inf
v∈Gκ∩ Dκ

∗
, v→w

‖∇C(v)‖2 , w ∈ Gκ. (2.9)

The next theorem is, as far as we know, the first almost sure convergence
theorem for the stochastic algorithm CLVQ.

Theorem 2.2 (Pagès [29]) Under Assumptions 2.1 and 2.2, on the event
{
lim inf
t→∞

dist
(
w(t), ∁Dκ

∗

)
> 0
}
, one has

dist(w(t),Ξ∞) −−−→
t→∞

0, a.s.,

where Ξ∞ is some connected component of {∇C = 0}.
The proof is an application of the above G-Lemma with the mapping Ĝ
defined by equation (2.9). Theorem 2.2 states that the iterations of the
CLVQ necessarily converge towards some critical points (zeroes of ∇C).
From Proposition 2.2 we deduce that the set of critical points necessarily
contains optimal quantizers. Remind that without more assumption than

w(0) ∈
◦

Gκ ∩ Dκ
∗ , we have already discussed the fact that the components of

w(t) are almost surely parted for all t ≥ 0. Thus, it is easily seen that the
two following events are equal

{
lim inf
t→∞

dist
(
w(t), ∁Dκ

∗

)
> 0
}
=

{
inf
t≥0

dist
(
w(t), ∁Dκ

∗

)
> 0

}
.

Some results are provided by Pagès in [29] for asymptotically stuck compo-
nents but, as pointed out by the author, they are less satisfactory.
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3 General distributed asynchronous algorithm

3.1 Model description

Let s(t) be any
(
R

d
)κ
-valued vector and consider the following iterations on

a vector w ∈
(
R

d
)κ

w(t+ 1) = w(t) + s(t), t ≥ 0. (3.1)

Here, the iterations described by identity (3.1) can only be performed by a
single computing entity. Therefore, if the computations of the vectors s(t)
are relatively time consuming then, not many iterations can be achieved for
a given time span. Consequently, a parallelization of this computing scheme
should be investigated. The aim of this section is to discuss a precise math-
ematical description of a distributed asynchronous model for the iterations
(3.1). This model for distributed computing was originally proposed by Tsit-
siklis et al. in [36] and was revisited in Bertsekas and Tsitsiklis [6, Section
7.7].

Assume that we dispose of a distributed architecture with M computing
entities called processors (or agents, see for instance Bullo et al. [13]).
Each processor is labeled, for simplicity of notation, by a natural number
i ∈ {1, . . . ,M}. Throughout the paper, we will add the superscript i on the
variables possessed by the processor i. In the model we have in mind, each
processor has a buffer where its current version of the iterated vector is kept,
i.e a local memory. Thus, for agent i such iterations are represented by the(
R

d
)κ
-valued sequence {wi(t)}∞t=0.

Let t ≥ 0 denote the current time. For any pair of processors (i, j) ∈
{1, . . . ,M}2, the value kept by agent j and available for agent i at time
t is not necessarily the most recent one, wj(t), but more probably and out-
dated one, wj(τ i,j(t)), where the deterministic time instant τ i,j(t) satisfy
0 ≤ τ i,j(t) ≤ t. Thus, the quantity t − τ i,j(t) represents a communication
and possibly other types of delay.

We insist on the fact that there is a distinction between “global” and “local”
time. The time variable we refer above to as t corresponds to a global clock.
Such a global clock is needed only for analysis purposes. The processors work
without knowledge of this global clock. They have access to a local clock or
to no clock at all.
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The algorithm is initialized at t = 0, where each processor i ∈ {1, . . . ,M}
has an initial version wi(0) ∈

(
R

d
)κ

in its buffer. We define the general
distributed asynchronous algorithm by the following iterations

wi(t+ 1) =

M∑

j=1

ai,j(t)wj(τ i,j(t)) + si(t), i ∈ {1, . . . ,M} and t ≥ 0. (3.2)

The model can be interpreted as follows: at time t ≥ 0, processor i receives
messages from other processors containing wj(τ i,j(t)). Processor i incorpo-
rates these new vectors by forming a convex combination and incorporates
the vector si(t) resulting from its own “local” computations. The coefficients
ai,j(t) are nonnegative numbers which satisfy the constraint

M∑

j=1

ai,j(t) = 1, i ∈ {1, . . . ,M} and t ≥ 0. (3.3)

As the combining coefficients ai,j(t) depend on t, the network communication
topology is sometimes referred to as time-varying. The sequences {τ i,j(t)}∞t=0

need not to be known in advance by any processor. In fact, their knowledge
is not required to execute iterations defined by equation (3.2). Thus, we do
not necessary dispose of a shared global clock or synchronized local clocks
at the processors. The difference t− τ i,j(t) can be seen as a communication
delay. This is a modeling of some aspects of the network: latency and band-
width finiteness.

As for now the descent terms {si(t)}∞t=0 will be arbitrary
(
R

d
)κ
-valued se-

quences. In Section 4, when we define the Distributed Asynchronous Learn-
ing Vector Quantization (DALVQ), the definition of the descent terms will
be made more explicit.

3.2 The agreement algorithm

This subsection is devoted to a short survey of the results, found by Blondel et
al. in [8], for a natural simplification of the general distributed asynchronous
algorithm (3.2). This simplification is called agreement algorithm by Blondel
et al. and is defined by

xi(t + 1) =
M∑

j=1

ai,j(t)xj(τ i,j(t)), i ∈ {1, . . . ,M} and t ≥ 0. (3.4)
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Global 

time reference

Figure 3: Illustration of the time delays introduced in the general distributed
asynchronous algorithm. Here, there are M = 4 different processors with
their own computations of the vectors w(i), i ∈ {1, 2, 3, 4}. Three arbitrary
values of the global time t are represented (t1, t2 and t3), with τ i,i(tk) = tk
for all i ∈ {1, 2, 3, 4} and 1 ≤ k ≤ 3. The dashed arrows head towards the
versions available at time tk for an agent i ∈ {1, 2, 3, 4} represented by the
tail of the arrow.

where xi(0) ∈
(
R

d
)κ
. An observation of these equations reveals that they are

similar to iterations (3.2), the only difference being that all descent terms
equal 0.

In order to analyze the convergence of the agreement algorithm (3.4), Blondel
et al in [8] define two sets of assumptions that enforce some weak properties
on the communication delays and the network topology. As shown in [8], if
the assumptions contained in one of these two set hold, then the distributed
versions of the agreement algorithm, namely the xi, reach an asymptotical
consensus. This latter statement means that there exists a vector x⋆ (inde-
pendent of i) such that

xi(t) −−−→
t→∞

x⋆, i ∈ {1, . . . ,M}.

The agreement algorithm (3.4) is essentially driven by the communication
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times τ i,j(t) assumed to be deterministic but do not need to be known a
priori by the processors. The following Assumption 3.1 essentially ensures,
in its third statement, that the communication delays t−τ i,j(t) are bounded.
This assumption prevents some processor from taking into account some
arbitrarily old values computed by others processors. Assumption 3.1 1. is
just a convention: when ai,j(t) = 0 the value τ i,j(t) has no effect on the
update. Assumption 3.1 2. is rather natural because processors have access
to their own most recent value.

Assumption 3.1 (Bounded communication delays) 1. If ai,j(t) = 0
then, τ i,j(t) = t, (i, j) ∈ {1, . . . ,M}2 and t ≥ 0,

2. τ i,i(t) = t, i ∈ {1, . . . ,M} and t ≥ 0.

3. There exists a positive integer B1 such that

t− B1 < τ i,j(t) ≤ t, (i, j) ∈ {1, . . . ,M}2 and t ≥ 0.

The next Assumption 3.2 states that the value possessed by agent i at time
t+1, namely xi(t+1), is a weighted average of its own value and the values
that it has just received from other agents.

Assumption 3.2 (Convex combination and threshold) There exists a
positive constant α > 0 such that the following three properties hold:

1. ai,i(t) ≥ α, i ∈ {1, . . . ,M} and t ≥ 0.

2. ai,j(t) ∈ {0} ∪ [α, 1], (i, j) ∈ {1, . . . ,M}2 and t ≥ 0.

3.
∑M

j=1 a
i,j(t) = 1, i ∈ {1, . . . ,M} and t ≥ 0.

Let us mention one particular relevant case for the choice of the combining
coefficients ai,j(t). Let i ∈ {1, . . . ,M} and t ≥ 0, the set

N i(t) ,
{
j ∈ {1, . . . ,M} ∈ {1, . . . ,M} | ai,j(t) 6= 0

}

corresponds to the set of agents whose version is taken into account by pro-
cessor i at time t. For all (i, j) ∈ {1, . . . ,M}2 and t ≥ 0, the weights ai,j(t)
are defined by

ai,j(t) =

{
1/#N i(t) if j ∈ N i(t);

0 otherwise;

where #A denotes the cardinal of any finite set A. The above definition
on the combining coefficients appears to be relevant for practical implemen-
tations of the model DALVQ introduced in Section 4. For a discussion on
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others special interest cases regarding the choices of the coefficients ai,j(t) we
refer the reader to [8].

The communication patterns, sometimes refereed to as the network com-
munication topology, can be expressed in terms of oriented graph. For a
thorough introduction to graph theory, see Jungnickel [15].

Definition 3.1 (Communication graph) Let us fix t ≥ 0, the communi-
cation graph at time t, (V, E(t)), is defined by

• the set of vertices V is formed by the set of processors V = {1, . . . ,M},

• the set of edges E(t) is defined via the relationship

(j, i) ∈ E(t) if and only if ai,j(t) > 0.

Assumption 3.3 is a minimal condition required for a consensus among the
processors. More precisely, it states that for any pair of agents (i, j) ∈
{1, . . . ,M}2 there is a sequence of communications where the values com-
puted by agent i will influence (directly or indirectly) the future values kept
by agent j.

Assumption 3.3 (Graph connectivity) The graph (V,∪s≥tE(s))
is strongly connected for all t ≥ 0.

Finally, we define two supplementary assumptions. The combination of one
of the two following assumptions with the three previous ones will ensure the
convergence of the agreement algorithm. As mentioned above, if Assumption
3.3 holds then, there is a communication path between any pair of agents.
Assumption 3.4 below expresses the fact that there is a finite upper bound
for the length of such paths.

Assumption 3.4 (Bounded communication intervals) If i communicates
with j an infinite number of times then, there is a positive integer B2 such
that

(i, j) ∈ E(t) ∪ E(t+ 1) ∪ . . . ∪ E(t+B2 − 1), t ≥ 0.

Assumption 3.5 is a symmetry condition: if agent i ∈ {1, . . . ,M} commu-
nicates with agent j ∈ {1, . . . ,M} then, j has communicated or will com-
municate with i during the time interval (t − B3, t + B3) where B3 > 0.
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Assumption 3.5 (Symmetry) There exists some B3 > 0 such that when-
ever (i, j) ∈ E(t), there exists some τ that satisfies |t − τ | < B3 and
(j, i) ∈ E(τ).

To shorten a little bit the notation, we set

(AsY)
1
≡





Assumption 3.1;

Assumption 3.2;

Assumption 3.3;

Assumption 3.4.

(AsY)
2
≡





Assumption 3.1;

Assumption 3.2;

Assumption 3.3;

Assumption 3.5;

We are now in a position to state the main result of this section. The Theo-
rem 3.1 expresses the fact that, for the agreement algorithm, a consensus is
asymptotically reached by the agents.

Theorem 3.1 (Blondel et al. [8]) Under the set of Assumptions (AsY)
1

or (AsY)
2
, there is a consensus vector x⋆ ∈

(
R

d
)κ

(independent of i) such
that

lim
t→∞

∥∥xi(t)− x⋆
∥∥ = 0, i ∈ {1, . . . ,M}.

Besides, there exist ρ ∈ [0, 1) and L > 0 such that
∥∥xi(t)− xi(τ)

∥∥ ≤ Lρt−τ , i ∈ {1, . . . ,M} and t ≥ τ ≥ 0.

3.3 Asymptotic consensus

This subsection is devoted to the analysis of the general distributed asyn-
chronous algorithm (3.2). For this purpose, the study of the agreement al-
gorithm defined by equations (3.4) will be extremely fruitful. The following
lemma states that the version possessed by agent i ∈ {1, . . . ,M} at time
t ≥ 0, namely wi(t), depends linearly on the others initialization vectors

wj(0) and the descent subsequences {sj(τ)}t−1
τ=−1, where j ∈ {1, . . . ,M}.

Lemma 3.1 (Tsitsiklis [37]) For all (i, j) ∈ {1, . . . ,M}2 and t ≥ 0, there

exists a real-valued sequence {φi,j (t, τ)}t−1
τ=−1 such that

wi(t) =
M∑

j=1

φi,j (t,−1)wj(0) +
t−1∑

τ=0

M∑

j=1

φi,j (t, τ) sj(τ).

For all (i, j) ∈ {1, . . . ,M}2 and t ≥ 0, the real-valued sequences {φi,j (t, τ)}t−1
τ=−1

do not depend on the value taken by the descent terms si(t). The real num-
bers φi,j (t, τ) are determined by the sequences {τ i,j(τ)}tτ=0 and {ai,j(τ)}tτ=0.
These last sequences are unknown in general, but some useful qualitative
properties can be derived, as expressed in Lemma 3.2 below.
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Lemma 3.2 (Tsitsiklis [37]) For all (i, j) ∈ {1, . . . ,M}2, let {φi,j (t, τ)}t−1
τ=−1

be the sequences defined in Lemma 3.1.

1. Under Assumption 3.2,

0 ≤ φi,j (t, τ) ≤ 1, (i, j) ∈ {1, . . . ,M}2 and t > τ ≥ −1.

2. Under Assumptions (AsY)
1
or (AsY)

2
, we have:

(a) For all (i, j) ∈ {1, . . . ,M}2 and τ ≥ −1, the limit of φi,j (t, τ) as t
tends to infinity exists and is independent of j. It will be denoted
φi(τ).

(b) There exists some η > 0 such that

φi(τ) > η, i ∈ {1, . . . ,M} and τ ≥ −1.

(c) There exist a constant A > 0 and ρ ∈ (0, 1) such that
∣∣φi,j (t, τ)− φi(τ)

∣∣ ≤ Aρt−τ , (i, j) ∈ {1, . . . ,M}2 and t > τ ≥ −1.

Take t′ ≥ 0 and assume that the agents stop performing update after time t′,
but keep communicating and merging the results. This means that sj(t) = 0
for all t ≥ t′. Then equations (3.2) write

wi(t+ 1) =

M∑

j=1

ai,j(t)wj
(
τ i,j(t)

)
, i ∈ {1, . . . ,M} and t ≥ t′.

If Assumptions (AsY)
1
or (AsY)

2
are satisfied then, Theorem 3.1 shows

that there is a consensus vector, depending on the time instant t′. Let us
denote this vector by w⋆(t′) (see Figure 4). However, Lemma 3.2 provides a
better way to define the sequence {w⋆(t)}∞t=0 as shown in Definition 3.4. Note
that this definition does not involve any assumption on the descent terms.

Definition 3.2 (Agreement vector) Assume that Assumptions (AsY)
1

or (AsY)
2
are satisfied. The agreement vector sequence {w⋆(t)}∞t=0 is de-

fined by

w⋆(t) ,
M∑

j=1

φj (−1)wj(0) +
t−1∑

τ=0

M∑

j=1

φj (τ) sj(τ), t ≥ 0.

It is noteworthy that the agreement vector sequence w⋆ satisfies the following
recursion formula

w⋆(t+ 1) = w⋆(t) +

M∑

j=1

φj(t)sj(t), t ≥ 0. (3.5)
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Global 

time reference

Figure 4: The agreement vector at time t′, w⋆(t′) corresponds to the common
value asymptotically achieved by all processors if computations integrating
descent terms have stopped after t′, i.e, sj(t) = 0 for all t ≥ t′.

4 Distributed asynchronous learning vector

quantization

4.1 Introduction, model presentation

From now on, and until the end of the paper, we assume that one of the
two set of assumptions (AsY)

1
or (AsY)

2
holds, as well as the compact-

supported density Assumption 2.1. In addition, we will also assume that
0 ∈ G. For the sake of clarity, all the proofs of the main theorems as well as
the lemmas needed for these proofs have been postponed at the end of the
paper, in Annex.

Tsitsiklis in [37], Tsitsiklis et al in [36] and Bertsekas and Tsitsiklis in [6] stud-
ied distributed asynchronous stochastic gradient optimization algorithms. In
this series of publications, for the distributed minimization of a cost func-
tion F :

(
R

d
)κ −→ R, the authors considered the general distributed asyn-

chronous algorithm defined by equation (3.2) with specific choices for stochas-
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tic descent terms si. Using the notation of Section 3, the algorithm writes

wi(t+ 1) =
M∑

j=1

ai,j(t)wj(τ i,j(t)) + si(t), i ∈ {1, . . . ,M} and t ≥ 0,

with stochastic descent terms si(t) satisfying

E
{
si(t)

∣∣ sj(τ), j ∈ {1, . . . ,M} and t > τ ≥ 0
}
= −εit+1∇F

(
wi(t)

)
,

i ∈ {1, . . . ,M} and t ≥ 0. (4.1)

where {εit}
∞
t=0 are decreasing steps sequences. The definition of the descent

terms in [6, 36] is more general than the one appearing in equation (4.1).
We refer the reader to Assumption 3.2 and 3.3 in [36] and Assumption 8.2
in [6] for the precise definition of the descent terms in [6, 36]. As discussed
in Section 2, the CLVQ algorithm is also a stochastic gradient descent pro-
cedure. Unfortunately, the results from Tsitisklis et al. in [36, 37, 6] do not
apply with our distortion function, C, since the authors assume that F is
continuously differentiable and ∇F is Lipschitz. Therefore, the aim of this
section is to extend the results of Tsitsiklis et al. to the context of vector
quantization and on-line clustering.

We first introduce the Distributed Asynchronous Learning Vector Quantiza-
tion (DALVQ) algorithm. To prove its almost sure consistency, we will need
an Asynchronous G-Lemma, which is inspired from the G-Lemma, Theorem
2.1, presented in Section 2. This theorem may be seen as an easy-to-apply
tool for the almost sure consistency of a distributed asynchronous system
where the average function is not necessary regular. Our approach sheds
also some new light on the convergence of distributed asynchronous stochas-
tic gradient descent algorithms. Precisely, Proposition 8.1 in [36] claims that
lim inf t→∞ ‖∇F (wi(t))‖ = 0 while our main Theorem 4.2 below states that
limt→∞ ‖∇C(wi(t))‖ = 0. However, there is a price to pay for this more
precise result with the non Lipschitz gradient ∇C. Similarly to Pagès [29],
who assumes that the trajectory of the CLVQ algorithm has almost surely
asymptotically parted components (see Theorem 2.2 in Section 2), we will
suppose that the agreement vector sequence has, almost surely, asymptoti-
cally parted component trajectories.

Recall that the goal of the DALVQ is to provide a well designed distributed
algorithm that processes quickly (in term of wall clock time) very large data
sets to produce accurate quantization. The data sets (or streams of data)
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are distributed among several queues sending data to the different processors
of our distributed framework. Thus, in this context the sequence zi1, z

i
2, . . .

stands for the data available for processor, where i ∈ {1, . . . ,M}. The ran-
dom variables

z11, z
1
2, . . . , z

2
1, z

2
2, . . .

are assumed to be independent and identically distributed according to µ.

In the definition of the CLVQ procedure (2.6), the term H (zt+1, w(t)) can be
seen as an observation of the gradient ∇C (w(t)). Therefore, in our DALVQ
algorithm, each processor i ∈ {1, . . . ,M} is able to compute such observa-
tions using its own data zi1, z

i
2, . . .. Thus, the DALVQ procedure is defined

by equation (3.2) with the following choice for the descent term si:

si(t) =

{
−εit+1H

(
zit+1, w

i(t)
)

if t ∈ T i;

0 otherwise;
(4.2)

where {εit}
∞
t=0 are (0, 1)-valued sequences. The sets T i contain the time in-

stants where the version wi, kept by processor i, is updated with the descent
terms. This fine grain description of the algorithm allows some processors to
be idle for computing descent terms (when t /∈ T i). This reflects the fact that
the computing operations might not take the same time for all processors,
which is precisely the core of asynchronous algorithms analysis. Similarly
to time delays and combining coefficients, the sets T i are supposed to be
deterministic but do not need to be known a priori for the execution of the
algorithm.

In the DALVQ model, randomness arises from the data z. Therefore, it is
natural to let {Ft}∞t=0 be the filtration built on the σ-algebras

Ft , σ
(
zis, i ∈ {1, . . . ,M} and t ≥ s ≥ 0

)
, t ≥ 0.

An easy verification shows that, for all j ∈ {1, . . . ,M} and t ≥ 0, w⋆(t) and
wj(t) are Ft-measurable random variables.

For simplicity, the assumption on the decreasing speed of the sequences
{εit}

∞
t=0 is strengthened as follows. The notation a∨b stands for the maximum

of two reals a and b.

Assumption 4.1 There exist two real numbers K1 > 0 and K2 ≥ 1 such
that

K1

t ∨ 1
≤ εit+1 ≤

K2

t ∨ 1
, i ∈ {1, . . . ,M} and t ≥ 0.
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If Assumption 4.1 holds then, the sequences {εit}
∞
t=0 satisfy the standard As-

sumption 2.2 for stochastic optimization algorithms. Note that the choice
of steps proportional to 1/t has been proved to be a satisfactory learning
rate, theoretically speaking and also for practical implementations (see for
instance Murata [28] and Bottou and LeCun [12]).

For practical implementation, the sequences
{
εit+1

}∞
t=0

satisfying Assumption
4.1 can be implemented without a global clock, that is, without assuming that
the current value of t is known by the agents. This assumption is satisfied, for
example, by taking the current value of εit proportional to 1/ni

t, where ni
t is

the number of times that processor i as performed an update, i.e., the cardi-
nal of the set T i∩{0, . . . , t}. For a given processor, if the time span between
consecutive updates is bounded from above and from below, a straightfor-
ward examination shows that the sequence of steps satisfy Assumption 4.1.

Finally, the next assumption is essentially technical in nature. It enables to
avoid time instants where all processors are idle. It basically requires that,
at any time t ≥ 0, there is at least one processor i ∈ {1, . . . ,M} satisfying
si(t) 6= 0.

Assumption 4.2 One has
∑M

j=1 1{t∈T j} > 0.

4.2 The asynchronous G-Lemma

The aim of this subsection is to state a useful theorem similar to Theorem
2.1, but adapted to our asynchronous distributed context. The precise Defi-
nition 3.2 of the agreement vector sequence should not cast aside the intuitive
definition. The reader should keep in mind that the vector w⋆(t) is also the
asymptotical consensus if descent terms are zero after time t. Consequently,
even if the agreement vector {w⋆(t)}∞t=0 is adapted to the filtration {Ft}∞t=0,
the vector w⋆(t) cannot be accessible for a user at time t. Nevertheless,
the agreement vector w⋆(t) can be interpreted as a “probabilistic state” of
the whole distributed quantization scheme at time t. This explains why the
agreement vector is a such convenient tool for the analysis of the DALVQ
convergence and will be central in our adaptation of G-Lemma, Theorem 4.1.
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Let us remark that equation (3.5) writes, for all t ≥ 0,

w⋆(t+ 1) = w⋆(t) +

M∑

j=1

φj(t)sj(t)

= w⋆(t)−
M∑

j=1

1{t∈T j}φ
j(t)εjt+1H

(
zjt+1, w

j(t)
)
.

Using the function h defined by identity (2.5) and the fact that the random
variables w⋆(t) and wj(t) are Ft-measurable then, it holds

h(w⋆(t)) = E {H (zt+1, w
⋆(t)) | Ft} , t ≥ 0.

and

h(wj(t)) = E
{
H
(
zt+1, w

j(t)
)
| Ft

}
, j ∈ {1, . . . ,M} and t ≥ 0.

For all t ≥ 0, set

ε⋆t+1 ,

M∑

j=1

1{t∈T j}φ
j(t)εjt+1. (4.3)

Clearly, the real numbers ε⋆t are nonnegative. Their strictly positiveness will
be discussed in Proposition 4.1.
Set

∆M
(1)
t ,

M∑

j=1

1{t∈T j}φ
j(t)εjt+1

(
h(w⋆(t))− h(wj(t))

)
, t ≥ 0, (4.4)

and

∆M
(2)
t ,

M∑

j=1

1{t∈T j}φ
j(t)εjt+1

(
h(wj(t))−H

(
zjt+1, w

j(t)
))
, t ≥ 0. (4.5)

Note that E

{
∆M

(2)
t

}
= 0 and, consequently, that the random variables

∆M
(2)
t can be seen as the increments of a martingale with respect to the

filtration {Ft}∞t=0.

Finally, with this notation, equation (3.5) takes the form

w⋆(t+ 1) = w⋆(t)− ε⋆t+1h(w
⋆(t)) + ∆M

(1)
t +∆M

(2)
t , t ≥ 0. (4.6)

We are now in a position to state our most useful tool, which is similar
in spirit to the G-Lemma, but adapted to the context of distributed asyn-
chronous stochastic gradient descent algorithm.
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Theorem 4.1 (Asynchronous G-Lemma) Assume that the following con-
ditions are satisfied:

1.
∑∞

t=0 ε
⋆
t = ∞ and ε⋆t −−−→

t→∞
0.

2. The sequences {w⋆(t)}∞t=0 and {h(w⋆(t))}∞t=0 are bounded a.s.

3. The series
∑∞

t=0∆M
(1)
t and

∑∞
t=0∆M

(2)
t converge a.s. in

(
R

d
)κ
.

4. There exists a lower semi-continuous function G :
(
R

d
)κ −→ [0,∞)

such that
∞∑

t=0

ε⋆t+1G (w⋆(t)) < ∞, a.s.

Then, there exists a connected component Ξ of {G = 0} such that

dist (w⋆(t),Ξ) −−−→
t→∞

0, a.s.

4.3 Trajectory analysis

The Pagès’s proof on the almost sure convergence of the CLVQ procedure
required a careful examination of the trajectories of the process {w(t)}∞t=0.
Thus, in this subsection we investigate similar properties and introduce the
assumptions that will be needed to prove our main convergence result, The-
orem 4.2.
The next Assumption 4.3 ensures that, for each processor, the quantizers
stay in the support of the density.

Assumption 4.3 One has

P
{
wj(t) ∈ Gκ

}
= 1, j ∈ {1, . . . ,M} and t ≥ 0.

Firstly, let us mention that since the set Gκ is convex, if Assumption 4.3
holds then,

P {w⋆(t) ∈ Gκ} = 1, t ≥ 0.

Secondly, note that the Assumption 4.3 is not particularly restrictive. This
assumption is satisfied under the condition: for each processor, no descent
term is added while a combining computation is performed. This writes

ai,j(t) = δi,j and τ i,i(t) = t, (i, j) ∈ {1, . . . ,M}2 and t ∈ T i.

This requirement makes sense for practical implementations.
Remind that if t /∈ T i, then si(t) = 0. Thus, equation (3.2) takes the form
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wi(t+ 1) =





wi(t + 1) = wi(t)− εit+1

(
wi(t)− zit+1

)

=
(
1− εit+1

)
wi(t) + εit+1z

i
t+1

if t ∈ T i;

wi(t + 1) =
∑M

j=1 a
i,j(t)wj(τ i,j(t)) otherwise.

(4.7)

Since Gκ is a convex set, it follows easily that if wj(0) ∈ Gκ, then wj(t) ∈ Gκ

for all j ∈ {1, . . . ,M} and t ≥ 0 and, consequently, that Assumption 4.3
holds.

The next Lemma 4.1 provides a deterministic upper bound on the differences
between the distributed versions wi and the agreement vector. For any subset
A of

(
R

d
)κ
, the notation diam(A) stands for the usual diameter defined by

diam(A) = sup
x,y∈A

{‖x− y‖} .

Lemma 4.1 Assume that Assumptions 4.1 and 4.3 are satisfied then,

‖w⋆(t)− wi(t)‖ ≤
√
κM diam(G)AK2θt, i ∈ {1, . . . ,M} and t ≥ 0, a.s.,

where θt ,
∑t−1

τ=−1
1

τ∨1
ρt−τ and A (resp. K2) is the constant introduced in

Lemma 3.2 (resp. Assumption 4.1).

The sequence {θt}∞t=0 defined in Lemma 4.1 satisfies

θt −−−→
t→∞

0 and
∞∑

t=0

θt
t
< ∞. (4.8)

Thus, under Assumptions 4.1 and 4.3, it follows easily that

w⋆(t)− wi(t) −−−→
t→∞

0, i ∈ {1, . . . ,M}, a.s.,

and
wi(t)− wj(t) −−−→

t→∞
0, (i, j) ∈ {1, . . . ,M}2, a.s. (4.9)

This shows that the trajectories of the distributed versions of the quantizers
reach asymptotically a consensus with probability 1. In other words, if one of
the sequences {wi(t)}∞t=0 converges then, they all converge towards the same
value. The rest of the paper is devoted to prove that this common value is
in fact a zero of ∇C, i.e. a critical point.

To prove the result mentioned above, we will need the following assumption,
which basically states that the components of w⋆ are parted, for every time
t but also asymptotically. This assumption is similar in spirit to the main
requirement of Theorem 2.2.
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Assumption 4.4 One has

1. P {w⋆(t) ∈ Dκ
∗} = 1, t ≥ 0.

2. P
{
lim inft→∞ dist

(
w⋆(t), ∁Dκ

∗

)
> 0
}
= 1, t ≥ 0.

4.4 Consistency of the DALVQ

In this subsection we state our main theorem on the consistency of the
DALVQ. Its proof is based on the Asynchronous G-Lemma, Theorem 4.1.
The goal of the next proposition is to ensure that the first assumption of
Theorem 4.1 holds.

Proposition 4.1 Let Assumptions 4.1 and 4.2 hold then, ε⋆t > 0, t ≥ 0,
ε⋆t −−−→

t→∞
0 and

∑∞
t=0 ε

⋆
t = ∞.

The second condition required in Theorem 4.1 deals with the convergence of
the two series defined by equations (4.4) and (4.5). The next Proposition 4.2
provides sufficient condition for the almost sure convergence of these series.

Proposition 4.2 If Assumptions 4.1, 4.3 and 4.4 hold then, the series∑∞
t=0∆M

(1)
t and

∑∞
t=0∆M

(2)
t converge almost surely in

(
R

d
)κ
.

This next proposition may be considered has the most important step in the
proof of the convergence of the DALVQ. It establishes the convergence of a
series of the form

∑∞
t=0 εt+1 ‖∇C (w(t))‖2. The analysis of the convergence of

this type of series is standard for the analysis of stochastic gradient method
(see for instance Benveniste et al. [5] and Bottou [9]). In our context, we
pursue the fruitful use of the agreement vector sequence, {w⋆(t)}∞t=0, and its
related “steps”, {ε⋆t}∞t=0.

Note that under Assumption 4.4, we have h (w⋆(t)) = ∇C (w⋆(t)) for all
t ≥ 0, almost surely, therefore the sequence {∇C (w⋆(t))}∞t=0 below is well
defined.

Proposition 4.3 If Assumptions 4.1, 4.3 and 4.4 hold then,

1. C (w⋆(t)) −−−→
t→∞

C∞, a.s., where C∞ ∈ [0,∞),

2.
∞∑

t=0

ε⋆t+1 ‖∇C (w⋆(t))‖2 < ∞, a.s. (4.10)
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Remark that from the convergence of the series given by equation (4.10) one
can only deduce that lim inft→∞ ‖∇C (w⋆(t))‖ = 0.

We are now in a position to state the main theorem of this paper, which
expresses the convergence of the distributed version towards some zero of
the gradient of the distortion. In addition, the convergence results (4.9)
imply that if a version converges then, all the versions converge towards this
value.

Theorem 4.2 (Asynchronous Theorem) If Assumptions 4.1, 4.2, 4.3 and
4.4 hold then,

w⋆(t) −−−→
t→∞

Ξ∞, a.s.

and
wi(t) −−−→

t→∞
Ξ∞, i ∈ {1, . . . ,M}, a.s.,

where Ξ∞ is some connected component of the set {∇C = 0} ∩ Gκ.

4.5 Annex

Sketch of the proof of Asynchronous G-Lemma 4.1. The proof is
an adaptation of the one found by Fort and Pagès, Theorem 4 in [17]. The
recursive equation (4.6) satisfied by the sequence {w⋆(t)}∞t=0 is similar to the
iterations (2) in [17] (with the notation of this paper):

X t+1 = X t − εt+1h
(
X t
)
+ εt+1

(
∆M t+1 + ηt+1

)
, t ≥ 0.

Thus, similarly, we define a family of continuous time stepwise function
{u 7→ w̌ (t, u)}∞t=1.

w̌⋆ (0, u) , w⋆(s), if u ∈ [ε⋆1 + . . .+ ε⋆s, ε
⋆
1 + . . .+ ε⋆s+1), u ∈ [0,∞).

and if u < ε⋆1, w̌
⋆ (0, u) = w⋆(0).

w̌⋆ (t, u) , w̌⋆ (0, ε⋆1 + . . .+ ε⋆t + u) , t ≥ 1 and u ∈ [0,∞).

Hence, for every t ∈ N,

w̌⋆(t, u) = w̌⋆(0, t)−
∫ u

0

h (w̌⋆(t, v)) dv +Ru(t), u ∈ [0,∞),

where, for every t ≥ 1 and u ∈ [ε⋆1 + . . .+ ε⋆t+t′ , ε
⋆
1 + . . .+ ε⋆t+t′+1),

Ru(t) ,

∫ ε⋆
1
+...+ε⋆t+u

ε⋆t+...+ε⋆
t+t′

w̌⋆(0, v)dv +
t+t′∑

s=t+1

(
∆M (1)

s +∆M (2)
s

)
.
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The only difference between the families of continuous time functions {w̌ (t, u)}∞t=1

and
{
X(t)

}∞
t=1

defined in [17] is the remainder term Ru(t). The convergence

sup
u∈[0,T ]

‖Ru(t)‖ −−−→
t→∞

0, T > 0.

follows easily from the third assumption of Theorem 4.1. The rest of the
proof follows similarly as in Theorem 4 [17].

�

Proof of Lemma 4.1. For all i ∈ {1, . . . ,M}, and all t ≥ 0, and all
1 ≤ ℓ ≤ κ, we may write

∥∥wi
ℓ(t)− w⋆

ℓ (t)
∥∥

=

∥∥∥∥∥

M∑

j=1

(
(
φi,j(t,−1)− φj(−1)

)
wj

ℓ(0) +
t−1∑

τ=0

(
φi,j(t, τ)− φj(t)

)
sjℓ(τ)

)∥∥∥∥∥

(by Definition 3.2 and Lemma 3.1)

≤
M∑

j=1

∣∣φi,j(t,−1)− φj(−1)
∣∣ ∥∥wj

ℓ(0)
∥∥+

t−1∑

τ=0

M∑

j=1

∣∣φi,j(t, τ)− φj(t)
∣∣ ∥∥sjℓ(τ)

∥∥

≤ Aρt+1

M∑

j=1

∥∥wj
ℓ(0)

∥∥+ A

t−1∑

τ=0

M∑

j=1

ρt−τ
∥∥sjℓ(τ)

∥∥

(by Lemma 3.2).

Thus,

∥∥wi
ℓ(t)− w⋆

ℓ (t)
∥∥

≤ Aρt+1
M∑

j=1

∥∥wj
ℓ(0)

∥∥+ A

t−1∑

τ=0

M∑

j=1

ρt−τ |εjτ+1|1{τ∈T j}

∥∥H(zjτ+1, w
j(τ))ℓ

∥∥

(by equation (4.2))

≤ Aρt+1
M∑

j=1

∥∥wj
ℓ(0)

∥∥

+ A

t−1∑

τ=0

M∑

j=1

ρt−τ |εjτ+1|1τ∈T j1{zjτ+1
∈Wℓ(wj(τ))}

∥∥wj
ℓ(τ)− zjτ+1

∥∥ .
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Therefore,

∥∥wi
ℓ(t)− w⋆

ℓ (t)
∥∥

≤ AM diam(G)ρt+1 + A diam(G)K2M
t−1∑

τ=0

1

τ ∨ 1
ρt−τ

(because 0 ∈ G and by Assumptions 4.1 and 4.3)

≤ A diam(G)K2M
t−1∑

τ=−1

1

τ ∨ 1
ρt−τ .

Consequently,

∥∥w⋆(t)− wi(t)
∥∥

=

√√√√
κ∑

ℓ=1

‖wi
ℓ(t)− w⋆

ℓ (t)‖
2

≤
√
κM diam(G)AK2

t−1∑

τ=−1

1

τ ∨ 1
ρt−τ .

This proves the desired result.

�

Let us now introduce the following events: for any δ > 0 and t ≥ 0,

At
δ , {w⋆(τ) ∈ Gκ

δ , t ≥ τ ≥ 0} .

Remind that the Gκ
δ is a compact subset of Gκ defined by equality (2.8). The

next lemma establishes a detailed analysis of security regions for the parted
components of the sequences {w⋆(t)}∞t=0 and {wj(t)}∞t=0.

Lemma 4.2 Let Assumptions 4.1 and 4.3 hold. Then,

1. there exists an integer t1δ ≥ 0 such that

At
δ ⊂ At+1

δ/2 , t ≥ t1δ .

Moreover,

w⋆(t) ∈ Gκ
δ ⇒ [w⋆(t), w⋆(t+ 1)] ⊂ Gκ

δ/2, t ≥ t1δ.
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2. There exists an integer t2δ ≥ 0 such that

w⋆(t) ∈ Gκ
δ ⇒ [w⋆(t), wi(t)] ⊂ Gκ

δ/2, i ∈ {1, . . . ,M} and t ≥ t2δ.

Proof of Lemma 4.2. Proof of statement 1. The proof starts with
the observation that under Assumption 4.3 we have wj(t) ∈ Gκ, for all i ∈
{1, . . . ,M} and t ≥ 0. It follows that, for any 1 ≤ ℓ ≤ κ,

∥∥H
(
zjt+1, w

j(t)
)
ℓ

∥∥ ≤
∥∥zjt+1 − wj

ℓ(t)
∥∥

≤ diam(G).
Let us now provide an upper bound on the norm of the differences between
two consecutive values of the agreement vector sequence. We may write, for
all t ≥ 0 and all 1 ≤ ℓ ≤ M ,

‖w⋆
ℓ (t+ 1)− w⋆

ℓ (t)‖

=

∥∥∥∥∥

M∑

j=1

φj(t)sjℓ(t)

∥∥∥∥∥

≤
M∑

j=1

φj(t)
∥∥sjℓ(t)

∥∥

≤
M∑

j=1

εjt+11{t∈T j}

∥∥H
(
zjt+1, w

j(t)
)
ℓ

∥∥

(by equation (4.2) and statement 1. of Lemma 3.2)

≤ M diam(G)K2

t ∨ 1
(4.11)

(by Assumption 4.1).

Take t ≥ 4
δ
M diam(G)K2 and 1 ≤ k 6= ℓ ≤ M . Let α be a real number in the

interval [0, 1].

If w⋆(t) ∈ Gκ
δ then,

‖(1− α)w⋆
ℓ (t) + αw⋆

ℓ (t + 1)− (1− α)w⋆
k(t)− αw⋆

k(t + 1)‖
≥ ‖w⋆

ℓ (t)− w⋆
k(t) + α (w⋆

ℓ (t+ 1)− w⋆
ℓ (t)) + α (w⋆

k(t)− w⋆
k(t + 1))‖

≥ ‖w⋆
ℓ (t)− w⋆

k(t)‖ − ‖α (w⋆
ℓ (t+ 1)− w⋆

ℓ (t)) + α (w⋆
k(t)− w⋆

k(t+ 1))‖
≥ ‖w⋆

ℓ (t)− w⋆
k(t)‖ − α ‖w⋆

ℓ (t+ 1)− w⋆
ℓ (t)‖ − α ‖w⋆

k(t)− w⋆
k(t+ 1)‖

≥ δ − 2α
δ

4
≥ δ/2.
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This proves that the whole segment [w⋆(t), w⋆(t+ 1)] is contained in Gκ
δ/2.

Proof of statement 2. Take t ≥ 0 and 1 ≤ ℓ ≤ M . If w⋆(t) ∈ Gκ
δ then, by

Lemma 4.1, there exists t2δ such that

∥∥w⋆
ℓ (t)− wi

ℓ(t)
∥∥ ≤ δ

4
, i ∈ {1, . . . ,M} and t ≥ t2δ .

Let k and ℓ two distinct integers between 1 and M . For any t ≥ t2δ,

∥∥αwi
k(t) + (1− α)w⋆

k(t)− αwi
ℓ(t)− (1− α)w⋆

ℓ (t)
∥∥

≥
∥∥w⋆

k(t)− w⋆
ℓ (t) + α(wi

k(t)− w⋆
k(t)) + α(w⋆

ℓ (t)− wi
ℓ(t))

∥∥
≥ ‖w⋆

k(t)− w⋆
ℓ (t)‖ − α

∥∥wi
k(t)− w⋆

k(t)
∥∥− α

∥∥w⋆
ℓ (t)− wi

ℓ(t)
∥∥

≥ δ − 2α
δ

4
≥ δ/2.

This implies [w⋆(t), wi(t)] ⊂ Gκ
δ/2, as desired.

�

Proof of Proposition 4.1. By definition ε⋆t+1 equals
∑M

j=1 1{t∈T j}φ
j(t)εjt+1,

for all t ≥ 0 .
On the one hand, since the real number φj(t) belongs to the interval [η, 1]
(by Lemma 3.2) ε⋆t+1 is bounded from above by MK2

t∨1
using the right-hand

side inequality of Assumption 4.1.

On the other hand, ε⋆t+1 is bounded from below by the nonnegative real

number η K1

t∨1

∑M
j=1 1{t∈T j} using the left-hand side inequality of Assumption

4.1. Note also that as Assumption 4.2 holds, this real number is a positive
one. Therefore, it follows that

ε⋆t −−−→
t→∞

0

and
∞∑

t=0

ε⋆t = ∞.

�

Proof of Proposition 4.2. Consistency of
∑∞

t=0 ∆M
(1)
t . Let δ be a

positive real number and let t ≥ t2δ , where t2δ is given by Lemma 4.10. We
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may write

1At
δ

M∑

j=1

1{t∈T j}φ
j(t)εjt+1

∥∥h (w⋆(t))− h
(
wj(t)

)∥∥

≤ 1{

[w⋆(t),wj(t)]⊂Gκ
δ/2

}

M∑

j=1

φj(t)εjt+1

∥∥∇C (w⋆(t))−∇C
(
wj(t)

)∥∥

(using statement 2. of Lemma 4.2 and the fact that ∇C = h on Dκ
∗ )

≤ 1{

[w⋆(t),wj(t)]⊂Gκ
δ/2

}Pδ/2

M∑

j=1

εjt+1

∥∥w⋆(t)− wj(t)
∥∥

(by Lemma 2.1)

≤
√
κ diam(G)AK2

2Pδ/2M
θt
t

(by Lemma 4.1).

Thus, since
∑∞

t=0
θt
t
< ∞, the series

∞∑

t=0

1At
δ

M∑

j=1

1{t∈T j}φ
j(t)εjt+1

∥∥h (w⋆(t))− h
(
wj(t)

)∥∥

is almost surely convergent. Under Assumption 4.4, we have

P

{
⋃

δ>0

⋂

t≥0

At
δ

}
= 1.

It follows that the series
∑∞

t=0∆M
(1)
t converges almost surely in

(
R

d
)κ
.

Consistency of
∑∞

t=0∆M
(2)
t . The sequence of random variables M

(2)
t de-

fined, for all t ≥ 0, by

M
(2)
t ,

t∑

τ=0

∆M (2)
τ

=
t∑

τ=0

M∑

j=1

1{τ∈T j}ε
j
τ+1φ

j(τ)
(
h
(
wj(τ)

)
−H

(
zjτ+1, w

j(τ)
))
.

is a vector valued martingale with respect to the filtration {Ft}∞t=0. It turns
out that this martingale has square integrable increments. Precisely,
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∞∑

t=0

E

{∥∥∥M (2)
t+1 −M

(2)
t

∥∥∥
2 ∣∣∣ Ft

}
=

∞∑

t=1

E

{∥∥∥∆M
(2)
t

∥∥∥
2 ∣∣∣ Ft

}
< ∞.

Indeed, for all j ∈ {1, . . . ,M} and t ≥ 1,

t∑

τ=1

E

{∥∥1{τ∈T j}ε
j
τ+1

(
h
(
wj(τ)

)
−H

(
zjτ+1(τ), w

j(τ)
))∥∥2 ∣∣ Fτ

}

≤
t∑

τ=1

(
εjτ+1

)2
E

{∥∥h
(
wj(τ)

)
−H

(
zjτ+1(τ), w

j(τ)
)∥∥2 ∣∣ Fτ

}

≤ 2
t∑

τ=1

(
εjτ+1

)2
E

{∥∥h
(
wj(τ)

)∥∥2 +
∥∥H

(
zjτ+1(τ), w

j(τ)
)∥∥2 ∣∣ Fτ

}

≤ 2κ diam(G)2
t∑

τ=1

(
εjτ+1

)2

(using Assumption 4.3)

≤ 2κ diam(G)2K2
2

t∑

τ=1

1

τ 2
.

We conclude that the series
∑

t≥1 ∆M
(2)
t is almost surely convergent.

�

Proof of proposition 4.3. Denote by 〈x, y〉 the canonical inner product of
two vectors x, y ∈ R

d and also, with a slight abuse of notation, the canonical
inner product of two vectors x, y ∈

(
R

d
)κ
. Let δ be a positive real number.

Take any t ≥ max {t1δ, t2δ}, where t1δ and t2δ are defined as in Lemma 4.2. For
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simplicity we assume that max {t1δ , t2δ} ≥ 1. One has,

1At+1

δ
C (w⋆(t+ 1))

≤ 1At
δ
C (w⋆(t + 1))

(by definition At+1
δ ⊂ At

δ)

≤ 1At
δ
C (w⋆(t)) + 1At

δ
〈∇C(w⋆(t)), w⋆(t + 1)− w⋆(t)〉

+ 1{

[w⋆(t),w⋆(t+1)]⊂Gκ
δ/2

}

×
[

sup
z∈[w⋆(t),w⋆(t+1)]

{‖∇C(z)−∇C(w⋆(t))‖} ‖w⋆(t+ 1)− w⋆(t)‖
]

≤ 1At
δ
C (w⋆(t)) + 1At

δ
〈∇C(w⋆(t)), w⋆(t + 1)− w⋆(t)〉

+ Pδ/2 ‖w⋆(t+ 1)− w⋆(t)‖2

(using Lemma 2.1.)

The second inequality above holds since the bounded increment formula
above is valid by statement 1 of Lemma 4.2.

1At+1

δ
C (w⋆(t + 1))

≤ 1At
δ
C (w⋆(t)) + 1At

δ
〈∇C(w⋆(t)),

M∑

j=1

φj(t)sj(t)〉

(by equation (3.5))

+ κPδ/2

(
K2M diam(G)

t

)2

≤ 1At
δ
C (w⋆(t)) + 1At

δ

M∑

j=1

〈∇C(wj(t)), φj(t)sj(t)〉

+ 1At
δ

M∑

j=1

〈∇C(w⋆(t))−∇C(wj(t)), φj(t)sj(t)〉

+ κPδ/2

(
K2M diam(G)

t

)2

.

The first inequality above holds by inequality (4.11) provided in the proof of
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Lemma 4.2).

1At+1

δ
C (w⋆(t+ 1))

≤ 1At
δ
C (w⋆(t)) + 1At

δ

M∑

j=1

〈∇C(wj(t)), φj(t)sj(t)〉

+ 1At
δ

M∑

j=1

∣∣〈∇C(w⋆(t))−∇C(wj(t)), φj(t)sj(t)〉
∣∣

+ κPδ/2

(
K2M diam(G)

t

)2

≤ 1At
δ
C (w⋆(t)) + 1At

δ

M∑

j=1

〈∇C(wj(t)), φj(t)sj(t)〉

+

M∑

j=1

1At
δ

∥∥∇C(w⋆(t))−∇C(wj(t))
∥∥ ∥∥φj(t)sj(t)

∥∥

(using Cauchy-Schwarz inequality)

+ κPδ/2

(
K2M diam(G)

t

)2

.

Thus,

1At+1

δ
C (w⋆(t + 1))

≤ 1At
δ
C (w⋆(t)) + 1At

δ

M∑

j=1

〈∇C(wj(t)), φj(t)sj(t)〉

+
M∑

j=1

1{

[w⋆(t),wj(t)]⊂Gκ
δ/2

}

∥∥∇C(w⋆(t))−∇C(wj(t))
∥∥ ∥∥φj(t)sj(t)

∥∥

(by statement 2 of Lemma 4.2)

+ κPδ/2

(
K2M diam(G)

t

)2
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Therefore,

1At+1

δ
C (w⋆(t+ 1))

≤ 1At
δ
C (w⋆(t)) + 1At

δ

M∑

j=1

〈∇C(wj(t)), φj(t)sj(t)〉

+ Pδ/2

M∑

j=1

∥∥w⋆(t)− wj(t)
∥∥ ∥∥φj(t)sj(t)

∥∥

(using Lemma 2.1)

+ κPδ/2

(
K2M diam(G)

t

)2

.

Hence,

1At+1

δ
C (w⋆(t+ 1))

≤ 1At
δ
C (w⋆(t)) + 1At

δ

M∑

j=1

〈∇C(wj(t)), φj(t)sj(t)〉

+ Pδ/2AK
2
2κM

2 diam(G)2 θt
t

+ κPδ/2

(
K2M diam(G)

t

)2

. (4.12)

Set
Ω1

δ , Pδ/2AK
2
2κM

2 diam(G)2

and
Ω2

δ , Pδ/2 (K2M diam(G))2 .
In the sequel, we shall need the following lemma.

Lemma 4.3 For all t ≥ t ≥ max {t1δ , t2δ}, the quantity Wt (??) below is a
nonnegative supermartingale with respect to the filtration {Ft}∞t=0:

Wt , 1At
δ
C (w⋆(t)) +

ηK1

2

t−1∑

τ=0

1Aτ
δ

1

τ

M∑

j=1

1{τ∈T j}

∥∥∇C
(
wj(τ)

)∥∥2

+ Ω1
δ

∞∑

τ=t

θ(τ)

τ
+ Ω2

δ

∞∑

τ=t

1

τ 2
, t ≥ 1.
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Proof of Lemma 4.3. Indeed, using the upper bound provided by equation
(4.12),

E

{
1At+1

δ
C (w⋆(t+ 1))

∣∣∣ Ft

}

≤ 1At
δ
C (w⋆(t)) + 1At

δ

M∑

j=1

E
{
〈∇C(wj(t)), φj(t)sj(t)〉

∣∣ Ft

}

+ Ω1
δ

1

t
θt + Ω2

δ

1

t2

≤ 1At
δ
C (w⋆(t))

+ 1At
δ

M∑

j=1

〈
∇C(wj(t)),E

{
−1

2
1{t∈T j}φ

j(t)εjt+1H(zjt+1, w
j(t))〉

∣∣∣ Ft

}〉

+ Ω1
δ

θt
t
+ Ω2

δ

1

t2

≤ 1At
δ
C (w⋆(t))

− 1

2
1At

δ

M∑

j=1

1{t∈T j}φ
j(t)εjt+1

∥∥∇C(wj(t))
∥∥2 + Ω1

δ

θt
t
+ Ω2

δ

1

t2

≤ 1At
δ
C (w⋆(t))

− ηK1

2t
1At

δ

M∑

j=1

1{t∈T j}

∥∥∇C(wj(t))
∥∥2 + Ω1

δ

θt
t
+ Ω2

δ

1

t2
.

In the last inequality we used the fact that φj(t) ≥ η (Lemma 3.2) and
εjt+1 ≥ K1

t
(Assumption 4.1).

�

Proof of proposition 4.3 (continued). Since {Wt}∞t=1 is a nonnega-
tive supermartingale, Wt converges almost surely as t → ∞. Then, as∑∞

τ=t
θ(τ)
τ

−−−→
t→∞

0 and
∑∞

τ=t
1
τ2

−−−→
t→∞

0, we have

1At
δ
C(w⋆(t)) −−−→

t→∞
C∞, a.s., (4.13)

where C∞ ∈ [0,∞) and

∞∑

τ=0

1Aτ
δ

1

τ ∨ 1

M∑

j=1

1{τ∈T j}

∥∥∇C
(
wj(τ)

)∥∥2 < ∞, a.s. (4.14)
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Proof of statement 1. Assumption 4.4 means that

P

{
⋃

δ>0

⋂

t≥0

At
δ

}
= 1.

Statement 1 follows easily from the convergence (4.13).
Proof of statement 2. The required convergence (4.10) is proven as follows.
We have

t∑

τ=0

ε⋆τ+11Aτ
δ
‖∇C (w⋆(τ))‖2

≤
t∑

τ=0

M∑

j=1

φj(τ)1{τ∈T j}1Aτ
δ
εjτ+1 ‖∇C (w⋆(τ))‖2

≤ 2K2

t∑

τ=0

1Aτ
δ

1

τ ∨ 1

M∑

j=1

1{τ∈T j}

∥∥∇C
(
wj(τ)

)∥∥2

(using Assumption 4.2)

+ 2K2

t∑

τ=0

1{

[w⋆(τ),wj(τ)]⊂Gκ
δ/2

}

1

τ ∨ 1

M∑

j=1

∥∥∇C
(
wj(τ)

)
−∇C (w⋆(τ))

∥∥2

(using Assumption 4.2 and statement 2 of Lemma 4.2.)

Thus,

t∑

τ=0

ε⋆τ+11Aτ
δ
‖∇C (w⋆(τ))‖2

≤ 2K2

t∑

τ=0

1Aτ
δ

1

τ ∨ 1

M∑

j=1

1{τ∈T j}

∥∥∇C
(
wj(τ)

)∥∥2

+ 2K2P
2
δ/2

t∑

τ=0

1{

[w⋆(τ),wj(τ)]⊂Gκ
δ/2

}

1

τ ∨ 1

M∑

j=1

∥∥wj(τ)− w⋆(τ)
∥∥2

(by Lemma 2.1).
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Thus,

t∑

τ=0

ε⋆τ+11Aτ
δ
‖∇C (w⋆(τ))‖2

≤ 2K2

t∑

τ=0

1Aτ
δ

1

τ ∨ 1

M∑

j=1

1{τ∈T j}

∥∥∇C
(
wj(τ)

)∥∥2

+ 2P 2
δ/2K

3
2κM

3A2 diam(G)2
t∑

τ=1

1

τ ∨ 1
θ2τ

(by Lemma 4.1).

Finally, using the convergence (4.14), one has

∞∑

τ=0

ε⋆τ+11Aτ
δ
‖∇C (w⋆(τ))‖2 < ∞, a.s.,

and the conclusion follows from the fact that Assumption 4.4 implies

P

{
⋃

δ>0

⋂

t≥0

At
δ

}
= 1.

�

Proof of Theorem 4.2. The proof consists in verifying the assumptions of
Theorem 4.1 with the function Ĝ(w) defined by equation (2.9).
It has been outlined that Assumption 4.3 implies that w⋆(t) lie in the compact
set Gκ, almost surely, for all t ≥ 0. For all z ∈ G and all t ≥ 0, we have
‖H(z, w⋆(t))‖ ≤ √

κdiam (G), almost surely, whereas {h(w⋆(t))}∞t=0 satisfies

h(w⋆(t)) = E {H (z, w⋆(t)) | Ft} , t ≥ 0, a.s.

Thus, the sequences {w⋆(t)}∞t=0 and {h(w⋆(t))}∞t=0 are bounded almost surely.

Proposition 4.1 (respectively Proposition 4.2, respectively Proposition 4.3
shows that the first assumption (respectively the second assumption, respec-
tively the fourth assumption) of Theorem 4.1 holds. This concludes the proof
of the theorem.

�
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