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1 Introduction

Phase field models are widely used in various physical contexts in which a
material exhibits two distinct phases. This is the case for solid-liquid mix-
tures (e.g. ice-water or alloys during solidification) or for liquid-vapor mix-
tures (e.g. boiling water), but also for elastic materials subject to martensitic
transformations. The phase field approach is of special interest, in particular
for numerical purposes, when interfaces between the two phases are expected
to show complex geometries and topological changes. In phase field models,
the ‘interfaces’ are actually viewed as diffuse interfaces (see for instance the
famous review paper [1]), i.e. transition regions of nonzero thickness across
which a so-called order parameter varies smoothly from one to the other of
its values in the distinguished phases. Here we are interested in a phase
field model designed for solid-liquid mixtures at rest, which consists of an
Allen-Cahn type equation for the order parameter coupled with a modified
heat equation taking into account both the latent heat and the increase of
entropy due to the non-equilibrium situation inside phase-transition regions.
This model turns out to be a refined version - in a nontrivial way - of what is
known as the Caginalp model [3], and it can also be viewed as a special case
of another one designed by Ruyer [12] for moving liquid-vapor mixtures.

The aim of this paper is twofold: 1) by formal asymptotic analysis, we
show that in the sharp interface limit our model yields a Stefan-like model
with a (generalized) Gibbs-Thomson relation telling how much the interface
temperature differs from the equilibrium temperature when the interface is
moving or/and is curved with surface tension, together with a jump condition
for the heat flux, which turns out to depend on the latent heat and the
velocity of the interface with a new, nonlinear term compared to standard
models; 2) from the PDE analysis point of view, we prove the local well-
posedness of the Cauchy problem and initial-boundary value problems for
smooth data. Given that our model displays nonclassical features - it may
be seen as a degenerate reaction-diffusion system with nonlinear diffusion -
global well-posedness or rough data are not addressed here.

The mathematical literature on phase-fields equation is extremely vast.
In particular, there exist many extensions of the original Caginalp model
developed in [3]. Let us in particular refer to [9, 2, 6, 10, 5, 8, 11], which are
quite recent papers, and to references therein. We will not attempt to give
a minute comparison between these references and our work: let us simply
emphasize that, up to our knowledge, the model we consider here is distinct
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from all the models considered so far, mainly by the occurrence of the second
order quadratic term ∆ϕ∂tϕ (ϕ being the order parameter) in the equation
for the temperature, cf. the second equation in (16).

The paper is organized as follows. In Section 2 we derive the model and
its six-parameters nondimensionalized version. The sharp interface limit is
investigated in Section 3. Local well-posedness is shown in Section 4.

2 Phase field equations

2.1 Derivation and basic properties

The model we are going to consider pertains to the so-called second gradient
theory. We assume that the physical state of a solid-liquid mixture is de-
scribed by an order parameter ϕ and its temperature T in such a way that
its free specific energy f depends on T , ϕ and also ∇ϕ in the following way

(1) f(T, ϕ,∇ϕ) =
1

ρ

(
W (ϕ) +

1

2
λ|∇ϕ|2

)
−

∫ T

Te

s(τ, ϕ) dτ ,

where ρ is the density of the mixture, which will be assumed to be homo-
geneous and constant, Te is the equilibrium temperature, λ is a positive pa-
rameter that is supposed to govern the width of solidification/melting fronts,
W is a double-well potential, and s is the specific entropy of the mixture.
More specifically, the order parameter is chosen so that in the pure phases
we have either ϕ ≡ 1 (liquid) or ϕ ≡ 0 (solid), and W is supposed to achieve
its global minimum at both 0 and 1 and nowhere else. Furthermore, s is
taken to be a convex combination of the entropy in the phases, depending
nonlinearly on the order parameter in the following way

(2) s(T, ϕ) = ν(ϕ)sliq(T ) + (1 − ν(ϕ))ssol(T ) ,

where ν : [0, 1] → [0, 1] is monotonically increasing. Typical graphs of the
functions W ′ and ν ′ are represented on Fig. 2.1. By contrast, in the phase
field model of Caginalp [3], ν would be the identity function (hence ν ′ ≡ 1).

The latent heat of the phase change is by definition

(3) L(T ) := T (sliq(T ) − ssol(T )) .
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Figure 1: Derivatives of the double-well potential W and of the entropy
coefficient ν.

So another way of writing the free energy is

(4) f(T, ϕ,∇ϕ)

=
1

ρ

(
W (ϕ) +

1

2
λ|∇ϕ|2

)
−

∫ T

Te

ssol(τ) dτ − ν(ϕ)

∫ T

Te

L(τ)

τ
dτ ,

and thus the (standard) chemical potential of the mixture is

(5) µ(T, ϕ) :=
∂f

∂ϕ
=

1

ρ
W ′(ϕ) − ν ′(ϕ)

∫ T

Te

L(τ)

τ
dτ .

Since W has wells at 0 and 1, we see that µ ≡ 0 in both phases whatever
the temperature, provided that ν ′ vanishes at 0 and 1 (as on Fig. 2.1): this
would obviously not be the case for a linear ν, as in standard phase field
models.

The heat capacity of the mixture is

(6) Cp := T
∂s

∂T
= ν(ϕ)Cp,liq(T ) + (1 − ν(ϕ))Cp,sol(T ).

To simplify the analysis, we shall assume that the heat capacities of the
liquid Cp,liq = T∂sliq/∂T and of the solid Cp,sol = T∂ssol/∂T have the same
constant value C0, so that Cp is also equal to C0. In other words, we shall
concentrate on the special case

(7) Cp = C0 , L(T ) = Le
T

Te

, s = s0 + ν(ϕ)
Le

Te

+ C0 ln

(
T

Te

)
.
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Regardless of that simplifying assumption, we consider the following equa-
tions for the evolution of the mixture:

(8)





∂tϕ = −κ µg ,

ρ Cp ∂tT + ρ

(
µg − T

∂µg

∂T

)
∂tϕ = div(k∇T ) ,

where k > 0 denotes the heat conductivity, κ > 0 denotes the so-called
mobility, and µg is a ‘generalized chemical potential’, which merely differs
from the standard chemical potential by a second order term:

(9) µg[T, ϕ] :=
δf

δϕ
= µ(T, ϕ) −

1

ρ
∇ · (λ∇ϕ) .

Observe in particular that µg ≡ 0 in the phases (ϕ ≡ 0 or ϕ ≡ 1), as for
µ. The first equation in (8) is the building block of phase field models, in
which 1/κ is presumably proportional to a relaxation time for the mixture
to return to equilibrium. Taking into account that

Cp = T
∂s

∂T
,

∂µg

∂T
=

∂µ

∂T
= −

∂s

∂ϕ
,

the equations in (8) ensure that (for smooth solutions)

(10) ρ ∂ts = div

(
k∇T

T

)
+ k

|∇T |2

T 2
+

ρ κ

T
µ2

g ,

which (formally) means that the growth of total entropy
∫

s(t, x) dx is gov-
erned by both the conductivity (k) and the mobility (κ).

In fact, (8) is specifically designed to have (10) as well as the (formal)
conservation of total energy. More precisely, the specific energy e = f + sT
is conserved along solutions of (8) in any domain Ω ⊂ R

d such that

(11)

∫

∂Ω

λ∇ϕ · n ∂tϕ = 0 and

∫

∂Ω

k∇T · n = 0 ,

where n denotes the normal to ∂Ω. Indeed, recalling that s = −∂f/∂T , the
first equation in (11) enables us to write

d

dt

∫

Ω

e dx =

∫

Ω

δf

δϕ
∂tϕ dx +

∫

Ω

T ∂ts dx ,
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where, by definition of µg and by the first equation in (8), the first integral
equals −

∫
κ µ2

g dx, which obviously cancels out with the integral coming
from the last term in Eq. (10). To conclude that

∫
Ω

e(t, x) dx is constant, we
observe that by the condition on T in (11),

∫

Ω

(
T div

(
k∇T

T

)
+ k

|∇T |2

T

)
dx = 0 .

To finish with these general observations, we point out that the equali-
ties in (11) are easily achieved by means of standard boundary conditions.
Namely, the second equality will be implied by a homogeneous Neumann
boundary condition on T , i.e. ∇T · n = 0 (meaning zero heat flux at the
boundary: incidentally, one may note that for a nonzero heat flux the total
energy will either decrease, due to cooling, or increase, due to heating), and
either a homogeneous Neumann boundary condition or a Dirichlet condition
ϕ|∂Ω ≡ 0 or 1 (both values implying µg ≡ 0, as already noticed) will ensure
the first one. The appropriate choice of a boundary condition for ϕ is related
to the moving contact line problem, which we shall not discuss here.

2.2 Nondimensionalization

The total number of independent physical units used to describe all depen-
dent variables and independent variables in (8)–(9) is ten (those of x, t, κ,
W , ρ, T , L, λ, Cp, k, and of course ϕ and ν do not count because they are
already nondimensional), and the number of fundamental physical units is
four (kg, m, s, K). So by elementary dimensional analysis (Buckingham π
theorem), a nondimensionalized version of (5)–(8)–(9) requires 10 − 4 = 6
nondimensional parameters. Below is a possible choice for these parameters,
expressed in terms of

• the density ρ,

• the equilibrium temperature Te together with a characteristic temper-
ature difference δT ,

• a length scale L,

• a characteristic interface thickness h,

• a time scale t0,

6



• the surface tension σ,

• the latent heat Le at Te,

• a reference heat capacity C0,

• a reference mobility coefficient κ0,

• a reference heat conductivity k0.

Introducing the parameters

ε :=
h

L
, Pe :=

ρC0L
2

k0t0
, α :=

κ0t0σ

ρh
, θ :=

Te

δT
, β :=

σ

ρC0hδT
, St :=

C0δT

Le

,

together with the rescaled variables

x̃ :=
x

L
, t̃ :=

t

t0
, κ̃ :=

κ

κ0

, W̃ :=
W

σ/h
, T̃ :=

T − Te

δT
, L̃ :=

L

Le

, λ̃ :=
λ

σh
,

C̃p :=
Cp

C0

, k̃ :=
k

k0

,

we may rewrite (8)–(9) as

(12)





∂
etϕ = −α κ̃ µ̃g ,

C̃p ∂
etT̃ + β

(
µ̃g − (θ + T̃ )

∂µ̃g

∂T̃

)
∂

etϕ =
1

Pe
∇

ex · (k̃∇exT̃ ) ,

(13) µ̃g[T̃ , ϕ] = W̃ ′(ϕ) −
1

βSt
ν ′(ϕ)

∫
eT

0

L̃(τ)

θ + τ
dτ − ε2 ∇

ex · (λ̃∇exϕ) ,

If κ is supposed to be constant, or similarly if k is constant, we may assume
without loss of generality that κ̃ ≡ 1, respectively k̃ ≡ 1, in (12). The case

of λ̃ in (13) is more subtle because it depends on the parameters h and λ,
the former being arbitrary and the latter not being accessible to physical
measurements. Nevertheless, we choose to set λ̃ ≡ 1. In addition, under the
simplifying assumptions in (7), we have in the rescaled variables

C̃p ≡ 1 , L̃ = 1 +
T̃

θ
,
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so that in this case the nondimensionalized version (12)–(13) of (8)–(9) reads,
dropping the tildes for simplicity,

(14)





∂tϕ = −α µg ,

∂tT + β

(
µg − (θ + T )

∂µg

∂T

)
∂tϕ =

1

Pe
∆T ,

(15) µg[T, ϕ] = W ′(ϕ) −
1

βSt
ν ′(ϕ)

T

θ
− ε2 ∆ϕ .

Plugging (15) into (14) we get the system

(16)





∂tϕ = −α W ′(ϕ) +
α

βSt
ν ′(ϕ)

T

θ
+ α ε2 ∆ϕ ,

∂tT +

(
β W ′(ϕ) +

1

St
ν ′(ϕ) − β ε2 ∆ϕ

)
∂tϕ =

1

Pe
∆T .

This resembles the system considered by Caginalp in his seminal paper [3],
except for two important differences. The first one is that the coefficient of
T depends on ϕ in the first equation. The other one lies in the complicated,
second order and nonlinear coefficient of ∂tϕ in the second equation, which
is – up to the authors knowledge –, always supposed to be a constant (latent
heat) in Caginalp-like models.

For completeness, let us now derive the nondimensional versions of the
entropy equation (10) and of the local conservation law for the energy. Re-
defining s as the nondimensional entropy s/C0, we have from (7) that

s =
1

Stθ
ν(ϕ) + ln(T + θ)

up to a harmless additive constant. Then the nondimensionalized version of
the entropy equation (10) is

(17) ∂ts =
1

Pe
div

(
∇T

T + θ

)
+

1

Pe

|∇T |2

(T + θ)2
+

β

α(T + θ)
(∂tϕ)2 .

Regarding the nondimensionalized energy

e := f + (T + θ) s = T + β W (ϕ) +
1

St
ν(ϕ) +

1

2
β ε2 |∇ϕ|2

we easily find the conservation law

(18) ∂te =
1

Pe
∆T + β ε2 ∇ · ((∂tϕ)∇ϕ) .
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3 Sharp interface limit

Our aim here to derive at least formally a physically realistic, asymptotic
limit of the system (16) when the width of interfaces tends to zero, either
because of a physical scaling or for other reasons related to the actual values
of the six nondimensional parameters α, β, ε, θ, Pe, and St. More precisely,
we are going to show in what follows that for suitable relationships between
those parameters, the system (16) formally tends to the Stefan-like model
(31) (see p. 17 hereafter) when ε goes to zero. (Recall that ε is the parameter
governing the typical width of interfaces.) Before entering into details, let us
emphasize that the sharp interface model in (31) naturally involves the heat
equation in the phases, and two sorts of conditions at interfaces, namely

• a (generalized) Gibbs-Thomson relation giving the interface tempera-
ture in terms of the surface tension, the mean curvature and the velocity
of the interface,

• a jump condition for the heat flux across the interface, in terms of the
latent heat and of the velocity of the interface, the later dependence
being nonlinear (quadratic).

This should be of interest to discuss the physical validity of (16).

3.1 Formal asymptotics

For convenience, we rewrite (16) as

(19)

{
α̂ ∂tϕ = ε2 ∆ϕ − W ′(ϕ) + γ ν ′(ϕ) T ,

β̂ ∂tT = δ ∆T − γ (T + θ) ∂tν(ϕ) + α̂ (∂tϕ)2 ,

with

(20) α̂ :=
1

α
, β̂ :=

1

β
, γ :=

1

βStθ
, δ :=

1

βPe
.

The six nondimensional parameters in (19) are now α̂, β̂, γ, δ, ε, and θ. If
we go back to the original definitions of α, β, St, θ, and Pe, we see from (20)
that α̂, β̂, γ, δ are all proportional to the ratio h/σ of the interface width
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and the surface tension, and each of them has its own a physical significance
according to the following relationships

α̂ ∝ 1/κ0 (relaxation time) ,

β̂ ∝ C0 (heat capacity) ,
γ ∝ Le (latent heat) ,
δ ∝ k0 (thermal conductivity) .

As regards the sharp interface limit ε = h/L → 0 at fixed surface tension σ,
by the observation above it is rather natural to let the four parameters α̂, β̂,
γ, and δ go to zero at least like ε. If in addition we let the relaxation time
go to zero like ε, we are led to consider

α := α̂/ε2 , β := β̂/ε , γ := γ/ε , δ := δ/ε

as being fixed. With these definitions, (19) becomes

(21)

{
α ε2 ∂tϕ = ε2 ∆ϕ − W ′(ϕ) + γ ε ν ′(ϕ) T ,

β ∂tT = δ ∆T − γ (T + θ) ∂tν(ϕ) + α ε (∂tϕ)2 ,

The formal limit of the first equation in (21) as ε → 0 gives W ′(ϕ) = 0,
which imposes that ϕ takes only the values 0 (solid phase), 1 (liquid phase),
or a (‘metastable’ state), while the formal limit of the second equation is

(22) β ∂tT = δ ∆T − γ (T + θ) ∂tν(ϕ) .

Assume that T is a continuous solution of (22), in which ϕ represents a sharp
interface, that is, ϕ is constant and equal to 0 or 1 on either side a smooth,
moving surface Γ(t) as on Fig. 3.1. Then by integration by parts in the
neighborhood of any point (x, t) ∈ Σ := {(x, t) ∈ R

d × R , x ∈ Γ(t)} we find
that the gradient of T experiences a discontinuity across Γ(t) according to
the following relation

(23) −γ(T + θ) v = δ [∇T · N ]

where N denotes the unit normal to Γ pointing to the liquid phase (ϕ ≡ 1)
and v denotes the speed of Γ in the direction N . A linear relation between
v and [∇T · N ] as in Equation (23) is a classical building block in Stefan
models for sharp interfaces, see for instance Fig. 1 in [4].
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Figure 2: Sharp interface configuration

Of course the formal limits above are not valid in regions where (ϕ, T )
experience large variations, and to describe exact solutions of (21) we need
internal layers for diffuse interfaces. In what follows we adopt the same,
multiscale approach as in [4], where the sharp interface limit was obtained for
the usual Caginalp model. Consider a (smooth) solution (ϕε, T ε) of (21) and
let Γε(t) be the level surface {x ∈ R

d ; ϕε(x, t) = b} (the b where ν ′ attains its
maximum, which is supposed to best describe the location of the ‘interface’).
We assume that Γε(t) is smooth, not self-intersecting, and depends smoothly
on t and ε in such a way that the signed distance dε(x, t) of x to Γε(t) is
well-defined for t ∈ [0, T ], ε ∈ [0, ε0], and x in some neighborhood V (t) of
∪ε∈[0,ε0]Γ

ε(t). By definition of dε,

N ε(x, t) := ∇dε(x, t)

is a unit normal vector to Γε(t),

vε(x, t) := −∂td
ε(x, t)

is the normal speed of Γε(t) in the direction N ε, and

Hε(x, t) := −∆dε(x, t)

is the sum of principal curvatures of Γε(t) at x. Assume that the functions
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dε, ϕε, and T ε admit asymptotic expansions of the form

dε(x, t) ∼
∞∑

i=0

εi di(x, t) ,

ϕε(x, t) ∼
∞∑

i=0

εi ϕi(x, t, dε(x, t)/ε) ,

T ε(x, t) ∼
∞∑

i=0

εi Ti(x, t, dε(x, t)/ε) ,

as ε → 0, for x ∈ V (t). We recall that the notation dε ∼
∑∞

i=0 εi di means

that for all I ∈ N, dε −
∑I

i=0 εi di = o(εI+1). We shall denote by z =
dε(x, t)/ε the rescaled variable in the normal direction to Γε(t). For any

smooth function (x, t, z) 7→ F̃ (x, t, z), the derivatives of the function F ε :

(x, t) 7→ F̃ (x, t, dε(x, t)/ε) are given by

∂tF
ε = ∂tF̃ + ε−1 (∂zF̃ ) ∂td

ε ,

∇F ε = ∇F̃ + ε−1 (∂zF̃ )∇dε ,

∆F ε = ∆F̃ + ε−1
(
(∂zF̃ ) ∆dε + 2∇dε · ∇∂zF̃

)
+ ε−2 ∂2

z F̃ ,

where the differential operators ∇ and ∆ concern only the variable x. Hence
the system (21) for (ϕ, T ) = (ϕε, T ε) is equivalent to the following one,
evaluated at z = dε(x, t)/ε:
(24)



∂2
z ϕ̃ − W ′(ϕ̃) = ε

(
(α∂td

ε − ∆dε)∂zϕ̃ − 2∇dε · ∇∂zϕ̃ − γ ν ′(ϕ) T̃
)

+ ε2 (α∂tϕ̃ − ∆ϕ̃) ,

δ ∂2
z T̃ = ε

(
(β∂td

ε − δ∆dε)∂zT̃ − 2δ∇dε · ∇∂zT̃

+ γ(T̃ + θ)ν ′(ϕ̃)(∂td
ε)∂zϕ̃ − 2 α (∂td

ε)2(∂zϕ̃)2
)

+ ε2
(
β∂tT̃ − δT̃ + γ(T̃ + θ)∂tν(ϕ̃) − α(∂td

ε)(∂tϕ̃)∂zϕ̃
)

− ε3 α (∂tϕ̃)2 .

We expect that Γε(t) converges to Γ0(t), the level set {x ∈ R
d ; d0(x, t) = 0}.

Off Γ0(t), dε(·, t)/ε tends to ±∞ as ε → 0, so that we shall need extensions of
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(ϕ̃, T̃ ) for all values of z ∈ (−∞, +∞). However, the only constraint is that
(24) holds at z = dε(x, t)/ε, which means that we can add to the equations
any ‘reasonable’ function of (x, t, dε(x, t) − εz) that vanishes when its last
variable equals zero. This observation will be used in a crucial way to deal
with the equation on T̃ .

Retaining only the ε0 terms in the first equation of (24) we get

(25) ∂2
zϕ0 − W ′(ϕ0) = 0 ,

which is the standard equation for a stationary diffuse interface connecting
0 at z = −∞ to 1 at z = +∞ (or vice-versa). A straightforward phase
portrait analysis shows that there is unique such ϕ0 satisfying ϕ0(0) = b. In
particular, there is no degree of freedom for ϕ0 to depend on (x, t).

To the next order, using that ϕ0 is independent of x, we obtain from the
factors of ε1 the equation

(26) (∂2
z − W ′′(ϕ0)) ϕ1 = (α ∂td0 − ∆d0) ∂zϕ0 − γν ′(ϕ0) T0 .

Since ϕ0 tends to its endstates exponentially fast, the right-hand side of
(26) tends to zero exponentially fast provided that T0 is bounded, or has at
most polynomial growth in z. In this case, since by differentiation of (25) the
derivative of the interface profile ∂zϕ0 belongs to the kernel of the self-adjoint
operator ∂2

z −W ′′(ϕ0) in L2(R) (with domain H2(R)), a necessary condition
for (26) to have a solution ϕ1(x, t, ·) ∈ H2(R) is

(α ∂td0 − ∆d0)

∫ +∞

−∞

(∂zϕ0)
2 dz = γ

∫ +∞

−∞

T0 ∂zν(ϕ0) dz .

Defining the ‘interface temperature’ by

〈T0〉 :=

∫ +∞

−∞

T0 ∂zν(ϕ0) dz = ±

∫ +∞

−∞
T0 ∂zν(ϕ0) dz

∫ +∞

−∞
∂zν(ϕ0) dz

,

and the (nondimensional) surface tension by σ0 :=
∫ +∞

−∞
(∂zϕ0)

2 dz, the previ-
ous relation may be seen as a (nondimensional) generalized Gibbs-Thomson
condition:

(27) σ0 (α ∂td0 − ∆d0) = ± γ 〈T0〉 .

Here above the ± sign is merely a shorthand for [ν(ϕ0)]
+∞
−∞, which equals +1

if N0(x, t) := ∇d0(x, t) points to the liquid phase (or −1 of N0 points to
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the solid phase). Recalling that v0 := −∂td0 is the normal speed of Γ0 and
H0 := −∆d0 is the sum of principal curvatures of Γ0, we can indeed identify
(27) with the usual condition in generalized Stefan models (see again Fig. 1
in [4]).

As regards the second equation in (24), the only term of order zero in ε
is δ ∂2

zT . Nevertheless, we may add to that equation a function of the form
hε(x, t) ρ(z) (dε(x, t)− εz), which obviously vanishes at z = dε(x, t)/ε, with ρ
smooth and compactly supported in z (so that the term εz is at most of the
order of ε) and hε(x, t) ∼

∑∞
i=0 εi hi(x, t). More precisely, we shall assume,

similarly as in [4], that ρ = ∂2
zη with η such that η ≡ 0 on (−∞,−1], η ≡ 1

on [1, +∞), and η′ > 0 on (−1, 1). Then the zeroth order equation becomes

δ ∂2
zT0 = h0(x, t) d0(x, t) ∂2

zη ,

which necessarily yields, if T0 is sought bounded in z, that

δ T0(x, t, z) − h0(x, t) d0(x, t) η(z) =: δ T0
−(x, t) ,

a function of (x, t) alone. Since η(z) = 0 for z < −1, this is a consistent
notation in that T−

0 (x, t) = limz→−∞ T0(x, t, z). Moreover, since η(z) = 1 for
z > 1, we have

h0(x, t) d0(x, t) = δ (T+
0 (x, t) − T−

0 (x, t)) ,

where T+
0 (x, t) := limz→+∞ T0(x, t, z). This shows in particular that for h0

to be smooth, T+
0 and T−

0 must coincide on the zero level set of d0, namely
on Γ0. Conversely, if T+

0 and T−
0 are smooth functions coinciding on Γ0, we

can define

h0(x, t) :=





δ
T+

0 (x, t) − T−
0 (x, t)

d0(x, t)
, x /∈ Γ0(t) ,

δ [∇T0 · N
0] (x, t) , x ∈ Γ0(t) ,

where N0 = ∇d0 (as before) and the ‘jump’ notation [∇T0 · N
0] merely stands

for ∇T+
0 · N0 − ∇T−

0 · N0. Then,

T0(x, t, z) := δ
−1

h0(x, t) d0(x, t) η(z) + T0
−(x, t)

is independent of z for x ∈ Γ0(t), and more precisely,

T0(x, t, z) = T0
−(x, t) = T0

+(x, t) = ±〈T0〉(x, t) ,

14



where again ± = [ν(ϕ0)]
+∞
−∞.

Now, the next order terms in the asymptotic expansion of the second
equation in (24) supplemented with the term hε(x, t) (dε(x, t) − εz) ∂2

zη(z)
will enable us to find a necessary relation between the heat flux [∇T0 · N

0],
the interface temperature 〈T0〉 + θ, and the velocity v0 = −∂td0 of Γ0. As a
matter of fact, retaining only the terms of order one, we get

δ ∂2
zT1 = (h1 d0 + h0 d1) ∂2

zη − h0 z ∂2
zη

+ (β∂td0 − δ∆d0)∂zT0 − 2δ∇d0 · ∇∂zT0

+ γ(T0 + θ) (∂td0) ∂zν(ϕ0) − 2 α (∂td0)
2(∂zϕ0)

2 .

A necessary condition for T1 to be bounded in z is that the integral from z =
−∞ to z = +∞ of the right-hand side above equals zero. The contribution
of the first row to the integral is just h0, because

∫
∂2

zη = 0 and
∫

z∂2
zη = −1

by definition of η. The next term does not contribute if we restrict to x ∈
Γ0(t) because then T+

0 (x, t) = T−
0 (x, t). Recalling that h0 = δ [∇T0 · N

0],
T0 = ±〈T0〉 on Γ0, and that we have defined

(28) σ0 =

∫ +∞

−∞

(∂zϕ0)
2 ,

we finally arrive at

(29) δ
[
∇T0 · N

0
]

= ± γ (〈T0〉 + θ) (∂td0) − 2 α σ0 (∂td0)
2 .

Observe that the roughly obtained relation (23) may be seen as an approxi-
mation of (29) when the velocity v0 = −∂td0 of Γ0 is small enough.

To summarize, the sharp interface limit of (21) is expected to be (rig-
orous justification will addressed elsewhere) the generalized Stefan problem
consisting of the heat equation for T outside Γ0 together with the conditions
(27), (29) on Γ0. If for instance N = N0 points to the liquid phase, this
problem reads

(30)





β ∂tT = δ ∆T outside Γ ,
σ0 (H − α v) = γ T on Γ ,

δ [∇T · N ] = − γ (T + θ) v − 2 α σ0 v2 on Γ ,

with σ0 defined in (28) where ϕ0 is solution of (25) and tends to 0 at −∞
and 1 at +∞, v the normal velocity of Γ = Γ0, and H the sum of principal
curvatures of Γ.
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3.2 Back to physical variables

The sharp interface model (30) is non-dimensional. It is of course important
from the physical point of view to go back to physical quantities.

Let us start with the first equation in (30), which by definition of β and
δ also reads

Pe ∂tT = ∇T .

Remembering that T , t, and x respectively stand for

T̃ =
T − Te

δT
, t̃ =

t

t0
, and x̃ =

x

L
,

(where the tilda are those of Section 2.2 and not those of Section 3.1) by
definition of the Peclet number Pe = ρCpL

2/(kt0) we recover the expected
heat equation

ρ Cp∂tT = k ∆T .

As to the last equation in (30), it actually reads

1

Pe

[
∇

exT̃ · N
]

= −
1

Stθ
(T̃ + θ) ṽ − 2

β σ0

α ε
ṽ2

with ṽ = ∂
etd/L = (t0/L)v if v denotes the physical velocity of the interface.

Before going further, let us comment on σ0 =
∫ +∞

−∞
(∂zϕ0)

2 dz, where ϕ0 is by

definition (see Eq. (25), having in mind that W stands for W̃ = (h/σ) W )
solution of the differential equation

∂2
zϕ0 = W̃ ′(ϕ0) .

An obvious integrating factor is ∂zϕ0, and since W (ϕ0) vanishes at ±∞, we
have (∂zϕ0)

2 = 2(h/σ) W (ϕ0). This implies that

σ0 =
2

σ

∫ +∞

−∞

W (ϕ0) h dz .

Recalling the meaning of the z variable, which scales as the actual distance to
the interface over εL = h, we can identify the integral 2

∫ +∞

−∞
W (ϕ0) h dz with

the physical surface tension σ, and therefore set σ0 = 1. Substituting all the
other non-dimensional parameters Pe, St, θ, β, α and ε by their expressions
in terms of physical quantities, we get in turn the physical jump condition

k

ρ
[∇T · N ] = −L v − 2

v2

κ h
.
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(Recall from (7) that L = Le T/Te.) This is to be compared with the usual
jump condition in Stefan models:

k

ρ
[∇T · N ] = −L v .

In particular, we observe that the quadratic correction in the velocity v is
negligible if the velocity v is small compared to Lκ h (which is indeed homo-
geneous to a velocity).

We finish with the derivation of the generalized Gibbs-Thomson relation.
Recalling that we have set σ0 = 1, that v stands for ṽ = (t0/L)v and noting

that H stands for H̃ = ∆
exd̃ = L∆d, we can rewrite the second equation in

(30) as

α
t0
L

v − L H = − γ T̃ ,

where H := ∆d is the actual sum of principal curvatures (homogeneous to
the inverse of a distance). Substituting α and γ for their expressions, this
eventually gives

−
ρ

κ h
v + σ H = ρ

Le

Te

(T − Te) .

Therefore, in physical variables the (generalized Stefan) sharp interface
model (30) reads

(31)





ρ Cp ∂tT = k ∆T outside Γ ,

ρ
Le

Te

(T − Te) = −
ρ

κ h
v + σ H on Γ ,

k

ρ
[∇T · N ] = −L v − 2

v2

κ h
on Γ .

4 Well-posedness

We now turn to the mathematical analysis of the (non-standard) PDEs sys-
tem (19), which we equivalently rewrite as

(32)

{
α̂ ∂tϕ − ε2∆ϕ + W ′(ϕ) = γ ν ′(ϕ) T,

β̂ ∂tT + γ θ ν ′(ϕ) ∂tϕ − δ ∆T = F (ϕ, ∆ϕ, T ),
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with

(33) F (ϕ, ∆ϕ, T ) :=
1

α̂
(ε2∆ϕ − W ′(ϕ))2 +

γ

α̂
(ε2∆ϕ − W ′(ϕ))ν ′(ϕ)T.

In this system, α̂, β̂, γ, δ, ε, and θ are fixed, positive parameters, and the
functions W , ν are supposed to be nonnegative and to belong to C 3

b (R) (the
space of C 3 functions that are bounded as well as their derivatives up to
order 3). We are going to show that the Initial Boundary Value Problem for
(32) with suitable initial and boundary data is locally well-posed both in two
and three space dimensions.

4.1 Functional framework and main results

In what follows, Ω is an open, bounded, and regular subset of R
d, d ∈ {2, 3}.

As boundary conditions on ∂Ω we consider a homogeneous Neumann con-
dition for the order parameter ϕ, and a mixed constant Neumann-Dirichlet
boundary condition for the temperature:

(34)
∂ϕ

∂n
= 0 on ∂Ω,

∂T

∂n
= qb on Γ, T = Tb on ∂Ω \ Γ,

where Γ is a given, relatively open subset of ∂Ω, and n denotes the unit out-
ward normal to ∂Ω. We suppose that qb and Tb are constants, corresponding
respectively to the heat flux and to the temperature imposed on the bound-
ary of the domain. Given qb, Tb, we know from [7, Notes of chapter 8] that

there exists T̃ ∈ H1(Ω) solution of

(35)





∆T̃ = 0 in Ω,

∂T̃

∂n
= qb on Γ,

T̃ = Tb on ∂Ω \ Γ,

in the sense that T̃ − Tb ∈ H1
0 (Ω ∪ Γ), the closure of C 1

0 (Ω ∪ Γ) in H1(Ω),
and ∫

Ω

∇T̃ · ∇τdx =

∫

Γ

qbτdHd−1(x)

for all τ ∈ H1
0 (Ω ∪ Γ). Two solutions T̃1 and T̃2 of the first two equations

in (35) differ by a constant, so that T̃ is unique if |∂Ω \ Γ| > 0, and unique
up to constant in the case of a pure Neumann condition.
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For s ≥ 0, we denote by Hs
n(Ω) the closure of

{
ϕ ∈ D(Ω) ;

∂ϕ

∂n

∣∣∣
∂Ω

= 0
}

in Hs(Ω). In particular, H2
n(Ω) is merely the set of functions ϕ ∈ H2(Ω)

that satisfy the homogeneous Neumann boundary condition ∂nϕ = 0 on ∂Ω.
When no confusion can occur we shall just write L2 for L2(Ω), Hs

n for Hs
n(Ω),

and H1
0 for H1

0 (Ω ∪ Γ).

Definition 1 (Weak solution) For ϕ0 ∈ H2
n, T0 ∈ H1

0 , and t∗ ∈ (0, +∞],
we say that (ϕ, T ) is a weak solution of (32) on [0, t∗) with initial data ϕ0,
T0, and boundary conditions (34), if

ϕ ∈ Cb([0, t
∗); H2

n) ∩ L2
loc

(0, t∗; H3
n),

T − T̃ ∈ Cb([0, t
∗); L2) ∩ L2

loc
(0, t∗; H1

0 ),

with ϕ and T satisfying ϕ
∣∣
t=0

= ϕ0, T
∣∣
t=0

= T0, and

• the first equation in (32) in the sense that

(36) α̂

∫ t∗

0

∫

Ω

ϕ∂tζ =

∫ t∗

0

∫

Ω

W ′(ϕ) ζ − γ

∫ t∗

0

∫

Ω

ν ′(ϕ) T ζ − ε2

∫ t∗

0

∫

Ω

∆ϕ ζ

for all ζ ∈ C 1
0 ((0, t∗); L2),

• the second equation in (32) in the sense that

(37)∫ t∗

0

∫

Ω

(β̂T + γθν(ϕ)) ∂tτ = δ

∫ t∗

0

∫

Ω

∇T · ∇τ −

∫ t∗

0

∫

Ω

F (ϕ, ∆ϕ, T ) τ

for all τ ∈ C 1
0 ((0, t∗); L2)∩C ((0, t∗); H1

0 ), where F is defined as in (33).

Note that, according to this definition and by the Sobolev embeddings
H2 →֒ C 0 and H1 →֒ L6 (both valid in space dimension d ≤ 3), a weak
solution (ϕ, T ) is such that ϕ ∈ Cb([0, t

∗) × Ω), and ∆ϕ ∈ L6(Ω) at almost
all times in [0, t∗). This gives sense in particular to the last integral in (37)
if we also note that τ ∈ L6(Ω) at all times in (0, t∗) if τ ∈ C ((0, t∗); H1

0 ):
indeed, examining all the terms in the product F (ϕ, ∆ϕ, T ) τ we see, using
that W ′ and ν ′ are bounded, that we ‘only’ need τ , T τ , ∆ϕ T τ , ∆ϕ τ , and
(∆ϕ)2 τ being integrable, which is certainly the case on a bounded domain
when T ∈ L2, τ ∈ L6, and ∆ϕ ∈ L6.
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Theorem 1 (Existence of weak solutions) For all ϕ0 ∈ H2
n, T0 ∈ H1

0 ,
there exist t∗ > 0 and a weak solution (ϕ, T ) of (32) on [0, t∗) with initial
data ϕ0, T0, and boundary conditions (34), in the sense of Definition 1.

Theorem 2 (Continuous dependence on the data) 1. Given ϕ0 ∈
H2

n, T0 ∈ H1
0 , there exists at most one weak solution (ϕ, T ) to (32)–(34)

with initial datum (ϕ0, T0).

2. If (ϕi, Ti), i ∈ {1, 2}, are two weak solutions to (32)–(34) both defined
on [0, t∗], and with initial data (ϕi,0, Ti,0), i = 1, 2, respectively, then
there exists a constant C > 0 depending only on the norms

‖Ti‖L∞(0,t∗;H1(Ω)), ‖Ti‖L2(0,t∗;L2(Ω)),

‖ϕi‖L∞(0,t∗;H2(Ω)), ‖ϕi‖L2(0,t∗;H3(Ω)),
i ∈ {1, 2}

such that, for 0 ≤ t ≤ t∗,

(38) ‖T1(t) − T2(t)‖
2
L2(Ω) + ‖ϕ1(t) − ϕ2(t)‖

2
H2(Ω)

≤ C
(
‖T1,0 − T2,0‖

2
L2(Ω) + ‖ϕ1,0 − ϕ2,0‖

2
H2(Ω)

)
.

In particular, the weak solution to (32)–(34) depends continuously on
the data.

Unsurprisingly, the proof of Theorems 1 and 2 relies on a priori estimates.
It is to be noted though that we shall use other quantities than the total
energy

E(T, ϕ) :=

∫

Ω

(
β̂ T + γθ ν(ϕ) + W (ϕ) + 1

2
ε2 |∇ϕ|2

)
.

Indeed, if we do have the conservation of E, thanks to (18) (where e = βE),
at least when T satisfies a homogeneous Neumann condition on the whole
boundary ∂Ω (that is, for qb = 0 and Γ = ∂Ω), this is obviously not enough
to control the L2 norm of T . Rather, we shall use

(39) E0(T, ϕ) :=

∫

Ω

( β̂

2θ
T 2 + W (ϕ) + 1

2
ε2 |∇ϕ|2

)
.

Compared to E, the interest of E0 is that it is quadratic in T , and it satisfies
the identity

θ
d

dt
E0(T, ϕ) + δ ‖∇T‖2

L2 + α̂ θ ‖∂tϕ‖
2
L2 =

∫

Ω

F (ϕ, ∆ϕ, T ) T
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along solutions of (32) (and (34) with qb = 0, Tb = 0). Of course, because of
the right-hand side, this is not fully satisfactory and we shall need another
quantity to control the L2 norm of ∆ϕ.

Remark 1 If we replace F by zero in (32), we are left with the Caginalp-like
model

(40)

{
α̂ ∂tϕ − ε2∆ϕ + W ′(ϕ) = γ ν ′(ϕ) T,

β̂ ∂tT + γ θ ν ′(ϕ) ∂tϕ − δ ∆T = 0,

for which we have the much nicer identity

θ
d

dt
E0(T, ϕ) + δ ‖∇T‖2

L2 + α̂ θ ‖∂tϕ‖
2
L2 = 0 .

Remark 2 By an adaptation of our a priori estimates, we can show in ad-
dition that, among the stationary solutions to (32), those corresponding to

single-phase states, i.e. with ϕ ≡ 0 or ϕ ≡ 1 and T = T̃ , are stable.

Remark 3 Since we are interested in asymptotic models, we have chosen on
purpose to keep track of the nondimensionalized numbers α̂, β̂, γ, δ, ε, and
θ in our a priori estimates. We shall also pay attention to the occurrence of
‖T̃‖H1, and of the bounds for W , ν, and their derivatives.

Further notations. All constants depending only on the dimension d and
on Ω will be considered harmless, and we shall denote by

A1 . A2

any inequality A1 ≤ CA2 where C is such a constant (depending only on d
and Ω). As already mentioned, W and ν are supposed to belong to C 3

b (R).
For simplicity, we introduce the notations

ν ′
∞ := sup

R

|ν ′|, W ′
∞ := sup

R

|W ′|,

and similarly for their second and third order derivatives.
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4.2 Existence of solutions

In this section, we prove Theorem 1 by means of a Galerkin approximation.
Let {ϕi}i∈N∗ be a set of eigen-functions of the Laplacian operator −∆

with Neumann boundary condition, {ϕi}i∈N∗ being a complete orthonormal
system in H1. Let {T i}i∈N∗ be a set of eigen-functions of −∆ in Ω with the
boundary conditions

∂T i

∂n
= 0 on Γ, T i = 0 on ∂Ω \ Γ,

with {T i}i∈N∗ being a complete orthonormal set in H1
0 . We seek approximate

solutions of (32) - (34) of the form

ϕn(t) =
n∑

i=1

ai(t)ϕi, T n(t) := T
n
(t) + T̃ , T

n
(t) =

n∑

i=1

bi(t)T i,

where ai and bi are C 1, real-valued functions. Defining

Vn = Span{ϕ1, · · · , ϕn}, Zn = Span{T 1, · · · , T n},

we require that for all ζ ∈ Vn,

(41)

∫

Ω

α̂ ∂tϕ
n ζ = −

∫

Ω

W ′(ϕn)ζ + γ

∫

Ω

ν ′(ϕn)T nζ + ε2

∫

Ω

∆ϕnζ,

and for all τ ∈ Zn,

(42)

∫

Ω

β̂ ∂tT
n
τ = −δ

∫

Ω

∇T
n
· ∇τ − γθ

∫

Ω

ν ′(ϕn)∂tϕ
nτ +

∫

Ω

F nτ,

where

F n :=
1

α̂
(ε2∆ϕn − W ′(ϕn))2 +

γ

α̂
(ε2∆ϕn − W ′(ϕn))ν ′(ϕn)T n ,

together with the initial conditions

ϕn(0) = PVn
(ϕ0) , T

n
(0) = PZn

(T0 − T̃ ) ,

where for any subspace Y , PY denotes the orthogonal projection onto Y .
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Denoting by a and b the vector-valued functions of components ai and
bi respectively, taking ζ = ϕi in (41) and τ = T i in (42) for i = 1, . . . , n, we
obtain ordinary differential equations of the form

(43)
da

dt
= Φ(a,b) ,

db

dt
= T (a,b, Φ(a,b)) ,

with Φ and T at least C 2 on R
2n and R

3n respectively (since W and ν are
C 3). Therefore, the Cauchy-Lipschitz theorem ensures the existence and
uniqueness on some maximal time interval [0, tn), tn ∈ (0, +∞], of a solution
(a,b) with prescribed initial data.

The next step is to derive some estimates in order to show that the
times sequence (tn) is bounded from below by a positive time and that the
sequences (ϕn), (T

n
) are bounded in the appropriate functional spaces. To

simplify the notations we will drop the superscript n.

Energy estimate. Recalling the definition of E0 in (39), and taking a
combination of (41) with ζ = ϕn and (42) with τ = T n, we get the identity

(44) θ
d

dt
E0(T , ϕ) + δ ‖∇T‖2

L2 + α̂ θ ‖∂tϕ‖
2
L2 =

∫

Ω

FT + γθ

∫

Ω

ν ′(ϕ)∂tϕ T̃ .

By the elementary inequality

(45) ab ≤ λa2 +
b2

4λ
, ∀a, b ∈ R , ∀λ > 0 ,

we have

γ

∫

Ω

ν ′(ϕ)∂tϕ T̃ ≤
α̂

4
‖∂tϕ‖

2
L2 +

γ2

α̂
|ν ′

∞|2 ‖T̃ |2L2 .

Recalling that the notation α̂ actually means 1/α, and introducing the new
simplifying notation

(46) µ := γ2 |ν ′
∞|2 ,

we thus obtain from (44) that

(47)
d

dt
E0(T , ϕ) + δθ̂ ‖∇T‖2

L2 + 3
4
α̂ ‖∂tϕ‖

2
L2 ≤ θ̂

∫

Ω

FT + α µ ‖T̃‖2
L2 ,
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where we have used the notation θ̂ for 1/θ. We shall use the same convention
repeatedly for other positive parameters in what follows.

The integral of FT in (47) involves trilinear terms in ∆ϕ and T . We can
get an estimate on them by using the following, higher order estimate.

Lemma 1 (second order estimate) Let us define the modified energy

E1(T, ϕ) = E0(T, ϕ) + 1
2
ε2δα̂µ̂θ̂

∫

Ω

|∆ϕ|2 ,

and (to enforce estimates of powers of E1)

E∗
1(T, ϕ) = max(1, E1(T, ϕ)).

Let the constants A0, B0, C0, D0 be given by

A0 := δωµ̂θ̂ε̂2, D0 := max(1, θβ) θβ (1 + µαθδ̂) ιµε̂4(1 + ιµε̂4),

B0 := β̂θ̂‖T̃‖2
L2 , C0 := (µα + δθ̂)‖T̃‖2

H1 ,

where

ω := |W ′′
∞|2 , µ := γ2 |ν ′

∞|2 , ι :=

∣∣∣∣
ν ′′
∞

ν ′
∞

∣∣∣∣
2

.

Then the first n modes (T = T + T̃ , ϕ) = (T n = T
n

+ T̃ , ϕn) solutions
to (41)-(42) satisfy the refined energy estimate

(48)
d

dt
E1(T , ϕ) + δθ̂‖∇T‖2

L2 + α̂‖∂tϕ‖
2
L2 + ε4δµ̂θ̂ ‖∇∆ϕ‖2

L2

− θ̂

∫

Ω

F (ϕ, ∆ϕ, T ) T . A0E1(T , ϕ) + D0(B0 + E∗
1(T , ϕ))3 + C0,

for all t ∈ (0, tn).

Proof: Let us first write

E1(T , ϕ) = E0(T , ϕ) + zα̂

∫

Ω

|∆ϕ|2,

with the constant z to be determined in the course of the proof. We apply (41)
with ∆2ϕ as a test function. Since we use a Galerkin approximation built on
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the eigen-functions of the operator −∆ with Neumann boundary condition,
there is no boundary term in the next integrations by parts. We obtain

(49) 1
2
α̂

d

dt
‖∆ϕ‖2

L2 + ε2 ‖∇∆ϕ‖2
L2 = −

∫

Ω

W ′(ϕ)∆2ϕ

︸ ︷︷ ︸
J1

+ γ

∫

Ω

ν ′(ϕ)T ∆2ϕ

︸ ︷︷ ︸
J2

.

Using an integration by parts, we get an estimate on J1 because

∣∣∣∣
∫

Ω

W ′′(ϕ)∇ϕ · ∇∆ϕ

∣∣∣∣ −
ε2

4
‖∇∆ϕ‖2

L2 .
|W ′′

∞|2

ε2
‖∇ϕ‖2

L2

thanks to the inequality in (45). Another integration by parts gives

J2 = −γ

∫

Ω

ν ′(ϕ)∇T · ∇∆ϕ − γ

∫

Ω

ν ′′(ϕ)T ∇ϕ · ∇∆ϕ.

By the Cauchy-Schwarz inequality, we thus have

|J2| ≤ γν ′
∞‖∇T‖L2‖∇∆ϕ‖L2 + γν ′′

∞‖T‖L2‖∇ϕ‖L∞‖∇∆ϕ‖L2 ,

hence by using (45) again,

|J2| −
ε2

8
‖∇∆ϕ‖2

L2 .

∣∣∣∣
γν ′

∞

ε

∣∣∣∣
2

‖∇T‖2
L2 + γν ′′

∞‖T‖L2‖∇ϕ‖L∞‖∇∆ϕ‖L2 .

To control the L∞ norm of ∇ϕ, we can apply to u := ∇ϕ Agmon’s inequality

(50) ‖u‖2
L∞ . ‖u‖H1 ‖u‖H2 ,

which is valid in dimension d ≤ 3 - in the two dimensional case, it just follows
from the Sobolev embedding H3/2 →֒ L∞ and the interpolation between H1

and H2, showing that H3/2 = [H1, H2]1/2. Using that ‖u‖H2 ≤ ‖u‖L2 +
‖∆u‖L2 , this gives

‖∇ϕ‖L∞ . ‖∇ϕ‖
1/2

H1 (‖∇ϕ‖
1/2

L2 + ‖∇∆ϕ‖
1/2

L2 ),

from which we deduce that

‖T‖L2‖∇ϕ‖L∞‖∇∆ϕ‖L2 . ‖T‖L2(‖∇ϕ‖H1‖∇∆ϕ‖L2 + ‖∇ϕ‖
1/2

H1 ‖∇∆ϕ‖
3/2

L2 ).
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Then, using once more (45) together with its more general version, Young’s
inequality

(51) ab ≤ λ
ap

p
+ λ−q/p bq

q
, ∀a, b ∈ R , ∀λ > 0 , ∀p, q > 0 ,

1

p
+

1

q
= 1,

with p = 4/3, we obtain

|J2| −
ε2

4
‖∇∆ϕ‖2

L2 . µε̂2‖∇T‖2
L2+ιµε̂2‖T‖2

L2‖∇ϕ‖2
H1+ι2µ2ε̂6‖T‖4

L2‖∇ϕ‖2
H1 ,

where we have used the announced shorthands

µ = γ2 |ν ′
∞|2 , ι =

∣∣∣∣
ν ′′
∞

ν ′
∞

∣∣∣∣
2

.

Now, since W ≥ 0 by assumption, we have

‖∇ϕ‖2
L2 ≤ 2ε̂2 E0(T, ϕ) , ‖T‖2

L2 ≤ 2θβ E0(T, ϕ) ,

and E0 ≤ E∗
1 , so that we can rewrite the estimate of J2 as

|J2| −
ε2

4
‖∇∆ϕ‖2

L2 . µε̂2‖∇T‖2
L2 + ζ E∗

1(T, ϕ)3 ,

with
ζ := max (1, 2θβ) 2θβ

(
2ε̂2 + ẑα

)
ιµε̂2(1 + ιµε̂4) .

Recalling the estimate of J1 obtained at the beginning, in which we can
bound ‖∇ϕ‖2

L2 by 2ε̂2 E1(T , ϕ), we find that

α̂
d

dt
‖∆ϕ‖2

L2 + ε2 ‖∇∆ϕ‖2
L2 . ωε̂4E1(T , ϕ) + µε̂2‖∇T‖2

L2 + ζ E∗
1(T, ϕ)3,

where we have used the other shorthand

ω = |W ′′
∞|2 .

Finally, noting that ‖T‖L2 ≤ ‖T‖L2 +‖T̃‖L2 , and similarly for the derivatives
of T , we obtain

(52) α̂
d

dt
‖∆ϕ‖2

L2 + ε2 ‖∇∆ϕ‖2
L2 . µε̂2‖∇T‖2

L2 + µε̂2‖∇T̃‖2
L2

+ ωε̂4E1(T , ϕ) + ζ
(
β̂θ̂‖T̃‖2

L2 + E∗
1(T , ϕ)

)3

.
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Multiplying this inequality by z and adding it with (47), we can absorb
‖∇T‖2

L2 on the left-hand side provided that zµε̂2 is small enough compared

to δθ̂. Therefore, we eventually obtain (48) by substituting a numerical
constant times µθδ̂ε̂2 for ẑ in the definition of ζ here above. ✷

The next step consists in expanding
∫

Ω
F (ϕ, ∆ϕ, T )T , the first term in

the right-hand side of (48), and estimating each term by a power of E1(T , ϕ).
This is made in the following.

Lemma 2 (final a priori estimate) In addition to the notations introdu-
ced in Lemma 1 (see p. 24), let us define the constants A, B, C, D, by

A := A0 + βα(1 + µ1/2)W ′
∞ + δ̂α2µ3/2,

C := C0 + θ̂αµ1/2W ′
∞‖T̃‖2

H1 + θ̂α|W ′
∞|3 + θ̂αε2µ1/2‖T̃‖4

H1 ,

D := D0 + ε2(βθ)1/2α2δ̂µ (1 + α3δ̂3µ3(βθ)3/2)

+ εβµ(α3δ̂θ)1/2(1 + ε3µ3(α9θ3δ̂9)1/2)

Then the first n modes (T = T + T̃ , ϕ) = (T n = T
n

+ T̃ , ϕn) solutions
to (41)-(42) satisfy the energy estimate

(53)
d

dt
E∗

1(T , ϕ) + 1
2
δθ̂‖∇T‖2

L2 + α̂‖∂tϕ‖
2
L2 + 1

2
ε4δµ̂θ̂|∇∆ϕ‖2

L2

. AE∗
1(T , ϕ) + D(B + E∗

1(T , ϕ))3 + C,

for all t ∈ (0, tn).

Proof: Recalling the definition of F in (33) on p. 18, we have

|F (ϕ, ∆ϕ, T )| ≤ 2α|W ′
∞|2 + αγν ′

∞W ′
∞|T |︸ ︷︷ ︸

f1

+ 2αε4 |∆ϕ|2︸ ︷︷ ︸
f2

+ αε2γν ′
∞|∆ϕ||T |︸ ︷︷ ︸
f3

.

1. Since

2|W ′
∞|2T ≤ |W ′

∞|3 + W ′
∞T

2
and 2|T |T ≤ 3T

2
+ T̃ 2 ,

we readily have

θ̂

∫

Ω

f1T . θ̂α(1 + γν ′
∞)W ′

∞‖T‖2
L2 + θ̂αγν ′

∞W ′
∞‖T̃‖2

L2 + θ̂α|W ′
∞|3 ,
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hence

(54) θ̂

∫

Ω

f1T . a1 E∗
1(T , ϕ) + c1,

with

a1 := βα(1 + γν ′
∞)W ′

∞ , c1 := θ̂αγν ′
∞W ′

∞‖T̃‖2
H1 + θ̂α|W ′

∞|3 .

2. By the Cauchy-Schwarz inequality, we have
∫

Ω

|∆ϕ|2|T | ≤ ‖∆ϕ‖2
L4‖T‖L2 .

Using the interpolation inequality (due to Hölder)

‖v‖L4 ≤ ‖v‖
1/4

L2 ‖v‖
3/4

L6 ,

and the Sobolev inequality

‖v‖2
L6 . ‖v‖2

L2 + ‖∇v‖2
L2

(equivalent to the Sobolev embedding H1 →֒ L6 already mentioned
before), we thus infer that

∫

Ω

|∆ϕ|2|T | . ‖∆ϕ‖2
L2‖T‖L2 + ‖∆ϕ‖

1/2

L2 ‖T‖L2‖∇∆ϕ‖
3/2

L2 .(55)

As a consequence of (55) and Young’s inequality (Eq. (51) with a factor
λ to be determined afterwards, and again p = 4/3), we get

θ̂

∫

Ω

f2T . θ̂αε4 ‖∆ϕ‖2
L2‖T‖L2 + θ̂αε4

(
λ̂3 ‖∆ϕ‖2

L2‖T‖4
L2 + λ ‖∇∆ϕ‖2

L2

)
.

So, using that

(56) ‖∆ϕ‖2
L2 . ε̂2δ̂αµθE1(T , ϕ) , ‖T‖2

L2 . βθE1(T , ϕ) ,

we arrive at

(57) θ̂

∫

Ω

f2T . α2ε2δ̂µ(βθ)1/2E1(T , ϕ)3/2

+ λ̂3α2ε2δ̂µβ2θ2E1(T , ϕ)3 + λθ̂αε4‖∇∆ϕ‖2
L2 .
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We can now choose λ for the last term in (57) to be absorbed by
ε4δµ̂θ̂‖∇∆ϕ‖2

L2 , the last term on the left-hand side of (48) on p. 24:
it suffices to take λ small enough compared to α̂δµ̂. Hiding the multi-
plicative constant in the . sign, we thus get from (57) that

(58) θ̂

∫

Ω

f2T − 1
2
ε4δµ̂θ̂‖∇∆ϕ‖2

L2 . d2E
∗
1(T , ϕ)3

with
d2 := ε2(βθ)1/2α2δ̂µ (1 + α3δ̂3µ3(βθ)3/2) .

3. The way of estimating
∫

Ω
f3T is very similar to the one for

∫
Ω

f2T .
Indeed, we have

2

∫

Ω

|∆ϕ||T |T ≤

∫

Ω

|∆ϕ||T |2 +

∫

Ω

|∆ϕ||T̃ |2 ,

with ∫

Ω

|∆ϕ||T̃ |2 ≤ ‖∆ϕ‖L2‖T̃‖2
H1

by Cauchy-Schwarz and the Sobolev embedding H1 →֒ L4, and

∫

Ω

|∆ϕ||T |2 .‖∆ϕ‖L2‖T‖2
L2 + ‖∆ϕ‖L2‖T‖

1/2

L2 ‖∇T‖
3/2

L2 ,

by exchanging the role of ∆ϕ and T in (55). Therefore, using again
(51) we have

∫

Ω

|∆ϕ||T |T . ‖T̃‖4
H1 + ‖∆ϕ‖2

L2 + ‖∆ϕ‖L2‖T‖2
L2

+ λ̂3‖∆ϕ‖4
L2‖T‖2

L2 + λ ‖∇T‖2
L2

for all positive λ. Using again (56) we thus infer that

θ̂

∫

Ω

f3T . θ̂αε2µ1/2‖T̃‖4
H1 + δ̂α2µ3/2E1(T , ϕ)

+ εβµα3/2(δ̂θ)1/2E1(T , ϕ)3/2 + λ̂3ε̂2βα3µ5/2θ2δ̂2E1(T , ϕ)3

+ λθ̂αε2µ1/2‖∇T‖2
L2 .(59)
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Now, if we want to let the last term in (59) to be absorbed by the left-
hand side term δθ̂‖∇T‖2

L2 in (48), we choose λ small enough compared
to δα̂ε̂2µ̂1/2. This yields

θ̂

∫

Ω

f3T − 1
2
δθ̂‖∇T‖2

L2 . θ̂αε2µ1/2‖T̃‖4
H1 + δ̂α2µ3/2E1(T , ϕ)

+ εβµα3/2(δ̂θ)1/2E1(T , ϕ)3/2(60)

+ ε4βα6µ4θ2δ̂5E1(T , ϕ)3,

hence

(61) θ̂

∫

Ω

f3T − 1
2
δθ̂‖∇T‖2

L2 . c3 + a3E1(T , ϕ) + d3E
∗
1(T , ϕ)3,

with
a3 := δ̂α2µ3/2 , c3 := θ̂αε2µ1/2‖T̃‖4

H1 ,

and
d3 := εβµ(α3δ̂θ)1/2(1 + ε3µ3(α9θ3δ̂9)1/2) .

Finally, adding together the estimates in (54)-(58)-(61) and the energy esti-
mate in (48) gives (53) with

A := A0 + a1 + a3 , C := C0 + c1 + c3 , D := D0 + d2 + d3 .

✷

Recall that T and ϕ in (53) are actually T n and ϕn, and of course depend
on the rank n in the Galerkin approximation. However, their initial data
T0 ∈ L2 and ϕ0 ∈ H2

n are independent of n, and so is the initial energy
E1(T 0, ϕ0). By the energy estimate (53), there is a uniform time t∗ > 0 of
existence of T n and ϕn - as solutions of the ODEs (43) - such that E(T

n
, ϕn) is

bounded in L∞(0, t∗), while ‖∇T
n
‖L2 , ‖∂tϕ

n‖L2 and ‖∇∆ϕn‖L2 are bounded
in L2(0, t∗). Therefore, by the usual compactness theorems, up to extracting
subsequences we have

ϕn → ϕ

in L∞(0, t∗; H2
n) weak-*, in L2(0, t∗; H3

n) weak, in L2(0, t∗; L2) strong, and
also almost everywhere,

∂tϕn → ∂tϕ
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in L∞(0, t∗; L2) weak-*,
T n → T

in L∞(0, t∗; L2) weak-*, in L2(0, t∗; H1
0 ) weak, in L2(0, t∗; L2) strong, and

almost everywhere. Furthermore, since

∂tϕ ∈ L2(0, t∗; L2) and ϕ ∈ L2(0, t∗; H2
n) ,

we have by the Aubin-Simon lemma that

ϕ ∈ C (0, t∗; H1).

Moreover, the definition of T
n

in (42) shows that the sequence (∂tT
n
) is

bounded in the dual of L2(0, t∗; H1
0 ), which implies that

T ∈ C (0, t∗; L2).

Passing to the limit in (41) and (42) we conclude that (T, ϕ) is a weak solution
to (32) on [0, t∗). ✷

Remark 4 (time of existence) By the energy estimate in (53) and an el-
ementary ODE argument we see that the time of existence t∗ is bounded
from below by t∗1 := 1/(DE1(T 0, ϕ0)

2) (up to a multiplicative constant only
depending on Ω and the dimension d). This yields two comments.

1. For fixed parameters α, β, γ, δ, ε, θ, by definition of E1, t∗1 tends to in-
finity when the initial data tend to a constant state (T 0 ≡ 0, ϕ0 ≡ 0) or
(T 0 ≡ 0, ϕ0 ≡ 1). In other words, t∗1 is all the more larger as the initial
state is close to a single phase.

2. We can also examine how t∗1 varies with respect to the parameters α, β,
γ, δ, ε, θ for fixed initial data. By inspection of all coefficients in the
definition of D (p. 27) we see that is D is bounded on compact subsets
of

{(α, β, γ, δ, ε, θ) ; α ≥ 0, β ≥ 0, γ ≥ 0, δ > 0, ε > 0, θ ≥ 0} ,

and tends to zero in either one of the limits

β → 0 or γ → 0 or θ → 0 or δ → ∞ .
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Note that, by definition of γ and δ (see Eq. (20) on p. 9), 1/St = βγθ,
1/Pe = βδ, so that St tends to infinity in either one of the first three
limits, whereas Pe can tend to infinity (if β → 0 and δ fixed), tend to
zero (if δ → ∞ and β fixed), or can be kept bounded and bounded away
from zero (if β → 0 and δ → ∞ with β and 1/δ of the same order).
Unfortunately, it turns out that neither one of these limits is compatible
with keeping E1(T 0, ϕ0) bounded (which would imply t∗ → ∞), or at
least DE1(T 0, ϕ0)

2 bounded (which would give a uniform lower bound
for t∗), independently of ‖T 0‖L2 and ‖∆ϕ0‖L2. Indeed, we have

2βθE1(T 0, ϕ0) ≥ ‖T 0‖
2
L2 , 2α γ2|ν ′

∞|2θE1(T 0, ϕ0) ≥ ε2δ‖∆ϕ0‖
2
L2 ,

and looking closer at D we have

D
β→0
= O(β1/2) , D

γ→0
= O(γ2) , D

δ̂→0
= O(δ̂1/2) , D

θ→0
= O(θ1/2) .

So, the limit β → 0 penalizes ‖T 0‖L2, while θ → 0 penalizes both
‖T 0‖L2 and ‖∆ϕ0‖L2, and both γ → 0 and δ → ∞ penalize ‖∆ϕ0‖L2.
Of course, if we restrict our initial data to T 0 ≡ 0, the limit β → 0 is
allowed and thus gives t∗ → ∞. This is no surprise because in this case
we are basically left with the Allen-Cahn equation (the first equation in

(19) with T = T̃ ), for which global existence is well-known.

4.3 Continuous dependence on the data

This final section is devoted to the proof of Theorem 2, which gives both
uniqueness and continuous dependence of the initial data. The tools are
basically the same as in the existence proof (Theorem 1), namely, energy es-
timates and various inequalities of Sobolev and/or interpolation type. How-
ever, the details are longer and somehow more technical. To gain some sim-
plicity in the exposure we set all six parameters α, β, γ, δ, ε, and θ equal to
1 in (32), and the L∞ norms of derivatives of W and ν will be systematically
hidden in the . sign.

Step 1. We assume that (Ti, ϕi), i ∈ {1, 2} are two weak solutions to (32)
on [0, t∗) for some positive t∗. We are going to use repeatedly the notation

[G] = G2 − G1
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for the difference of any two quantities G2 and G1. The differences [T ] and
[ϕ] then satisfy the system

(62)





∂t[ϕ] − ∆[ϕ] + [W ′(ϕ)] = [ν ′(ϕ) T ],

∂t[T ] + [ν ′(ϕ)∂tϕ] − ∆[T ] = [F ],

Fi := (∆ϕi − W ′(ϕi))
2 + (∆ϕi − W ′(ϕi))ν

′(ϕi)Ti.

By analogy with E0 defined in (39) we set

e0([T ], [ϕ]) =

∫

Ω

1
2
[T ]2 + 1

2
|∇[ϕ]|2 + [ϕ][W ′(ϕ)].

Similarly as the energy estimate (44) for E0 (except that the potential energy
has been discarded here), we derive the identity

(63)
d

dt
e0([T ], [ϕ]) +

∫

Ω

|∇[T ]|2 +

∫

Ω

|∂t[ϕ]|2

=

∫

Ω

[ν ′(ϕ)T ][∂tϕ] − [ν ′(ϕ)∂tϕ][T ] +

∫

Ω

[∂tϕ][W ′(ϕ)] +

∫

Ω

[F ][T ].

Using the formula of differentiation

[GH] = 〈G〉[H] + [G]〈H〉, 〈G〉 :=
G2 + G1

2
,

and the mean value theorem (for ν ′) we obtain

[ν ′(ϕ)T ][∂tϕ] − [ν ′(ϕ)∂tϕ][T ] =[ν ′(ϕ)](〈∂tϕ〉[T ] − 〈T 〉[∂tϕ])

. |〈∂tϕ〉||[ϕ]||[T ]| + |〈T 〉||[ϕ]||[∂tϕ]|.(64)

In order to estimate the first term of the right-hand side in (64), we can use
the following inequality, whose proof is postponed to the appendix,

(65)

∫

Ω

abc ≤ ε‖∇b‖2
L2 + ε‖∇c‖2

L2 + Cε(1 + ‖a‖4
L2)(‖b‖2

L2 + ‖c‖2
L2),

satisfied for all a ∈ L2(Ω), b, c ∈ H1(Ω), ε > 0. Here above and in what
follows, Cε denotes a constant depending only on ε, Ω and d. The inequal-
ity (65) gives

∫

Ω

|〈∂tϕ〉||[ϕ]||[T ]| ≤ ε‖∇[T ]‖2
L2 + ε‖∇[ϕ]‖2

L2

+ Cε(‖〈∂tϕ〉‖
4
L2 + 1)(‖[T ]‖2

L2 + ‖∇[ϕ]‖2
L2).(66)
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To obtain a bound on the second term in the right-hand side of (64), we are
going to use Agmon’s inequality (50) under the form

(67) ‖b‖2
L∞ . ‖b‖2

L2 + ‖∇b‖L2‖∆b‖L2 ,

which implies (by Cauchy-Schwarz) that

(68)

∫

Ω

|abc| ≤ ε‖c‖2
L2 + Cε‖a‖

2
L2(‖b‖2

L2 + ‖∇b‖2
L2 + ‖∆b‖2

L2).

We thus find that
∫

Ω

|〈T 〉||[ϕ]||[∂tϕ]| ≤ ε‖[∂tϕ]‖2
L2

+ Cε‖〈T 〉|2L2(‖[ϕ]‖2
L2 + ‖∇[ϕ]‖2

L2 + ‖∆[ϕ]‖2
L2).(69)

Together with (66), (69) gives

(70)

∫

Ω

[ν ′(ϕ)T ][∂tϕ] − [ν ′(ϕ)∂tϕ][T ] ≤ ε‖∇[T ]‖2
L2 + ε‖[∂tϕ]‖2

L2

+ Cε(1 + ‖〈∂tϕ〉‖
4
L2 + ‖〈T 〉|2L2)(‖[T ]‖2

L2 + ‖[ϕ]‖2
L2 + ‖∇[ϕ]‖2

L2 + ‖∆[ϕ]‖2
L2).

Let us introduce the shorthand z0 := 1 + ‖〈∂tϕ〉‖
4
L2 + ‖〈T 〉‖2

L2 , and

e1([T ], [ϕ]) = e0([T ], [ϕ]) + µ‖∆[ϕ]‖2
L2 , e2([T ], [ϕ]) = e1([T ], [ϕ]) + ‖[ϕ]‖2

L2 ,

where µ is a parameter that will be chosen later. The final estimate we are
aiming at reads

(71)
d

dt
e2 ≤ ze2, e2 = e2([T ], [ϕ]),

for some z ∈ L1(0, t∗) depending continuously on the norms of Ti in L∞(0, t∗; H1),
L2(0, t∗; L2) and the norms of ϕi in L∞(0, t∗; H2), L2(0, t∗; H3), i ∈ {1, 2}1.
Once we have (71), the continuous dependence on the data as expressed
in (38) will be clear because, by straightforward integration

e2(t) ≤ e
R

t

0
z(s)dse2(0),

1In particular, using the equation for ϕ in (32), z may depend on the norm of ∂tϕ in
L∞(0, t∗;L2)
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and by definition e2 controls ‖[ϕ|‖H2 and ‖[T ]‖L2 .

The first step in the derivation of (71) follows from the identity in (63)
and the inequality in (70), which together give

(72)
d

dt
e0([T ], [ϕ]) + ‖∇[T ]‖2

L2 + ‖∂t[ϕ]‖2
L2 ≤ ε‖∇[T ]‖2

L2 + ε‖[∂tϕ]‖2
L2

+ Cε,µz0e1([T ], [ϕ]) +

∫

Ω

[∂tϕ][W ′(ϕ)] +

∫

Ω

[F ][T ],

where z0 ∈ L1(0, t∗), and Cε,µ := max(1, 1/µ) Cε. We will prove (71) by
using an additional energy estimate for ‖∆[ϕ]‖2

L2 and some estimates for the
remaining terms ∫

Ω

[∂tϕ][W ′(ϕ)] and

∫

Ω

[F ][T ]

in the right hand-side of (72).

Step 2. By (45),

(73)

∫

Ω

[∂tϕ][W ′(ϕ)] ≤ ε‖[∂tϕ]‖2
L2 + z1‖[ϕ]‖2

L2 .

Step 3. There are several factors in the expansion of the term
∫

Ω
[F ][T ]

that we bound successively and, to some extent, by decreasing order of dif-
ficulty.

By using the expansion formula

[GHI] = 〈G〉 〈H〉[I] + 〈G〉 〈I〉[H] + 〈HI〉[G],

we obtain
(74)
[∆ϕν ′(ϕ)T ][T ] = 〈∆ϕ〉 〈ν ′(ϕ)〉[T ]2 + 〈∆ϕ〉 〈T 〉[ν ′(ϕ)][T ] + 〈ν ′(ϕ)T 〉[∆ϕ][T ].

By the inequality in (65) we have

(75)

∫

Ω

〈∆ϕ〉 〈ν ′(ϕ)〉[T ]2 ≤ ε‖∇[T ]‖2
L2 + Cε(1 + ‖〈∆ϕ〉‖4

L2)‖[T ]‖2
L2 .

and similarly
∫

Ω

〈ν ′(ϕ)T 〉[∆ϕ][T ] ≤ ε‖∇[T ]‖2
L2 + ε‖∆[ϕ]‖2

L2

+ Cε(1 + ‖〈T 〉‖4
L2)(|[T ]‖2

L2 + ‖[ϕ]‖2
L2).(76)
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To estimate the remaining term in (74), we apply the inequality (proved in
the appendix)

∫

Ω

|abcd| ≤ε‖∇d‖2
L2 + ε‖∆c‖2

L2

+ Cε(1 + ‖a‖4
L2 + ‖b‖4

L2 + ‖b‖2
L2‖∇b‖2

L2)(‖∇c‖2
L2 + ‖d‖2

L2)(77)

to a = 〈∆ϕ〉, b = 〈T 〉, c = [ϕ], d = [T ]. This gives
∫

Ω

|〈∆ϕ〉 〈T 〉[ν ′(ϕ)][T ]| ≤ ε‖∇[T ]‖2
L2 + ε‖∆[ϕ]‖2

L2

+ Cε(1 + ‖〈∆ϕ〉‖4
L2 + ‖〈T 〉‖4

L2 + ‖〈T 〉‖2
L2‖∇〈T 〉‖2

L2)(‖∇[ϕ]‖2
L2 + ‖[T ]‖2

L2).

With (75) and (76), we arrive at

(78)

∫

Ω

|[∆ϕν ′(ϕ)T ][T ]| ≤ ε‖∇[T ]‖2
L2 + z2(‖[ϕ]‖2

L2 + e1).

Replacing ∆ϕ by W ′(ϕ) in (78) and using the estimate |[W ′(ϕ)]| ≤ W ′′
∞|[ϕ]|,

we will obtain a similar estimate for the quadrilinear term |[W ′(ϕ)ν ′(ϕ)T ][T ].
For the trilinear term

[(∆ϕ − W ′(ϕ))2][T ] = [|∆ϕ|2][T ] + [W ′(ϕ)|2][T ] − 2[∆ϕW ′(ϕ)][T ],

by proceeding as in Step 2, we also have an estimate as in (78). We thus
conclude with Step 2 that

(79)

∫

Ω

|[ϕ][∂tW
′(ϕ)]| +

∫

Ω

|[F ][T ]| ≤ ε‖∇[T ]‖2
L2 + z3(‖[ϕ]‖2

L2 + e1).

Inserting (79) in (72) gives

(80)
d

dt
e0+‖∇[T ]‖2

L2+‖∂t[ϕ]‖2
L2 ≤ ε‖∇[T ]‖2

L2+ε‖[∂tϕ]‖2
L2+z4(‖[ϕ]‖2

L2+e1).

To eventually obtain (71), we still have to estimate
d

dt
‖∆[ϕ]‖2

L2 .

Step 4. Taking −∆2[ϕ] as a test function2 in the equation satisfied by
[ϕ] in (62), we obtain
(81)
d

dt
‖∆[ϕ]‖2

L2 + ‖∇∆[ϕ]‖2
L2 ≤

∫

Ω

|[∇(ν ′(ϕ)T )][∇∆ϕ]| +

∫

Ω

|[∇W ′(ϕ)][∇∆ϕ]|.

2To be exact, we take −∆2[ϕ]n as a test function, where [ϕ]n :=
∑

n

i=1
([ϕ], ϕi)ϕi is the

Galerkin approximation of rank n to [ϕ] and, in a final step, pass to the limit n → +∞ in
the estimates obtained for [ϕ]n.
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We have

(82)

∫

Ω

|[∇W ′(ϕ)][∇∆ϕ]| ≤ ε‖[∇∆ϕ]‖2
L2 + Cε‖[ϕ]‖2

L2 .

Besides, we have the expansion

(83) |[∇(ν ′(ϕ)T )] = 〈ν ′(ϕ)〉[∇T ]+〈∇T 〉[ν ′(ϕ)]+〈∇ν ′(ϕ)〉[T ]+〈T 〉[∇ν ′(ϕ)]

which has to be multiplied by [∇∆ϕ]. We have

(84)

∫

Ω

|〈ν ′(ϕ)〉[∇T ][∇∆ϕ]| ≤ ε‖[∇∆ϕ]‖2
L2 + Cε‖[T ]‖2

L2

for the first term, and by (68)
∫

Ω

|〈∇T 〉[ν ′(ϕ)][∇∆ϕ]| ≤ ε‖[∇∆ϕ]‖2
L2

+ Cε‖〈∇T 〉‖2
L2(‖[ϕ]‖2

L2 + ‖∇[ϕ]‖2
L2 + ‖∆[ϕ]‖2

L2)(85)

for the second term. To estimate the third term, we apply the inequality
(proved in the appendix)

(86)

∫

Ω

|abc| ≤ ε‖c‖2
L2 + Cε‖∇b‖2

L2 + Cε(1 + ‖∇a‖4
L2 + ‖a‖4

L2)‖b‖2
L2

to a = 〈∇ϕ〉, b = [T ], c = [∇∆ϕ]. We obtain
∫

Ω

|〈∇ν ′(ϕ)〉[T ][∇∆ϕ]| ≤ ε‖[∇∆ϕ]‖2
L2 + Cε‖∇[T ]‖2

L2

+Cε(1 + 〈‖∇ϕ‖4
L2〉 + 〈‖∆ϕ‖4

L2〉)|[T ]‖2
L2 .(87)

Since [∇ν ′(ϕ)] = 〈ν ′′(ϕ)〉[∇ϕ] + 〈∇ϕ〉[ν ′(ϕ)], the fourth term can be split
again. Similarly as in (85), we have
∫

Ω

|〈T 〉〈ν ′′(ϕ)〉[∇ϕ][∇∆ϕ]| ≤ ε‖[∇∆ϕ]‖2
L2

+ Cε‖〈T 〉‖2
L2(‖[ϕ]‖2

L2 + ‖∇[ϕ]‖2
L2 + ‖∆[ϕ]‖2

L2).(88)

There remains to bound
∫

Ω

|〈T 〉 〈∇ϕ〉[ϕ][∇∆ϕ]|.
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To this purpose, we apply the inequality (proved in the appendix)
∫

Ω

|abcd| ≤ ε‖d‖2
L2

+ Cε(‖a‖L2 + ‖∇a‖L2)(‖b‖2
L2 + ‖∇b‖2

L2)(‖c‖2
L2 + ‖∇c‖2

L2 + ‖∆c‖2
L2)(89)

to a = 〈T 〉, b = 〈∇ϕ〉, c = [ϕ], d = [∇∆ϕ]. We then deduce from (81), (82),
(84), (85), (87), (88), taking ε small enough, the estimate

(90)
d

dt
‖∆[ϕ]‖2

L2 + 1
2
‖∇∆[ϕ]‖2

L2 ≤ C1‖∇T‖2
L2 + Cz5(‖[ϕ]‖2

L2 + e1).

Choosing µ so that µC1 is small enough, it then follows from (80) and (90)
that

(91)
d

dt
e1+‖∇[T ]‖2

L2+‖∂t[ϕ]‖2
L2 ≤ ε‖∇[T ]‖2

L2+ε‖[∂tϕ]‖2
L2+z6(‖[ϕ]‖2

L2+e1).

To conclude, we perform an energy estimate on [ϕ]. Multiplying the first
equation in (62) by [ϕ] we obtain

d

dt
‖[ϕ]‖2

L2 + ‖∇[ϕ]‖2
L2 ≤ C

(
‖[ϕ]‖2

L2 + ‖[T ]‖2
L2) +

∫

Ω

|〈T 〉[ϕ]2L2|

)

≤ C
(
|[ϕ]‖2

L2 + ‖[T ]‖2
L2) + ‖〈T 〉‖L2‖[ϕ]‖2

4

)

≤ C(1 + ‖〈T 〉‖2
L2)(‖[ϕ]‖2

L2 + ‖[T ]‖2
L2) + ‖∇[ϕ]‖2

L2).

Adding with (91) we get

d

dt

(
e1 + ‖[ϕ]‖2

L2

)
≤ z7(e1 + ‖[ϕ]‖2

L2),

which is the claimed estimate (71). This completes the proof of Theorem 2
✷

Appendix

We give here the proof of various functional inequalities used previously.

Proof of (65):
∫

Ω

abc ≤ ε‖∇b‖2
L2 + ε‖∇c‖2

L2 + Cε(1 + ‖a‖4
L2)(‖b‖2

L2 + ‖c‖2
L2)
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for Ω ⊂ R
d, d ≤ 3. By Hölder’s inequality,

∫

Ω

abc ≤ ‖a‖L2‖b‖L6‖c‖L3 .

In addition, we have the interpolation inequality ‖c‖L3 ≤ ‖c‖
1/2

L2 ‖c‖
1/2

L6 , and
applying twice Young’s inequality (51) (once with p = 4/3, once with p =
3/2), we get

‖b‖L6 · ‖c‖
1/2

L6 · ‖a‖L2‖c‖
1/2

L2 ≤ ε‖b‖2
L6 + ε‖c‖2

L6 + Cε‖a‖
4
L2‖c‖2

L2 .

We can conclude thanks to the Sobolev inequality ‖b‖2
L6 . ‖b‖2

L2 + ‖∇b‖2
L2 .

Proof of (77):
∫

Ω

|abcd| ≤ε‖∇d‖2
L2 + ε‖∆c‖2

L2

+ Cε(1 + ‖a‖4
L2 + ‖b‖4

L2 + ‖b‖2
L2‖∇b‖2

L2)(‖∇c‖2
L2 + ‖d‖2

L2)

for Ω ⊂ R
d, d ≤ 3. By Hölder’s inequality, we have

∫

Ω

|abcd| ≤ ‖a‖L2‖b‖L3‖c‖L∞‖d‖L6 ,

where we can apply Agmon’s inequality (67) to c:

‖c‖L∞ ≤ C(‖c‖L2 + ‖∇c‖
1/2

L2 ‖∆c‖
1/2

L2 ),

and the interpolation inequality ‖b‖L3 ≤ ‖b‖
1/2

L2 ‖b‖
1/2

L6 . This gives
∫

Ω

|abcd| ≤ C(‖c‖L2 + ‖∇c‖
1/2

L2 ‖∆c‖
1/2

L2 )‖a‖L2‖b‖
1/2

L2 ‖b‖
1/2

L6 ‖d‖L6 .

By the Sobolev inequality ‖b‖L6 ≤ C(‖b‖L2 + ‖∇b‖L2), it follows that
∫

Ω

|abcd| ≤ C(‖c‖L2 + ‖∇c‖
1/2

L2 ‖∆c‖
1/2

L2 )

× ‖a‖L2‖b‖
1/2

L2 (‖b‖
1/2

L2 + ‖∇b‖
1/2

L2 )(‖d‖L2 + ‖∇d‖L2).(92)

The term with the highest order derivatives in (92) is

‖∇c‖
1/2

L2 ‖∆c‖
1/2

L2 ‖a‖L2‖b‖
1/2

L2 ‖∇b‖
1/2

L2 ‖∇d‖L2 =

‖∇d‖L2 · ‖∆c‖
1/2

L2 · ‖∇c‖
1/2

L2 ‖a‖L2‖b‖
1/2

L2 ‖∇b‖
1/2

L2

≤ ε‖∇d‖2
L2 + ε‖∆c‖2

L2 + Cε‖∇c‖2
L2‖a‖4

L2‖b‖2
L2‖∇b‖2

L2
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by Young’s inequality in the form already used above, namely

α1α2α3 ≤ εα2
1 + εα4

2 + Cεα
4
3 .

We finally obtain (77) by using similar estimates for the lower order terms
in (92).

Proof of (86):

∫

Ω

|abc| ≤ ε‖c‖2
L2 + Cε‖∇b‖2

L2 + Cε(1 + ‖∇a‖4
L2 + ‖a‖4

L2)‖b‖2
L2

for Ω ⊂ R
d, d ≤ 3. As above, applying successively the Hölder, Young,

interpolation, and Sobolev inequalities give

∫

Ω

|abc| ≤ ‖c‖L2‖b‖L3‖a‖L6

≤ ε‖c‖2
L2 + Cε‖b‖

2
L3‖a‖2

L6

≤ ε‖c‖2
L2 + Cε‖b‖L2‖b‖L6‖a‖2

L6

≤ ε‖c‖2
L2 + Cε‖b‖

2
L6 + Cε‖a‖

4
L6‖b‖2

L2

≤ ε‖c‖2
L2 + Cε‖∇b‖2

L2 + Cε(1 + ‖∇a‖4
L2 + ‖a‖4

L2)‖b‖2
L2 .

Proof of (89):

∫

Ω

|abcd| ≤ ε‖d‖2
L2

+ Cε(‖a‖L2 + ‖∇a‖L2)(‖b‖2
L2 + ‖∇b‖2

L2)(‖c‖2
L2 + ‖∇c‖2

L2 + ‖∆c‖2
L2)

for Ω ⊂ R
d, d ≤ 3. Again, by the Hölder, Young, interpolation, Sobolev, and

Agmon inequalities,

∫

Ω

|abcd| ≤ ‖d‖L2‖a‖L3‖b‖L6‖c‖L∞

≤ ε‖d‖2
L2 + Cε‖a‖

2
L3‖b‖2

L6‖c‖2
L∞

≤ ε‖d‖2
L2+Cε(‖a‖L2 + ‖∇a‖L2)(‖b‖2

L2 + ‖∇b‖2
L2)

× (‖c‖2
L2 + ‖∇c‖2

L2 + ‖∆c‖2
L2).
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