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I. INTRODUCTION

In quantum mechanics, the rarity of the potentials which are exactly solvable in closed-form (most of them belonging to the class of shape-invariant potentials [START_REF] Cooper | Supersymmetry in Quantum Mechanics[END_REF][START_REF] Dutt | Supersymmetry, shape invariance and exactly solvable potentials[END_REF][START_REF] Gendenshtein | Derivation of exact spectra of the Schrodinger equation by means of supersymmetry[END_REF] ) gives a undeniable importance to the reseach of new families of such potentials. A possible way to generate new solvable potentials is to start from the known ones and to construct regular rational extensions of them. If the procedure has a long history, in the last years important progress have been made in this direction [START_REF] Gómez-Ullate | The Darboux transformation and algebraic deformations of shape invariant potentials[END_REF][START_REF] Gómez-Ullate | Supersymmetry and algebraic Darboux transformations[END_REF][START_REF] Gómez-Ullate | An extended class of orthogonal polynomials defined by a Sturm-Liouville problem[END_REF][START_REF] Gómez-Ullate | An extension of Bochner's problem: exceptional invariant subspaces[END_REF][START_REF] Gómez-Ullate | Exceptional orthogonal polynomials and the Darboux transformation[END_REF][START_REF] Quesne | Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry[END_REF][START_REF] Quesne | Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics[END_REF][START_REF] Bagchi | Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry[END_REF][START_REF] Bagchi | An update on PT -symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally-extended supersymmetric partners[END_REF][START_REF] Odake | Infinitely many shape invariant potentials and new orthogonal polynomials[END_REF][START_REF] Odake | Another set of infinitely many exceptional (X l ) Laguerre polynomials[END_REF][START_REF] Ho | Properties of the exceptional (X l ) Laguerre and Jacobi polynomials[END_REF][START_REF] Odake | Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials[END_REF][START_REF] Sasaki | Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations[END_REF][START_REF] Dutta | Conditionally exactly solvable potentials and exceptional orthogonal polynomials[END_REF] . In a recent work [START_REF] Grandati | Solvable rational extension of translationally shape invariant potentials[END_REF] we proposed an approach allowing to generate such regular extensions starting from every translationally shape-invariant potential (TSIP) of the second category (as defined in [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF] ). For this, we use regularized excited states Riccati-Schrödinger (RS) functions as superpotentials in a generalized SUSY partnership. The regularization scheme corresponds to a "spatial Wick rotation" which eliminates the singularities from the real axis, a device already suggested by Shnol' [START_REF] Shnol | Equidistant spectra of anharmonic oscillators[END_REF] in 1994 as a way to generate rational extensions of the harmonic potential. In the following years, this suggestion has been developped by Samsonov and Ovcharov 22 and Tkachuk [START_REF] Tkachuk | Supersymmetric method for constructing quasi-exactly and conditionally-exactly solvable potentials[END_REF] . Recently Fellows and Smith [START_REF] Fellows | Factorization solution of a family of quantum nonlinear oscillators[END_REF] rediscovered this technique in the case of the harmonic oscillator, the second rational extension of which being the so-called CPRS potential [START_REF] Cariñena | A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator[END_REF] . In [START_REF] Grandati | Solvable rational extension of translationally shape invariant potentials[END_REF] , we have extended the procedure to cover the whole set of TSIP belonging to the second category. For the isotonic oscillator, we recovered the L1 family of rational extensions discovered by Gomez-Ullate, Kamran and Milson 4-8 , Quesne [START_REF] Quesne | Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry[END_REF][START_REF] Quesne | Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics[END_REF][START_REF] Bagchi | Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry[END_REF][START_REF] Bagchi | An update on PT -symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally-extended supersymmetric partners[END_REF] and Odake, Sasaki et al [START_REF] Odake | Infinitely many shape invariant potentials and new orthogonal polynomials[END_REF][START_REF] Odake | Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials[END_REF][START_REF] Sasaki | Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations[END_REF] . For the other second category potentials, the infinite set of regular quasi-rational extensions that we obtain coincides with the J1 family [START_REF] Gómez-Ullate | The Darboux transformation and algebraic deformations of shape invariant potentials[END_REF][START_REF] Gómez-Ullate | Supersymmetry and algebraic Darboux transformations[END_REF][START_REF] Gómez-Ullate | An extended class of orthogonal polynomials defined by a Sturm-Liouville problem[END_REF][START_REF] Gómez-Ullate | An extension of Bochner's problem: exceptional invariant subspaces[END_REF][START_REF] Quesne | Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry[END_REF][START_REF] Quesne | Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics[END_REF][START_REF] Bagchi | Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry[END_REF][START_REF] Bagchi | An update on PT -symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally-extended supersymmetric partners[END_REF][START_REF] Odake | Infinitely many shape invariant potentials and new orthogonal polynomials[END_REF][START_REF] Odake | Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials[END_REF][START_REF] Sasaki | Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations[END_REF] .

In the present article, combining the finite difference Bäcklund algorithm with new regularization schemes which are based on specific symmetries of the isotonic potential, we show how the extension of the SUSY QM partnership to excited states allows to generate the three infinite sets L1, L2 and L3 of regular rationally solvable extensions of the isotonic potential (as well as the singular L0 and L3 ones) in a direct and systematic way. This approach leads to a simple and transparent proof of the shape-invariance of the potentials of the L1 and L2 series.

The paper is organized as follows. We first recall how the generalization of the SUSY partnership based on excited states leads to a series of singular rational extensions of the initial potential. We then introduce basic elements concerning the finite difference Bäcklund algorithm viewed as a set of covariance transformations for the class of Riccati-Schrödinger equations and we interpret the generalized SUSY partnership in this perspective. In the third and fourth sections, we recapitulate some results concerning the isotonic oscillator, its connection with confluent hypergeometric equation and the Kienast-Lawton-Hahn's Theorem which describes the distribution of the zeros of the Laguerre functions on the real axis. The fifth section is devoted to present the set of parameters transforms which are discrete symmetries of the isotonic potential. Using them as regularization transformations, we show then that the finite difference Bäcklund algorithm based on the corresponding regularized RS functions generates directly the three series L1, L2 and L3 of regular rationally solvable extensions of the isotonic potential. In the last section, we prove the shape-invariance of the potentials of the L1 and L2 series.

is the Riccati-Schrödinger (RS) function associated to the n th bound state eigenfunction ψ n (x; a). The Riccati-Schrödinger (RS) equation [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF] for the level E n (a) is then

-w ′ n (x; a) + w 2 n (x; a) = V (x; a) -E n (a), (1) 
where we suppose E 0 (a) = 0. The RS function presents n real singularities associated to the n simple nodes of the eigenstates ψ n (x; a). As it is well known [START_REF] Robnik | Supersymmetric quantum mechanics based on higher excited states[END_REF][START_REF] Klippert | Strictly isospectral potentials from excited quantum states[END_REF] , H(a) admits infinitely many different factorizations of the form

H(a) -E n (a) = A + (w n ) A (w n ) , (2) 
where

A (w n ) = d/dx + w n (x; a), (3) 
with, in particular

A (w n ) ψ n (x; a) = 0. ( 4 
)
This allows to associate to H(a) or V (x; a) an infinite family of partners given by

H (n) (a) -E n (a) = A (w n ) A + (w n ) = -d 2 /dx 2 + V (n) (x; a), (5) 
with

V (n) (x; a) = V (x; a) + 2w ′ n (x; a). (6) 
For n ≥ 1, these potentials are all singular at the nodes of ψ n (x; a) and are defined on open intervals only. On these domains,

H (n) (a) is (quasi)isospectral to H(a). Indeed, writing ψ (n) k (x; a) = A (w n ) ψ k (x; a), (7) 
it is easy to verify that we have for any k

H (n) (a)ψ (n) k (x; a) = E k (a)ψ (n) k (x; a), (8) 
that is, ψ

k (x; a) is an eigenstate of H (n) (a) associated to the eigenvalue E k (a). We write symbolically

V (n) (x; a) ≡ iso V (x; a), (9) 
where ≡ iso means "isospectral to". Defining

w n,k (x; a) = - ψ (n)′ k (x; a) ψ (n) k (x; a) , (10) 
Eq.( 8) gives, for k > n

-w ′ n,k (x; a) + w n,k (x; a) 2 = V (n) (x; a) -E k (a). ( 11 
)
This scheme generalizes the SUSY QM partnership, by using the excited state RS functions w n as superpotentials. However, only for the ground state n = 0, the factorization and then the partner potential V (0) (a) = V (x; a)+2w ′ 0 (x; a) are non singular and we recover the usual SUSY QM partnership [START_REF] Cooper | Supersymmetry in Quantum Mechanics[END_REF][START_REF] Dutt | Supersymmetry, shape invariance and exactly solvable potentials[END_REF] .

III. FINITE DIFFERENCE B ÄCKLUND ALGORITHM

We can consider the preceding partnership in a different way which gives a prominent role to the covariance transform of the RS equations class.

A. Invariance group of the Riccati equations

As established by Cariñena et al. [START_REF] Cariñena | Group theoretical approach to the intertwined hamiltonians[END_REF][START_REF] Cariñena | Integrability of Riccati equation from a group theoretical viewpoint[END_REF] , the finite-difference Bäcklund algorithm is a consequence of the invariance of the set of Riccati equations under a subset of the group G of smooth SL(2, R)-valued curves M ap(R, SL(2, R)). For any element A ∈ G characterized by the matrix:

A(x) = α(x) β(x) γ(x) δ(x) , det A(x) = α(x)δ(x) -β(x)γ(x) = 1, (12) 
the action of A on M ap(R, R) is given by:

w(x) A → w(x) = α(x)w(x) + β(x) γ(x)w(x) + δ(x) . ( 13 
)
If A acts on a solution of the Riccati equation:

w ′ (x) = a 0 (x) + a 1 (x)w(x) + a 2 (x)w 2 (x), (14) 
we obtain a solution of a new Riccati equation:

w ′ (x) = a 0 (x) + a 1 (x) w(x) + a 2 (x) w 2 (x), (15) 
the coefficients of which being given by

-→ a (x) = M (A) -→ a (x) + -→ W (x), -→ u (x) =   u 2 (x) u 1 (x) u 0 (x)   , (16) 
where:

M (A) =   δ 2 (x) -γ(x)δ(x) γ 2 (x) -2β(x)δ(x) α(x)δ(x) + β(x)γ(x) -2α(x)γ(x) β 2 (x) -α(x)β(x) α 2 (x)   , -→ W (x) =   W (γ, δ; x) W (δ, α; x) + W (β, γ; x) W (α, β; x)   ( 17 
) (W (f, g; x) = f (x)g ′ (x) -f ′ (x)g(x)
is the wronskian of f (x) and g(x) in x). As noted in [START_REF] Cariñena | Group theoretical approach to the intertwined hamiltonians[END_REF] , Eq.( 16) defines an affine action of G on the set of general Riccati equations.

B. Particular case of the RS equations and finite difference Bäcklund algorithm

The most general elements of G preserving the subset of RS equations has been determined in [START_REF] Cariñena | Group theoretical approach to the intertwined hamiltonians[END_REF] . Among them we find in particular the elements of the form:

A(φ) = 1 √ λ φ(x) λ -φ 2 (x) -1 φ(x) , λ > 0, (18) 
where φ(x) satisfies an RS equation with the same potential as in Eq.( 1) but with a shifted energy:

-φ ′ (x) + φ 2 (x) = V (x) -(E -λ) . (19) 
With this choice w(x) satisfies the RS equation:

-w ′ (x) + w 2 (x) = V φ (x) -λ, (20) 
where

V φ (x) = V (x) + 2φ ′ (x).
Consequently, starting from a given RS function of the discrete spectrum w n (x; a), for every value of k such that E k > E n , we can build an element A (w n ) ∈ G of the form:

A (w n ) = 1 E k (a) -E n (a) w n (x; a) E k (a) -E n (a) -w n 2 (x; a) -1 w n (x; a) (21) 
which transforms w k as:

w k (x; a) A(wn) → w (n) k (x; a) = -w n (x; a) + E k (a) -E n (a) w n (x; a) -w k (x; a) , (22) 
where w

(n) k
is a solution of the RS equation:

-

w (n)′ k (x; a) + w (n) k (x; a) 2 = V (n) (x; a) -E k (a), (23) 
with the same energy E l (a) as in Eq(1) but with a modified potential

V (n) (x; a) = V (x; a) + 2w ′ n (x; a). (24) 
This is the content of the finite-difference Bäcklund algorithm [START_REF] Cariñena | Group theoretical approach to the intertwined hamiltonians[END_REF][START_REF] Cariñena | Integrability of Riccati equation from a group theoretical viewpoint[END_REF][START_REF] Fernandez | A simple generation of exactly solvable anharmonic oscillators[END_REF][START_REF] Mielnik | The finite difference algorithm for higher order supersymmetry[END_REF][START_REF] Adler | Recuttings of polygons[END_REF][START_REF] Adler | Nonlinear chains and Painlevé equations[END_REF] . It transposes at the level of the RS equations the covariance of the set of Schrödinger equations under Darboux transformations [START_REF] Darboux | Sur une proposition relative aux équations linéaires[END_REF][START_REF] Luban | New Schrödinger equations for old: Inequivalence of the Darboux and Abraham-Moses constructions[END_REF][START_REF] Matveev | Darboux Transformations and Solitons[END_REF] . In the following we call A (w n ) a Darboux-Bäcklund Transformation (DBT).

To V (x; a), A (w n ) associates the (quasi)isospectral partner V (n) (x; a). Among the A (w n ), only A (w 0 ) leads to the regular, usual SUSY QM partner V (0) (x; a). The correspondence between the eigenvalues of V (x; a) and V (n) (x; a) is direct. We also have from Eq (7) and Eq(3)

ψ (n) k (x; a) ∼ (w n (x; a) -w k (x; a)) ψ k (x; a), (25) 
that is (see Eq(10)),

w n,k (x; a) = w (n) k (x; a). (26) 
Then, the finite difference Bäcklund algorithm generates exactly the RS functions corresponding to the spectrum of the generalized SUSY partner V (n) of V .

Note that for shape invariant potentials (SIP) 1-3 , A (w 0 ) is in fact an invariance transformation of the RS equations associated to the considered family of potentials (indexed by the multiparameter a), since in this case

V (0) (x; a) = V (x; a 1 ) + R(a) (27) 
and

w (0) k (x, a) = w k-1 (x, a 1 ), (28) 
where a 1 = f (a) and R(a) are two given functions of the multiparameter a.

As we noted before, starting from the RS function w n of a regular excited bound state which has n nodes on the real domain of definition I of V (x; a), we generate via A (w n ) a generalized SUSY partner which presents n singularities on this domain. Nevertheless, the finite difference Bäcklund algorithm can be applied by replacing w n by any other solution of the same RS equation Eq (1), even if this solution does not correspond to a physical state. Knowing w n (x, a), the general solution of Eq(1) is given by

W n (x; a, W 0 ) = w n (x; a) - e 2 x
x 0 wn(s;a)ds

W 0 + x x0 dse 2 s x 0 wn(t;a)dt , (29) 
where W 0 is an arbitrary real parameter. We could then use the DBT A (W n ) to build a generalized SUSY partner potential

V (n) (x; a, W 0 ) = V (x; a) + 2W ′ n (x; a, W 0 )
and look for values of W 0 for which W n and V (n) are not singular. For some potentials it is nevertheless possible, by using specific symmetries, to build directly the researched regular RS functions. Such symmetries exist in particular for the isotonic oscillator.

IV. THE ISOTONIC OSCILLATOR

As shown in [START_REF] Grandati | Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials[END_REF] , the primary translationally shape invariant potentials (TSIP), for which a 1 = a + α, can be classified into two categories in which the potential can be brought into a harmonic or isotonic form respectively, using a change of variables which satisfies a constant coefficient Riccati equation.

The first element of the second category is the isotonic oscillator potential itself (ie the radial effective potential for a three dimensional isotropic harmonic oscillator with zero ground-state energy) defined on the positive real half line

V (x; ω, a) = ω 2 4 x 2 + a(a -1) x 2 + V 0 (ω, a), x > 0, (30) 
with a = l + 1 ≥ 1 and V 0 (ω, a) = -ω a + 1 2 . The shape invariance property of V (x; ω, a) is expressible as

V (0) (x; ω, a) = V (x; ω, a 1 ) + 2ω (31) 
and its spectrum is given by

E n (ω) = 2nω, ψ n (x; ω, a) ∼ exp -w n (x; ω, a) dx , (32) 
where the excited state Riccati-Schrödinger function (RS function) w n (x; ω, a) can be written as a terminating continued fraction as

w n (x; ω, a) = w 0 (x; ω, a) + R n (x; ω, a), (33) 
with

w 0 (x; ω, a) = ω 2 x - a x (34) 
and

R n (x; ω, a) = - E n (ω) w 0 (x; ω, a) + w n-1 (x; ω, a 1 ) (35) = -2nω ωx -(2a + 1) /x- ... 2 (n -j + 1) ω ωx -(2 (a + j) -1) /x- ... 2ω ωx -(2 (a + n) -1) /x .
As it is well known, the isotonic oscillator eigenstates can be also expressed in terms of Generalized Laguerre Polynomials (GLP)

L (λ) n as ψ n (x; ω, a) ∼ x a e -ωx 2 /4 L (a-1/2) n ωx 2 /2 . ( 36 
)
This implies that we have

R n (x; ω, a) = -log L (a-1/2) n ωx 2 /2 ′ = ωx L (a+1/2) n-1 ωx 2 /2 L (a-1/2) n (ωx 2 /2) , (37) 
which is singular at the nodes of ψ n (x; ω, a), that is, at the zeros of L (a-1/2) n (ξ). Concerning these last, we have a classical result of Kienast,Lawton and Hahn [START_REF] Szegö | Orthogonal polynomials[END_REF][START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF] Erdélyi | [END_REF] :

Kienast-Lawton-Hahn's Theorem Suppose that α / ∈ -N. Then L (α)

n (z) admits 1) n positive zeros if α > -1 2) n + [α] + 1 positive zeros if -n < α < -1 ([|α|] means the integer part of α) 3) No positive zero if α < -n
The number of negative zeros is always 0 or 1.

1)

0 if α > -1 2) 0 if -2k -1 < α < -2k and 1 if -2k < α < -2k + 1, with -n < α < -1
3) 0 if n is even and 1 if n is odd, with α < -n This theorem, confirms in particular that, for positive values of a, the RS function w n (x; ω, a) corresponding to a physical bound state and then the associated generalized SUSY partner V (n) (x; ω, a) of V (x; ω, a) present always n singularities on the positive half axis. This family of singular rational extensions of V (x; ω, a) will be called the L0 series.

V. CONFLUENT HYPERGEOMETRIC EQUATION AND ISOTONIC OSCILLATOR

The confluent hypergeometric equation zy ′′ (z; α, λ) + (α + 1z)y ′ (z; α, λ) + λy(z; α, λ) = 0 (38) on the positive half real line, can always been reduced to a Schrödinger equation for an isotonic oscillator. Indeed, if we put z = ωx 2 /2 and φ (x; α, λ) = y(z; α, λ) in Eq. (38), we obtain the following equation for φ (x; α, λ):

φ ′′ (x; α, λ) + ( 2α + 1 x -ωx)φ ′ (x; α, λ) -2ωλφ(x; α, λ) = 0 (39) Then ψ(x; α, λ) ∼ φ (x; α, λ) exp( 1 2 dx( 2α + 1 x -ωx)) = x α+1/2 e -ωx 2 /4 φ (x; α, λ) (40) 
satisfies

-ψ ′′ (x; α, λ) + ω 2 x 2 4 + (α + 1/2) (α -1/2) x 2 -ω(α + 1) ψ(x; α, λ) = 2λωψ (x; α, λ) . (41) 
If we define a = α + 1/2, ψ(x; a -1/2, λ) = ψ λ (x; a) and E λ (ω) = 2λω, we obtain

H(ω, a)ψ λ (x; a) = E λ (ω)ψ λ (x; a), (42) 
where

ψ λ (x; a) ∼ x a e -ωx 2 /4 y(ωx 2 /2; a -1/2, λ), (43) 
H(ω, a) being the usual isotonic hamiltonian (see Eq.( 30))

H(ω, a) = - d 2 dx 2 + V (x; ω, a). (44) 
Eq.( 42) is the Schrödinger equation for the isotonic oscillator, where for physical bound states we must have λ = n. In this case, the confluent hypergeometric equation

zy ′′ (z; a -1/2, n) + (a + 1/2 -z)y ′ (z; a -1/2, n) + ny(z; a -1/2, n) = 0, ( 45 
)
admits the regular solution

y(z; a -1/2, n) = L (a-1/2) n (z) (46) 
and we have

ψ n (x; a) ∼ x a e -ωx 2 /4 L (a-1/2) n (ωx 2 /2). ( 47 
)
This is exactly the physical state for the isotonic oscillator at the energy E n = 2nω.

In fact, as shown by Erdelyi [START_REF] Gómez-Ullate | The Darboux transformation and algebraic deformations of shape invariant potentials[END_REF][START_REF] Gómez-Ullate | Exceptional orthogonal polynomials and the Darboux transformation[END_REF][START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF] Erdélyi | [END_REF] , Eq.( 38) admits quasi rational solutions built from GLP in four sectors of the values of the parameters α and λ

         λ = n : y 0 (z; α, n) = L (α) n (z) λ = -n -α -1 : y 1 (z; α, α + 1 + n) = e z L (α) n (-z) λ = n -α : y 2 (z; α, n -α) = z -α L (-α) n (z) λ = -n -1 : y 3 (z; α, -n -1) = z -α e z L (-α) n (-z) (48)
They correspond to the following four eigenfunctions

         ψ n (x; a) ∼ x a e -ωx 2 /4 L (a-1/2) n (ωx 2 /2), E n (ω) = 2nω ψ -n-α-1/2 (x; a) ∼ x a e ωx 2 /4 L (a-1/2) n (-ωx 2 /2), E -n-α-1/2 (ω) = -2 (n + α + 1/2) ω ψ n-a+1/2 (x; a) ∼ x 1-a e -ωx 2 /4 L -(a-1/2) n (ωx 2 /2), E n-a+1/2 (ω) = 2 (n -a + 1/2) ω ψ -n-1 (x; a) ∼ x 1-a e ωx 2 /4 L -(a-1/2) n (-ωx 2 /2), E -n-1 (ω) = -2 (n + 1) ω (49)
The 3 last cases don't correspond to physical states and physical energies.

VI. DISCRETE SYMMETRIES OF THE ISOTONIC RS EQUATION

Since the isotonic oscillator is shape invariant, the A (w 0 ) DBT is an invariance transformation for the RS equations associated to the family of isotonic oscillators indexed by the couple of parameters (ω, a) (see Eq.( 30)). But this family of RS equations is covariant under other specific transformations which act on the parameters of the isotonic potentials and preserve their functional class. As we will see, the connections between the quasi rational sectors of the confluent hypergeometric equation admit a very simple interpretation in terms of covariance transformations of the isotonic potential.

A. Inversion of ω the parameter

The first covariance transformation for V (x; ω, a) acts on the ω parameter as

ω Γω → (-ω) , V (x; ω, a) Γω → V (x; ω, a) + ω(2a + 1) w n (x; ω, a) Γω → v n (x; ω, a) = w n (x; -ω, a), (50) 
v n (x; ω, a) satisfying (E n (-ω) = -E n (ω) = E -n (ω)) -v ′ n (x; ω, a) + v 2 n (x; ω, a) = V (x; ω, a) -E -(n+a+1/2) (ω) . (51) 
From Eq.( 33), Eq.( 34) and Eq.( 35), writing

v n (x; ω, a) = v 0 (x; ω, a) + Q n (x; ω, a), (52) 
we deduce

v 0 (x; ω, a) = - ω 2 x - a x (53) 
and

Q n (x; ω, a) = E n (ω) v 0 (x; ω, a) + v n-1 (x; ω, a 1 ) (54) = - 2nω ωx + (2a + 1) /x+ ... 2 (n -j + 1) ω ωx + (2 (a + j) -1) /x+ ... 2ω ωx + (2 (a + n) -1) /x = -log L (a-1/2) n -ωx 2 /2 ′ .
Clearly, for a ≥ 1 (l ≥ 0), v n (x; ω, a) does not present any singularity on the positive real half line. This result is coherent with the above mentioned Kienast-Lawton-Hahn's theorem since the argument of the GLP L (a-1/2) n in the expression of Q n is now a strictly negative value.

Note that we recover exactly the same results if we use the "spatial Wick rotation" 19,21-24

w n (x; ω, a) → v n (x; ω, a) = iw n (ix; ω, a). (55) 
This means that the Γ ω transformation send the singularities of w n , which are initially all on the real axis, on the imaginary axis. This explains why the new RS function v n does not present any singularity on the real line. Finally, comparing Eq.(49) to Eq.(52), Eq.(53) and Eq.(54), we see that Γ ω transforms an eigenfunction of the first sector into an eigenfunction of the second sector and then coincides with the Kummer's transformation [START_REF] Erdélyi | [END_REF] .

B. Inversion of a the parameter

The second covariance transformation acts on the a parameter as

a Γa → 1 -a, V (x; ω, a) Γa → V (x; ω, a) + ω(2a -1) w n (x; ω, a) Γa → u n (x; ω, a) = w n (x; ω, 1 -a), (56) 
u n (x; ω, a) satisfying -u ′ n (x; ω, a) + u 2 n (x; ω, a) = V (x; ω, a) -E n+1/2-a (ω) . (57) 
From Eq.( 33), Eq.( 34) and Eq.( 35) we deduce

u n (x; ω, a) = u 0 (x; ω, a) + P n (x; ω, a), (58) 
where

u 0 (x; ω, l) = ω 2 x + a -1 x (59) 
and

P n (x; ω, a) = E n (ω) v 0 (x; ω, a) + v n-1 (x; ω, a -1 ) (60) = -2nω ωx + (2a -3) /x- ... 2 (n -j + 1) ω ωx + (2 (a -j) -1) /x- ... 2ω ωx + (2 (a -n) -1) /x = -log L -(a-1/2) n ωx 2 /2 ′ .
If in this case the argument of the GLP in the right hand member is strictly positive, the associated α = -(a -1/2) parameter being strictly negative. In accordance with the Kienast-Lawton-Hahn's theorem, by taking a sufficently large, we can decrease the number of real zeros and in particular we can eliminate all the positive zeros. Thus, if a > n + 1/2, L -(a-1/2) n ωx 2 /2 is strictly positive for any value of x. This means that P n (x; ω, a) and u n (x; ω, a) are not singular on ]0, +∞[ when a = n + m + 1/2, with m > 0.

Note that

P 1 (x; ω, a) = -2ω ωx + (2a -3) /x = Q 1 (x; ω, a -2). (61) 
Finally, comparing Eq.(49) to Eq.( 58), Eq.( 59) and Eq.( 60), we see that Γ a transforms an eigenfunction of the first sector into an eigenfunction of the third sector.

C. Inversion of both parameters ω and a

Finally, we can also act simultaneously on both parameter as (ω, a)

Γa•Γω → (-ω, 1 -a) V (x; ω, a) Γa•Γω → V (x; ω, a) + 2ω w n (x; ω, a) Γa•Γω → r n (x; ω, a) = w n (x; -ω, 1 -a), (62) 
r n (x; ω, a) satisfying -r ′ n (x; ω, a) + r 2 n (x; ω, a) = V (x; -ω, 1 -a) -E n (-ω) = V (x; ω, a) -E -(n+1) (ω). ( 63 
)
From Eq.( 33), Eq.( 34) and Eq.( 35) we have

r n (x; ω, a) = r 0 (x; ω, a) + T n (x; ω, a), (64) 
where

r 0 (x; ω, a) = - ω 2 x + a -1 x = -w 0 (x; ω, a -1) (65) 
and

T n (x; ω, a) = E n (ω) r 0 (x; ω, a) + r n-1 (x; ω, a -1 ) (66) = 2nω ωx -(2a -3) /x+ ... 2 (n -j + 1) ω ωx -(2 (a -j) -1) /x+ ... 2ω ωx -(2 (a -n) -1) /x = -log L -(a-1/2) n -ωx 2 /2 ′ .
In this case, the argument of the GLP in the right hand member and the associated α = -(a -1/2) parameter are both strictly negative. In accordance with the Kienast-Lawton-Hahn's theorem, by taking a sufficently large, we can have any zero on the negative half line if n is even (n = 2l) and one if n is odd. Thus, if n = 2l and a > 2l + 1/2, L -(a-1/2) 2l -ωx 2 /2 is strictly positive for any value of x. This means that T 2l (x; ω, a) and r 2l (x; ω, a) are not singular on ]0, +∞[ when a = 2l + m + 1/2, with m > 0.

Note that

T 1 (x; ω, a) = -2ω ωx -(2a -3) /x = R 1 (x; ω, a -2). ( 67 
)
Finally, comparing Eq.(49) to Eq.( 64), Eq.( 65) and Eq.( 66), we see that Γ a • Γ ω transforms an eigenfunction of the first sector into an eigenfunction of the fourth sector and corresponds also to a Kummer's transformation [START_REF] Erdélyi | [END_REF] .

VII. REGULAR RATIONAL EXTENSIONS OF THE ISOTONIC OSCILLATOR

Since the transformations considered above are covariance transformations for the family of isotonic potentials which regularize the RS functions, we can use these regularized RS functions into the finite difference Bäcklund algorithm and generate regular isospectral partners for the isotonic potential.

A. Rational extension of the L1 series w k and v n are associated to the same potential but with different eigenvalues (cf Eq(51))

-v ′ n (x; ω, a) + v 2 n (x; ω, a) = V (x; ω, a) -E -(n+a+1/2) (ω) -w ′ k (x; ω, a) + w 2 k (x; ω, a) = V (x; ω, a) -E k (ω) , (68) 
which means that we can use v n to build a DBT A (v n ) and apply it to w k as

w k (x; ω, a) A(vn) → w (n) k (x; ω, a) = -v n (x; ω, a) + E k (ω) -E -(n+a+1/2) (ω) v n (x; ω, a) -w k (x; ω, a) , (69) 
where w

(n) k (x; ω, a) satisfies -w (n)′ k (x; ω, a) + w (n) k (x; ω, a) 2 = V (n) (x; ω, a) -E k (ω) , (70) 
with

V (n) (x; ω, a) = V (x; ω, a) + 2v ′ n (x; ω, a). ( 71 
)
For every n ≥ 0, V (n) (x; ω, a) is regular on the positive half line and isospectral to V (x; ω, a)

V (n) (x; ω, a) ≡ iso V (x; ω, a). (72) 
Clearly, w

(n) -(x; ω, a) = -v n (x; ω, a)
is also a solution of Eq(70) associated to the eigenvalue E -(n+a+1/2) (ω) < E 0 (ω) = 0. Nevertheless, its asymptotic behaviour is similar to the one of w (0) -(x; ω, a) = -ωx/2a/x and consequently

ψ (n) -(x; ω, a) ∼ exp -w (n) -(x; ω, a)dx (73) 
cannot satisfy the boundary condition associated to the physically allowed eigenstates.

All the physical eigenfunctions of

H (n) (ω, a) = -d 2 /dx 2 + V (n) (x; ω, a) are then of the form ψ (n) k (x; ω, a) = 1 E k (ω) -E -(n+a+1/2) (ω) A (v n ) ψ k (x; ω, a), k ≥ 0 (74) 
and H (n) is strictly isospectral to H. Since (cf Eq(53))

V (x; ω, a) + 2v ′ 0 (x; ω, a) = V (x; ω, a 1 ), (75) 
Eq(71) and Eq(72) can still be written as

V (n) (x; ω, a) = V (x; ω, a 1 ) + 2Q ′ n (x; ω, a) ≡ iso V (x; ω, a). (76) 
For instance, we have for n = 1

V (1) (x; ω, a) = V (x; ω, a 1 ) + 4ω ωx 2 + 2a + 1 - 8ω (2a + 1) (ωx 2 + 2a + 1) 2 (77) 
and we recover the first rationally-extended radial oscillator obtained by Quesne [START_REF] Quesne | Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics[END_REF] . For n = 2, we have immediately from Eq.( 52), Eq.( 53) and Eq.( 54)

-v 2 (x; ω, a -1) = ω 2 x + a -1 x + 4ωx ωx 2 + (2a + 1) (ωx 2 + (2a + 1)) 2 -2 (2a + 1) , (78) 
which corresponds to the superpotential associated to the second rationally-extended radial oscillator of the L1 series obtained by Quesne [START_REF] Quesne | Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics[END_REF] . More generally, we have

Q n (x; ω, a) = log L (a-1/2) n -ωx 2 /2 ′ . (79) 
In Odake-Sasaki 's approach [START_REF] Odake | Infinitely many shape invariant potentials and new orthogonal polynomials[END_REF][START_REF] Odake | Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials[END_REF][START_REF] Sasaki | Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations[END_REF] , this corresponds to a prepotential of the form

W n (x; ω, a) = - ω 4 x 2 + a log x + log L (a-1/2) n -ωx 2 /2 (80) 
and we recover (up to a shift in a → a + n -2) the result obtained in [START_REF] Odake | Infinitely many shape invariant potentials and new orthogonal polynomials[END_REF][START_REF] Odake | Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials[END_REF][START_REF] Sasaki | Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations[END_REF] and 19 for the potentials associated to the L1 exceptional orthogonal polynomials.

B. Rational extension of the L2 series

As in the preceding case (cf Eq(57)), we can use u n to build a DBT A (u n )

w k (x; ω, a) A(un) → w (n) k (x; ω, a) = -u n (x; ω, a) + E k (ω) -E n+1/2-a (ω) u n (x; ω, a) -w k (x; ω, a) , (81) 
where w

(n) k (x; ω, a) satisfies -w (n)′ k (x; ω, a) + w (n) k (x; ω, a) 2 = U (n) (x; ω, a) -E k (ω), (82) 
with

U (n) (x; ω, a) = V (x; ω, a) + 2u ′ n (x; ω, a). (83) 
If a > n + 1/2, U (n) (x; ω, a) is regular on the positive half line and isospectral to V (x; ω, a)

U (n) (x; ω, a) ≡ iso V (x; ω, a). (84) 
In this case, as for the L1 series, we see immediately that w

(n) -(x; ω, a) = -u n (x; ω, a
) is another solution of Eq(82) associated to the eigenvalue E n+1/2-a (ω)(ω) < E 0 (ω) = 0. But here again, the asymptotic behaviour of w 

ψ (n) -(x; ω, a) ∼ exp -w (n) -(x; ω, a)dx (85) 
cannot satisfy the boundary condition associated to the physically acceptable eigenstates.

All the physical eigenfunctions of H (n) (ω, a) = -d 2 /dx 2 + U (n) (x; ω, a) are then of the form

ψ (n) k (x; ω, a) = 1 E k (ω) -E n+1/2-a (ω) A (u n ) ψ k (x; ω, a), k ≥ 0 (86)
and in the L2 series, H (n) is also strictly isospectral to H. Since (cf Eq.( 59))

V (x; ω, a) + 2u ′ 0 (x; ω, a) = V (x; ω, a -1 ), (87) 
using Eq.( 83) and Eq.( 84), we obtain

U (n) (x; ω, a) = V (x; ω, a -1 ) + 2P ′ n (x; ω, a) ≡ iso V (x; ω, a). (88) 
Note that, since P 1 (x; ω, a) = Q 1 (x; ω, a -2), the first rational extension of this family has the same functional form than the first rational extension of the preceding family.

For instance, we have for n = 2

P 2 (x; ω, a) = - 4ωx ωx 2 + (2a -5) (ωx 2 + (2a -5)) 2 + 2(2a -5) , (89) 
which corresponds to Quesne 10 second rational extension of the L2 series.

We have also, by redefining a → n + a V (x; ω, a n-1 )

≡ iso V (x; ω, a n ) + 2P ′ n (x; ω, a n ), (90) 
where

P n (x; ω, a n ) = - 2nω ωx + (2n + 2a -3) /x- ... 2 (n -j + 1) ω ωx + 2 ((n + a -j) -1) /x- ... 2ω ωx + (2a -1) /x (91) = -log L -(a+n-1/2) n ωx 2 /2
′ is regular on the positive half line for a > 0. In Sasaki and al [START_REF] Odake | Another set of infinitely many exceptional (X l ) Laguerre polynomials[END_REF][START_REF] Sasaki | Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations[END_REF] formulation, we recover the associated prepotential via

W n (x; ω, a) = -u n (x; ω, a + n)dx = - ω 4 x 2 - a + n -1 x + log L -(a+n-1/2) n ωx 2 /2 (92) 
and the family of regular rational extensions obtained is exactly the L2 one.

C. Rational extension of the L3 series Finally, w k and r n being also associated to the same potential but with different eigenvalues (cf Eq(63)), here again we can use r n to build a DBT A (r n ) and apply it to w k w k (x; ω, a)

A(rn) → w (n) k (x; ω, a) = -r n (x; ω, a) + E k (ω) -E -(n+1) (ω) r n (x; ω, a) -w k (x; ω, a) , (93) 
where w

(n) k (x; ω, a) satisfies -w (n)′ k (x; ω, a) + w (n) k (x; ω, a) 2 = W (n) (x; ω, a) -E k (ω), (94) 
with

W (n) (x; ω, a) = V (x; ω, a) + 2r ′ n (x; ω, a). (95) 
If n = 2l and a > 2l + 1/2, W (2l) (x; ω, a) is regular on the positive half line and isospectral to V (x; ω, a)

W (2l) (x; ω, a) ≡ iso V (x; ω, a). (96) 
As for the eigenfunctions of H (2l) (ω, a) = -d 2 /dx 2 + W (2l) (x; ω, a) generated from those of by the DBT Eq(93), they are given by

ψ (2l) k (x; ω, a) = 1 E k (ω) -E -(2l+1) (ω) A (r 2l ) ψ k (x; ω, a), k ≥ 0 (97) 
and constitute physically allowed eigenstates. But for the L3 series the isospectrality is no more strict as for the preceding series. Indeed, Eq(94) is evidently satisfied by the regular RS function 

and contrarily to the preceding cases

ψ (2l) -(x; ω, a) = exp dxw (2l) -(x; ω, a) (100) 
is a physical state associated to the eigenvalue E -(n+1) (ω) < 0, that is, the fundamental state of the hamiltonian H (2l) (ω, a). Consequently, H (2l) and H are only quasi-isospectral in this series, H (2l) admitting a supplementary energy level lower than those of H. Since (cf Eq.(65))

V (x; ω, a) + 2r ′ 0 (x; ω, a) = V (x; ω, a -1 ) -2ω, (101) 
using Eq.(95) and Eq.(96), we obtain

W (n) (x; ω, a) = V (x; ω, a -1 ) -2ω + 2P ′ n (x; ω, a) ≡ iso V (x; ω, a). (102) 
Since T 1 (x; ω, a) = R 1 (x; ω, a -2), the first rational extension of this family has the same functional form than the first rational extension of the L0 family.

For n = 2, we have

T 2 (x; ω, a) = -4ωx ωx 2 -(2a -3) (ωx 2 -(2a -3)) 2 + 2(2a -3) , (103) 
which is regular if a ≥ 2 (l ≥ 1) and corresponds to Quesne 10 second rational extension of the L3 series.

If we redefine a → 2l + 1/2 + a,

T 2l (x; ω, 2l + a + 1/2) = -log L -(a+2l) 2l -ωx 2 /2 ′ ( 104 
)
and W (2l) (x; ω, a + 2l + 1/2) are regular on the positive half line for a > 0.

VIII. SHAPE INVARIANCE PROPERTIES OF THE EXTENSIONS OF THE ISOTONIC OSCILLATOR

As observed initially by Quesne 9,10 on the n = 1 and n = 2 examples, the rational extended potentials of the L1 and L2 series inherit of the shape invariance properties of the isotonic potential. Several general proofs of this result have been recently proposed [START_REF] Odake | Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials[END_REF][START_REF] Sasaki | Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations[END_REF] , in particular by Gomez-Ullate et al 8 . In the present approach, these shape invariance properties can be derived in a very direct and transparent manner.

A. Shape invariance of the extended potentials of the L1 series

The superpartner of a potential of the L1 series V (n) (x; ω, a) = V (x; ω, a) + 2v ′ n (x; ω, a) is defined as

V (n) (x; ω, a) = V (n) (x; ω, a) + 2w (n)′ 0 (x; ω, a), n ≥ 0, (105) w (n) 
0 (x; ω, a) (see Eq.( 69)) being the RS function associated to the ground level of V (n) (E 0 (ω) = 0). We then have

V (n) (x; ω, a) = V (n) (x; ω, a) -2v ′ n (x; ω, a) -2 E -(n+a+1/2) (ω) v n (x; ω, a) -w 0 (x; ω, a) ′ (106) = V (x; ω, a) -2 E -(n+a+1/2) (ω) v n (x; ω, a) -w 0 (x; ω, a) ′ .
Using Eq(53), the shape invariance property of V (x; ω, a) in Eq.( 31) can also be formulated as

V (x; ω, a) + 2v ′ 0 (x; ω, a) = V (x; ω, a 1 ). (107) 
Inserting Eq(107) in Eq(106), we obtain

V (n) (x; ω, a) = V (x; ω, a 1 ) -2 E -(n+a+1/2) (ω) v n (x; ω, a) -w 0 (x; ω, a) + v 0 (x; ω, a) ′ (108) = V (n) (x; ω, a 1 ) -2 ∆ 1 n ′ ,
where

∆ 1 n = E -(n+a+1/2) (ω) v n (x; ω, a) -w 0 (x; ω, a) + v 0 (x; ω, a) + v n (x; ω, a 1 ). ( 109 
)
As an example, consider the special case n = 1. Using Eq(54), we can write ∆ We obtain

V [START_REF] Cooper | Supersymmetry in Quantum Mechanics[END_REF] (x; ω, a) = V (1) (x; ω, a 1 ) + 2ω, (111) which implies that V (1) (x; ω, a) has the same shape invariance properties as V (x; ω, a). More generally, using Eq(54) and defining z = -ωx 2 /2 and α = a + 1/2, we obtain combined with Eq(113) gives then directly

∆ 1 n = -ωx, (116) 
that is,

V (n) (x; ω, a) = V (n) (x; ω, a 1 ) + 2ω. ( 117 
)
Consequently V (n) (x; ω, a) inherits of the shape invariance properties of V (x; ω, a) for every value of n.

B. Shape invariance of the extended potentials of the L2 series

The superpartner of a potential U (n) (x; ω, a) = V (x; ω, a) + 2u ′ n (x; ω, a) of the L2 series is defined as n) . Then of the L3 series, the other ones being singular on the positive half line. The secondary potentials of the L1 and L2 series inherit of the same translational shape invariance properties as the primary isotonic potential. These new potentials being obtained, it is still possible to use the Krein-Adler theorem 40,[START_REF] Adler | A modification of Crum method[END_REF] and its subsequent extension obtained by Samsonov 42 , to generate other secondary potentials by applications of some particular n th order DBT.

U (n) (x;
A similar study can be conducted for the other second category potentials (Darboux-Pöschl-Teller or Scarf hyperbolic and trigonometric) but also for the first category potentials. These last 20 include the well known case of the onedimensional harmonic oscillator [START_REF] Gómez-Ullate | The Darboux transformation and algebraic deformations of shape invariant potentials[END_REF][START_REF] Grandati | Solvable rational extension of translationally shape invariant potentials[END_REF][START_REF] Shnol | Equidistant spectra of anharmonic oscillators[END_REF][START_REF] Samsonov | Darboux transformation and exactly solvable potentials with quasi-equidistant spectrum[END_REF][START_REF] Tkachuk | Supersymmetric method for constructing quasi-exactly and conditionally-exactly solvable potentials[END_REF][START_REF] Fellows | Factorization solution of a family of quantum nonlinear oscillators[END_REF] but also the Morse potential (the regular algebraic deformations of which having already be obtained by Gomez-Ullate et al 4 ), the effective radial Kepler-Coulomb potential and the Rosen-Morse potentials. This work is in progress and will be the object of a forthcoming paper. 

-

  (x; ω, a) is similar to the one of w (0) -(x; ω, a) = -ωx/2 -(a -1)/x and consequently

-

  (x; ω, a) = -r 2l (x; ω, a), (98) the asymptotic behaviour of which being identical to the one of w (0) -(x; ω, a) = -r 0 (x; ω, a). Then ψ (0) -(x; ω, a) = exp dxw (0) -(x; ω, a) ∼ ψ 0 (x; ω, a)

∆ 1 n

 1 = E -(a+n+1/2) (ω) 1 Q n (x; ω, a)ωx + (v 0 (x; ω, a) + v 0 (x; ω, a 1 )) + Q n (x; ω, a 1 )But the generalized Laguerre polynomials satisfy the identityL (α) n (z) + L (α+1) n-1 (z) = L (α+1)

n- 1

 1 (z) -zL (α+1) n (z) -(nz) L (α) n (z) = 0,(115)

(

  ω, a) = U (n) (x; ω, a) + 2w ω, a) (see Eq.(81)) being the RS function associated to the ground level of U (
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  (x; ω, a 1 ) + v 0 (x; ω, a 2 )

	1 1 = -2ω (a + 3/2) = (2a + 3) ωx + 2a+1 v0(x;ω,a)+v0(x;ω,a1) -ωx 1 E1(ω) x ωx 2 + (2a + 3) -ωx -2a + 1 x	-ωx --ωx 2 + (2a + 3) 2a + 1 x + 2ωx	E 1 (ω) v 0 (110) = -ωx.

U (n) (x; ω, a) = V (x; ω, a) -2 E n+1/2-a (ω) u n (x; ω, a)w 0 (x; ω, a) ′ .

(119)

Using as before, the shape invariance properties of V (x; ω, a), this gives

where

Using Eq(54) and defining z = ωx 2 /2 and α = 1/2a, this becomes

But the generalized Laguerre polynomials satisfy the identity

which combined to Eq(113) gives

Then U (n) (x; ω, a) has the same shape invariance properties as V (x; ω, a) for every value of n, that is

C. SUSY partners of the L3 series extended potentials

In this case, the superpartner of the extended potential V (n) (x; ω, a) = V (x; ω, a) + 2r ′ n (x; ω, a) is defined as

since -r n (x; ω, a) is the RS function associated to the ground level of W (n) . The SUSY partner of W (n) (x; ω, a) is nothing but the initial potential V (x; ω, a) itself and the DBT A (v n ) is the reciprocal of a SUSY partnership.

IX. CONCLUSION AND PERSPECTIVES

In this article, a new method to generate the regular rational extensions of the isotonic oscillator associated to the L1 and L2 families of exceptional Laguerre polynomials is presented. It is based on first order Darboux-Bäcklund Transformations which are built from excited states RS functions regularized by using specific symmetries of the isotonic potential. Starting from this primary shape invariant potential and using the combination of these symmetries and DBT (as covariance transformations), we generate four towers of secondary potentials, the four series L0, L1, L2 and L3. Among them, the potentials belonging to the L1 and L2 series are regular as well as half of the potentials