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Solvable rational extensions of the isotonic oscillator

Yves Grandati
Institut de Physique, Equipe BioPhyStat, ICPMB, IF CNRS 2843,

Université Paul Verlaine-Metz, 1 Bd Arago, 57078 Metz, Cedex 3, France

Combining recent results on rational solutions of the Riccati-Schrödinger equations for shape
invariant potentials to the finite difference Bäcklund algorithm and specific symmetries of the isotonic
potential, we show that it is possible to generate the three infinite sets (L1, L2 and L3 families) of
regular rational solvable extensions of this potential in a very direct and transparent way.

PACS numbers:

I. INTRODUCTION

In quantum mechanics, the rarity of the potentials which are exactly solvable in closed-form (most of them belonging
to the class of shape-invariant potentials1–3) gives a undeniable importance to the reseach of new families of such
potentials. A possible way to generate new solvable potentials is to start from the known ones and to construct regular
rational extensions of them. If the procedure has a long history, in the last years important progress have been made
in this direction4–18. In a recent work19 we proposed an approach allowing to generate such regular extensions
starting from every translationally shape-invariant potential (TSIP) of the second category (as defined in20). For
this, we use regularized excited states Riccati-Schrödinger (RS) functions as superpotentials in a generalized SUSY
partnership. The regularisation scheme corresponds to a ”spatial Wick rotation” which eliminates the singularities
from the real axis, a device already suggested by Shnol’21 in 1994 as a way to generate rational extensions of the
harmonic potential. In the following years, this suggestion has been developped by Samsonov and Ovcharov22 and
Tkachuk23. Recently Fellows and Smith24 rediscovered this technique in the case of the harmonic oscillator, the second
rational extension of which being the so-called CPRS potential25. In19, we have extended the procedure to cover the
whole set of TSIP belonging to the second category. For the isotonic oscillator, we recovered the L1 family of rational
extensions discovered by Gomez-Ullate, Kamran and Milson4–8, Quesne9–12 and Odake, Sasaki et al13,16,17. For the
other second category potentials, the infinite set of regular quasi-rational extensions that we obtain coincides with
the J1 family4–7,9–13,16,17.
In the present article, combining the finite difference Bäcklund algorithm with new regularization schemes which

are based on specific symmetries of the isotonic potential, we show how the extension of the SUSY QM partnership
to excited states allows to generate the three infinite sets L1, L2 and L3 of regular rationally solvable extensions of
the isotonic potential (as well as the singular L0 and L3 ones) in a direct and systematic way. This approach leads to
a simple and transparent proof of the shape-invariance of the potentials of the L1 and L2 series and gives interesting
results concerning the SUSY partners of the L0 and L3 potentials.
The paper is organized as follows. We first recall how the generalization of the SUSY partnership based on excited

states leads to a series of singular rational extensions of the initial potential. We then introduce basic elements
concerning the finite difference Bäcklund algorithm viewed as a set of covariance transformations for the class of
Riccati-Schrödinger equations and we interpret the generalized SUSY partnership in this perspective. In the third
and fourth sections, we recapitulate some results concerning the isotonic oscillator and its connection with confluent
hypergeometric equation and the Kienast-Lawton-Hahn’s Theorem which describes the distribution of the zeros of
the Laguerre functions on the real axis. The fifth section is devoted to present the set of parameters transforms which
are discrete symmetries of the isotonic potential. Using them as regularization transformations, we show then that
the finite difference Bäcklund algorithm based on the corresponding regularized RS functions generates directly the
three series L1, L2 and L3 of regular rationally solvable extensions of the isotonic potential. In the last section, we
prove the shape-invariance of the potentials of the L1 and L2 series and show that, if the potentials of the L0 and
L3 series do not preserve their functional form in the SUSY partnership, this last connects a given potential to its
neighbours in the same series.
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II. GENERALIZED SUSY PARTNERSHIP BASED ON EXCITED STATES: L0 SERIES OF RATIONAL

EXTENSIONS

Consider a family of closed form exactly solvable hamiltonians H(a) = −d2/dx2+V (x; a), a ∈ R
m, x ∈ I ⊂ R, the

associated bound states spectrum of which being given by (En(a), wn(x; a)), where wn(x; a) = −ψ′

n(x; a)/ψn(x; a)
is the Riccati-Schrödinger (RS) function associated to the nth bound state eigenfunction ψn(x; a). The Riccati-
Schrödinger (RS) equation20 for the level En(a) is then

− w′

n(x; a) + w2
n(x; a) = V (x; a)− En(a), (1)

where we suppose E0(a) = 0. The RS function presents n real singularities associated to the n simple nodes of the
eigenstates ψn(x; a). As it is well known

26,27, H(a) admits infinitely many different factorizations of the form

H(a)− En(a) = A+ (wn)A (wn) , (2)

where

A (wn) = d/dx+ wn(x; a), (3)

with, in particular

A (wn)ψn(x; a) = 0. (4)

This allows to associate to H(a) or V (x; a) an infinite family of partners given by

H(n)(a)− En(a) = A (wn)A
+ (wn) = −d2/dx2 + V (n)(x; a), (5)

with

V (n)(x; a) = V (x; a) + 2w′

n(x; a). (6)

For n ≥ 1, these potentials are all singular at the nodes of ψn(x; a) and are defined on open intervals only.
On these domains, H(n)(a) is (quasi)isospectral to H(a). Indeed, writing

ψ
(n)
k (x; a) = A (wn)ψk(x; a), (7)

it is easy to verify that we have for any k

H(n)(a)ψ
(n)
k (x; a) = Ek(a)ψ

(n)
k (x; a), (8)

that is, ψ
(n)
k (x; a) is an eigenstate of H(n)(a) associated to the eigenvalue Ek(a). We write symbolically

V (n)(x; a) ≡
iso

V (x; a), (9)

where ≡
iso

means ”isospectral to”. Defining

wn,k(x; a) = −ψ
(n)′
k (x; a)

ψ
(n)
k (x; a)

, (10)

Eq.(8) gives, for k > n

− w′

n,k(x; a) + wn,k(x; a)
2 = V (n)(x; a) − Ek(a). (11)

This scheme generalizes the SUSY QM partnership, by using the excited state RS functions wn as superpotentials.
However, only for the ground state n = 0, the factorization and then the partner potential V (0)(a) = V (x; a)+2w′

0(x; a)
are non singular and we recover the usual SUSY QM partnership1,2.
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III. FINITE DIFFERENCE BÄCKLUND ALGORITHM

We can consider the preceding partnership in a different way which gives a preeminent role to the covariance
transform of the RS equations class.

A. Invariance group of the Riccati equations

As established by Cariñena et al.28,29, the finite-difference Bäcklund algorithm is a consequence of the invariance of

the set of Riccati equations under a subset of the group G of smooth SL(2,R)-valued curves Map(R, SL(2,R)). For
any element A ∈ G characterized by the matrix:

A(x) =

(
α(x) β(x)
γ(x) δ(x)

)
, detA(x) = α(x)δ(x) − β(x)γ(x) = 1, (12)

the action of A on Map(R,R) is given by:

w(x)
A→ w̃(x) =

α(x)w(x) + β(x)

γ(x)w(x) + δ(x)
. (13)

If A acts on a solution of the Riccati equation:

w′(x) = a0(x) + a1(x)w(x) + a2(x)w
2(x), (14)

we obtain a solution of a new Riccati equation:

w̃′(x) = ã0(x) + ã1(x)w̃(x) + ã2(x)w̃
2(x), (15)

the coefficients of which being given by

−→̃
a (x) =M(A)−→a (x) +−→

W (x), −→u (x) =



u2(x)
u1(x)
u0(x)


 , (16)

where:

M(A) =




δ2(x) −γ(x)δ(x) γ2(x)
−2β(x)δ(x) α(x)δ(x) + β(x)γ(x) −2α(x)γ(x)

β2(x) −α(x)β(x) α2(x)


 ,

−→
W (x) =




W (γ, δ;x)
W (δ, α;x) +W (β, γ;x)

W (α, β;x)


 (17)

(W (f, g;x) = f(x)g′(x) − f ′(x)g(x) is the wronskian of f(x) and g(x) in x). As noted in28, Eq.(16) defines an affine
action of G on the set of general Riccati equations.

B. Particular case of the RS equations and finite difference Bäcklund algorithm

The most general elements of G preserving the subset of RS equations has been determined in28. Among them we
find in particular the elements of the form:

A(φ) =
1√
λ

(
φ(x) λ− φ2(x)
−1 φ(x)

)
, λ > 0, (18)

where φ(x) satisfies an RS equation with the same potential as in Eq.(1) but with a shifted energy:
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− φ′(x) + φ2(x) = V (x)− (E − λ) . (19)

With this choice w̃(x) satisfies the RS equation:

− w̃′(x) + w̃2(x) = Ṽφ(x)− λ, (20)

where Ṽφ(x) = V (x) + 2φ′(x).
Consequently, starting from a given RS function of the discrete spectrum wn(x; a), for every value of k such that

Ek > En , we can build an element A (wn) ∈ G of the form:

A (wn) =
1√

Ek(a)− En(a)

(
wn(x; a) Ek(a)− En(a)− wn

2(x; a)
−1 wn(x; a)

)
(21)

which transforms wk as:

wk(x; a)
A(wn)→ w

(n)
k (x; a) = −wn(x; a) +

Ek(a)− En(a)

wn(x; a)− wk(x; a)
, (22)

where w
(n)
k is a solution of the RS equation:

− w
(n)′
k (x; a) +

(
w

(n)
k (x; a)

)2
= V (n)(x; a)− Ek(a), (23)

with the same energy El(a) as in Eq(1) but with a modified potential

V (n)(x; a) = V (x; a) + 2w′

n(x; a). (24)

This is the content of the finite-difference Bäcklund algorithm28–33. It transposes at the level of the RS equations
the covariance of the set of Schrödinger equations under Darboux transformations34–36. In the following we call A (wn)
a Darboux-Bäcklund Transformation (DBT).
To V (x; a), A (wn) associates the (quasi)isospectral partner V

(n)(x; a). Among the A (wn), only A (w0) leads to the
regular, usual SUSY QM partner V (0)(x; a). The correspondence between the eigenvalues of V (x; a) and V (n)(x; a) is
direct. We also have from Eq(7) and Eq(3)

ψ
(n)
k (x; a) ∼ (wn(x; a)− wk(x; a))ψk(x; a), (25)

that is (see Eq(10)),

wn,k(x; a) = w
(n)
k (x; a). (26)

Then, the finite difference Bäcklund algorithm generates exactly the RS functions corresponding to the spectrum
of the generalized SUSY partner V (n) of V .
Note that for shape invariant potentials (SIP)1–3, A (w0) is in fact an invariance transform of the RS equations

associated to the considered family of potentials (indexed by the multiparameter a), since in this case

V (0)(x; a) = V (x; a1) +R(a) (27)

and

w
(0)
k (x, a) = wk−1(x, a1), (28)

where a1 = f(a) and R(a) are two given functions of the multiparameter a.
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As we noted before, starting from the RS function wn of a regular excited bound state which has n nodes on the real
domain of definition I of V (x; a), we generate via A (wn) a generalized SUSY partner which presents n singularities
on this domain. Nevertheless, the finite difference Bäcklund algorithm can be applied by replacing wn by any other
solution of the same RS equation Eq(1), even if this solution does not correspond to a physical state. Knowing
wn(x, a), the general solution of Eq(1) is given by

Wn(x; a,W0) = wn(x; a)−
e
2
∫

x

x0
wn(s;a)ds

W0 +
∫ x

x0

dse
2
∫

s

x0
wn(t;a)dt

, (29)

where W0 is an arbitrary real parameter. We could then use the DBT A (Wn) to build a generalized SUSY partner
potential V (n)(x; a,W0) = V (x; a)+ 2W ′

n(x; a,W0) and look for values of W0 for which Wn and V (n) are not singular.
For some potentials it is nevertheless possible, by using specific symmetries, to build directly the researched regular
RS functions. Such symmetries exist in particular for the isotonic oscillator.

IV. THE ISOTONIC OSCILLATOR

As shown in20, the primary translationally shape invariant potentials (TSIP), for which a1 = a+α, can be classified
into two categories in which the potential can be brought into a harmonic or isotonic form respectively, using a change
of variables which satisfies a constant coefficient Riccati equation.
The first element of the second category is the isotonic oscillator potential itself (ie the radial effective potential for

a three dimensional isotropic harmonic oscillator with zero ground-state energy) defined on the positive real half line

V (x;ω, a) =
ω2

4
x2 +

a(a− 1)

x2
+ V0(ω, a), x > 0, (30)

with a = l + 1 ≥ 1 and V0(ω, a) = −ω
(
a+ 1

2

)
. The shape invariance property of V (x;ω, a) is expressible as

V (0)(x;ω, a) = V (x;ω, a1) + 2ω (31)

and its spectrum is given by

En (ω) = 2nω, ψn (x;ω, a) ∼ exp

(
−
∫
wn (x;ω, a) dx

)
, (32)

where the excited state Riccati-Schrödinger function (RS function) wn (x;ω, a) can be written as a terminating con-
tinued fraction as

wn(x;ω, a) = w0(x;ω, a) +Rn(x;ω, a), (33)

with

w0(x;ω, a) =
ω

2
x− a

x
(34)

and

Rn(x;ω, a) = − En (ω)

w0(x;ω, a) + wn−1(x;ω, a1)
(35)

=
−2nω

ωx− (2a+ 1) /x− � ... �
2 (n− j + 1)ω

ωx− (2 (a+ j)− 1) /x− � ... �
2ω

ωx− (2 (a+ n)− 1) /x
.

As it is well known, the isotonic oscillator eigenstates can be also expressed in terms of Generalized Laguerre

Polynomials (GLP) L
(λ)
n as
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ψn (x;ω, a) ∼ xae−ωx2/4
L
(a−1/2)
n

(
ωx2/2

)
. (36)

This implies that we have

Rn(x;ω, a) = −
(
log
(
L
(a−1/2)
n

(
ωx2/2

)))′
= ωx

L
(a+1/2)
n−1

(
ωx2/2

)

L
(a−1/2)
n (ωx2/2)

, (37)

which is singular at the nodes of ψn (x;ω, a), that is, at the zeros of L
(a−1/2)
n (ξ). Concerning these last, we have a

classical result of Kienast,Lawton and Hahn37–39:
Kienast-Lawton-Hahn’s Theorem

Suppose that α /∈ −N. Then L
(α)
n (z) admits

1) n positive zeros if α > −1
2) n+ [α] + 1 positive zeros if −n < α < −1 ([|α|] means the integer part of α)
3) No positive zero if α < −n

The number of negative zeros is always 0 or 1.
1) 0 if α > −1
2) 0 if −2k − 1 < α < −2k and 1 if −2k < α < −2k + 1, with −n < α < −1
3) 0 if n is even and 1 if n is odd, with α < −n

This theorem, confirms in particular that, for positive values of a, the RS function wn(x;ω, a) corresponding to a
physical bound state and then the associated generalized SUSY partner V (n)(x;ω, a) of V (x;ω, a) present always n
singularities on the positive half axis. This family of singular rational extensions of V (x;ω, a) will be called the L0
series.

V. CONFLUENT HYPERGEOMETRIC EQUATION AND ISOTONIC OSCILLATOR

The confluent hypergeometric equation

zy′′(z;α, λ) + (α+ 1− z)y′(z;α, λ) + λy(z;α, λ) = 0 (38)

on the positive half real line, can always been reduced to a Schrödinger equation for an isotonic oscillator. Indeed, if
we put z = ωx2/2 and φ (x;α, λ) = y(z;α, λ) in Eq.(38), we obtain the following equation for φ (x;α, λ):

φ′′(x;α, λ) + (
2α+ 1

x
− ωx)φ′(x;α, λ) − 2ωλφ(x;α, λ) = 0 (39)

Then

ψ(x;α, λ) ∼ φ (x;α, λ) exp(
1

2

∫
dx(

2α+ 1

x
− ωx)) = xα+1/2e−ωx2/4φ (x;α, λ) (40)

satisfies

− ψ′′(x;α, λ) +

(
ω2x2

4
+

(α+ 1/2) (α− 1/2)

x2
− ω(α+ 1)

)
ψ(x;α, λ) = 2λωψ (x;α, λ) . (41)

If we define a = α+ 1/2, ψ(x; a− 1/2, λ) = ψλ(x; a) and Eλ(ω) = 2λω, we obtain

H(ω, a)ψλ(x; a) = Eλ(ω)ψλ(x; a), (42)

where

ψλ(x; a) ∼ xae−ωx2/4y(ωx2/2; a− 1/2, λ), (43)
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H(ω, a) being the usual isotonic hamiltonian (see Eq.(30))

H(ω, a) = − d2

dx2
+ V (x;ω, a). (44)

Eq.(42) is the Schrödinger equation for the isotonic oscillator, where for physical bound states we must have λ = n.
In this case, the confluent hypergeometric equation

zy′′(z; a− 1/2, n) + (a+ 1/2− z)y′(z; a− 1/2, n) + ny(z; a− 1/2, n) = 0, (45)

admits the regular solution

y(z; a− 1/2, n) = L(a−1/2)
n (z) (46)

and we have

ψn(x; a) ∼ xae−ωx2/4L(a−1/2)
n (ωx2/2). (47)

This is exactly the physical state for the isotonic oscillator at the energy En = 2nω.
In fact, as shown by Erdelyi4,8,38,39, Eq.(38) admits quasi rational solutions built from GLP in four sectors of the

values of the parameters α and λ





λ = n : y0(z;α, n) = L
(α)
n (z)

λ = −n− α− 1 : y1(z;α, α+ 1 + n) = ezL
(α)
n (−z)

λ = n− α : y2(z;α, n− α) = z−αL
(−α)
n (z)

λ = −n− 1 : y3(z;α,−n− 1) = z−αezL
(−α)
n (−z)

(48)

They correspond to the following four eigenfunctions





ψn(x; a) ∼ xae−ωx2/4L
(a−1/2)
n (ωx2/2), En(ω) = 2nω

ψ−n−α−1/2(x; a) ∼ xaeωx2/4L
(a−1/2)
n (−ωx2/2), E−n−α−1/2(ω) = −2 (n+ α+ 1/2)ω

ψn−a+1/2(x; a) ∼ x1−ae−ωx2/4L
−(a−1/2)
n (ωx2/2), En−a+1/2(ω) = 2 (n− a+ 1/2)ω

ψ−n−1(x; a) ∼ x1−aeωx2/4L
−(a−1/2)
n (−ωx2/2), E−n−1(ω) = −2 (n+ 1)ω

(49)

The 3 last cases don’t correspond to physical states and physical energies.

VI. DISCRETE SYMMETRIES OF THE ISOTONIC RS EQUATION

Since the isotonic oscillator is shape invariant, the A (w0) DBT is an invariance transformation for the RS equations
associated to the family of isotonic oscillators indexed by the couple of parameters (ω, a) (see Eq.(30)). But this family
of RS equations is covariant under other specific transformations which act on the parameters of the isotonic potentials
and preserve their functional class. As we will see, the connections between the quasi rational sectors of the confluent
hypergeometric equation admit a very simple interpretation in terms of covariance transformations of the isotonic
potential.

A. Inversion of ω the parameter

The first covariance transformation for V (x;ω, a) acts on the ω parameter as

ω
Γω→ (−ω) ,

{
V (x;ω, a)

Γω→ V (x;ω, a) + ω(2a+ 1)

wn(x;ω, a)
Γω→ vn(x;ω, a) = wn(x;−ω, a),

(50)
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vn(x;ω, a) satisfying (En (−ω) = −En (ω) = E−n (ω))

− v′n(x;ω, a) + v2n(x;ω, a) = V (x;ω, a)− E−(n+a+1/2) (ω) . (51)

From Eq.(33), Eq.(34) and Eq.(35), writing

vn(x;ω, a) = v0(x;ω, a) +Qn(x;ω, a), (52)

we deduce

v0(x;ω, a) = −ω
2
x− a

x
(53)

and

Qn(x;ω, a) =
En(ω)

v0(x;ω, a) + vn−1(x;ω, a1)
(54)

= − 2nω

ωx+ (2a+ 1) /x+
� ... �

2 (n− j + 1)ω

ωx+ (2 (a+ j)− 1) /x+
� ... �

2ω

ωx+ (2 (a+ n)− 1) /x

= −
(
log
(
L
(a−1/2)
n

(
−ωx2/2

)))′
.

Clearly, for a ≥ 1 (l ≥ 0), vn(x;ω, a) does not present any singularity on the positive real half line. This result is

coherent with the above mentioned Kienast-Lawton-Hahn’s theorem since the argument of the GLP L
(a−1/2)
n in the

expression of Qn is now a strictly negative value.
Note that we recover exactly the same results if we use the ”spatial Wick rotation”19,21–24

wn(x;ω, a) → vn(x;ω, a) = iwn(ix;ω, a). (55)

This means that the Γω transform send the singularities of wn, which are initially all on the real axis, on the
imaginary axis. This explains why the new RS function vn does not present any singularity on the real line. Finally,
comparing Eq.(49) to Eq.(52), Eq.(53) and Eq.(54), we see that Γω transforms an eigenfunction of the first sector into
an eigenfunction of the second sector and then coincides with the Kummer transform39.

B. Inversion of a the parameter

The second covariance transformation acts on the a parameter as

a
Γa→ 1− a,

{
V (x;ω, a)

Γa→ V (x;ω, a) + ω(2a− 1)

wn(x;ω, a)
Γa→ un(x;ω, a) = wn(x;ω, 1− a),

(56)

un(x;ω, a) satisfying

− u′n(x;ω, a) + u2n(x;ω, a) = V (x;ω, a)− En+1/2−a (ω) . (57)

From Eq.(33), Eq.(34) and Eq.(35) we deduce

un(x;ω, a) = u0(x;ω, a) + Pn(x;ω, a), (58)

where

u0(x;ω, l) =
ω

2
x+

a− 1

x
(59)

and
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Pn(x;ω, a) =
En(ω)

v0(x;ω, a) + vn−1(x;ω, a−1)
(60)

=
−2nω

ωx+ (2a− 3) /x− � ... �
2 (n− j + 1)ω

ωx+ (2 (a− j)− 1) /x− � ... �
2ω

ωx+ (2 (a− n)− 1) /x

= −
(
log
(
L
−(a−1/2)
n

(
ωx2/2

)))′
.

If in this case the argument of the GLP in the right hand member is strictly positive, the associated α = − (a− 1/2)
parameter being strictly negative. In accordance with the Kienast-Lawton-Hahn’s theorem, by taking a sufficently
large, we can decrease the number of real zeros and in particular we can eliminate all the positive zeros. Thus, if

a > n+1/2, L
−(a−1/2)
n

(
ωx2/2

)
is strictly positive for any value of x. This means that Pn(x;ω, a) and un(x;ω, a) are

not singular on ]0,+∞[ when a = n+m+ 1/2, with m > 0.
Note that

P1(x;ω, a) =
−2ω

ωx+ (2a− 3) /x
= Q1(x;ω, a− 2). (61)

Finally, comparing Eq.(49) to Eq.(58), Eq.(59) and Eq.(60), we see that Γa transforms an eigenfunction of the first
sector into an eigenfunction of the third sector.

C. Inversion of both parameters ω and a

Finally, we can also act simultaneously on both parameter as

(ω, a)
Γa◦Γω→ (−ω, 1− a)

{
V (x;ω, a)

Γa◦Γω→ V (x;ω, a) + 2ω

wn(x;ω, a)
Γa◦Γω→ rn(x;ω, a) = wn(x;−ω, 1− a),

(62)

rn(x;ω, a) satisfying

− r′n(x;ω, a) + r2n(x;ω, a) = V (x;−ω, 1− a)− En(−ω) = V (x;ω, a)− E−(n+1)(ω). (63)

From Eq.(33), Eq.(34) and Eq.(35) we have

rn(x;ω, a) = r0(x;ω, a) + Tn(x;ω, a), (64)

where

r0(x;ω, l) = −ω
2
x+

a− 1

x
(65)

and

Tn(x;ω, a) =
En(ω)

r0(x;ω, a) + rn−1(x;ω, a−1)
(66)

=
2nω

ωx− (2a− 3) /x+
� ... �

2 (n− j + 1)ω

ωx− (2 (a− j)− 1) /x+
� ... �

2ω

ωx− (2 (a− n)− 1) /x

= −
(
log
(
L
−(a−1/2)
n

(
−ωx2/2

)))′
.

In this case, the argument of the GLP in the right hand member and the associated α = − (a− 1/2) parameter are
both strictly negative. In accordance with the Kienast-Lawton-Hahn’s theorem, by taking a sufficently large, we can
have any zero on the negative half line if n is even (n = 2l) and one if n is odd. Thus, if n = 2l and a > 2l + 1/2,

L
−(a−1/2)
2l

(
−ωx2/2

)
is strictly positive for any value of x. This means that T2l(x;ω, a) and r2l(x;ω, a) are not singular

on ]0,+∞[ when a = 2l +m+ 1/2, with m > 0.
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Note that

T1(x;ω, a) =
−2ω

ωx− (2a− 3) /x
= R1(x;ω, a− 2). (67)

Finally, comparing Eq.(49) to Eq.(64), Eq.(65) and Eq.(66), we see that Γa ◦Γω transforms an eigenfunction of the
first sector into an eigenfunction of the fourth sector and corresponds also to a Kummer transform39.

VII. REGULAR RATIONAL EXTENSIONS OF THE ISOTONIC OSCILLATOR

Since the transformations considered above are covariance transformations for the family of isotonic potentials which
regularize the RS functions, we can use these regularized RS functions into the finite difference Bäcklund algorithm
and generate regular isospectral partners for the isotonic potential.

A. Rational extension of the L1 series

wk and vn are associated to the same potential but with different eigenvalues (cf Eq(51))

{
−v′n(x;ω, a) + v2n(x;ω, a) = V (x;ω, a)− E−(n+a+1/2) (ω)

−w′

k(x;ω, a) + w2
k(x;ω, a) = V (x;ω, a)− Ek (ω) ,

(68)

which means that we can use vn to build a DBT A (vn) and apply it to wk as

wk(x;ω, a)
A(vn)→ w

(n)
k (x;ω, a) = −vn(x;ω, a) +

Ek(ω)− E−(n+a+1/2)(ω)

vn(x;ω, a)− wk(x;ω, a)
, (69)

where w
(n)
k (x;ω, a) satisfies

− w
(n)′
k (x;ω, a) +

(
w

(n)
k (x;ω, a)

)2
= V (n)(x;ω, a)− Ek (ω) , (70)

with

V (n)(x;ω, a) = V (x;ω, a) + 2v′n(x;ω, a). (71)

For every n ≥ 0, V (n)(x;ω, a) is regular on the positive half line and isospectral to V (x;ω, a)

V (n)(x;ω, a) ≡
iso

V (x;ω, a). (72)

As for the eigenfunctions, we have

ψ
(n)
k (x;ω, a) =

1√
Ek(a)− E−(n+a+1/2)(a)

A (vn)ψk(x;ω, a), (73)

which is an eigenstate of H(n)(ω, a) = −d2/dx2 + V (n)(x;ω, a) regular and normalizable.
Since (cf Eq(53))

V (x;ω, a) + 2v′0(x;ω, a) = V (x;ω, a1), (74)

Eq(71) and Eq(72) can still be written as
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V (n)(x;ω, a) = V (x;ω, a1) + 2Q′

n(x;ω, a) ≡
iso

V (x;ω, a). (75)

For instance, we have for n = 1

V (1)(x;ω, a) = V (x;ω, a1) +
4ω

ωx2 + 2a+ 1
− 8ω (2a+ 1)

(ωx2 + 2a+ 1)2
(76)

and we recover the first rationally-extended radial oscillator obtained by Quesne10. For n = 2, we have immediately
from Eq.(52), Eq.(53) and Eq.(54)

− v2(x;ω, a− 1) =
ω

2
x+

a− 1

x
+

4ωx
(
ωx2 + (2a+ 1)

)

(ωx2 + (2a+ 1))2 − 2 (2a+ 1)
, (77)

which corresponds to the superpotential associated to the second rationally-extended radial oscillator of the L1 series
obtained by Quesne10.
More generally, we have

Qn(x;ω, a) =
(
log
(
L
(a−1/2)
n

(
−ωx2/2

)))′
. (78)

In Odake-Sasaki ’s approach13,16,17, this corresponds to a prepotential of the form

Wn (x;ω, a) = −ω
4
x2 + a log x+ log

(
L
(a−1/2)
n

(
−ωx2/2

))
(79)

and we recover (up to a shift in a→ a+n− 2) the result obtained in13,16,17 and19 for the potentials associated to the
L1 exceptional orthogonal polynomials.

B. Rational extension of the L2 series

As in the preceding case (cf Eq(57)), we can use un to build a DBT A (un)

wk(x;ω, a)
A(un)→ w

(n)
k (x;ω, a) = −un(x;ω, a) +

Ek(ω)− En+1/2−a(ω)

un(x;ω, a)− wk(x;ω, a)
, (80)

where w
(n)
k (x;ω, a) satisfies

− w
(n)′
k (x;ω, a) +

(
w

(n)
k (x;ω, a)

)2
= U (n)(x;ω, a)− Ek(ω), (81)

with

U (n)(x;ω, a) = V (x;ω, a) + 2u′n(x;ω, a). (82)

If a > n+ 1/2, U (n)(x;ω, a) is regular on the positive half line and isospectral to V (x;ω, a)

U (n)(x;ω, a) ≡
iso

V (x;ω, a). (83)

As for the eigenfunctions, we have
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ψ
(n)
k (x;ω, a) =

1√
Ek(a)− En+1/2−a(a)

A (un)ψk(x;ω, a), (84)

which is an eigenstate regular and normalizable of H(n)(ω, a) = −d2/dx2 + U (n)(x;ω, a).
Since (cf Eq.(59))

V (x;ω, a) + 2u′0(x;ω, a) = V (x;ω, a−1), (85)

using Eq.(82) and Eq.(83), we obtain

U (n)(x;ω, a) = V (x;ω, a−1) + 2P ′

n(x;ω, a) ≡
iso

V (x;ω, a). (86)

Note that, since P1(x;ω, a) = Q1(x;ω, a − 2), the first rational extension of this family has the same functional
form than the first rational extension of the preceding family.
For instance, we have for n = 2

P2(x;ω, a) = − 4ωx
(
ωx2 + (2a− 5)

)

(ωx2 + (2a− 5))
2
+ 2(2a− 5)

, (87)

which corresponds to Quesne10 second rational extension of the L2 series.
We have also, by redefining a→ n+ a

V (x;ω, an−1) ≡
iso

V (x;ω, an) + 2P ′

n(x;ω, an), (88)

where

Pn(x;ω, an) = − 2nω

ωx+ (2n+ 2a− 3) /x− � ... �
2 (n− j + 1)ω

ωx+ 2 ((n+ a− j)− 1) /x− � ... �
2ω

ωx+ (2a− 1) /x
(89)

= −
(
log
(
L
−(a+n−1/2)
n

(
ωx2/2

)))′

is regular on the positive half line for a > 0. In Sasaki and al14,17 formulation, we recover the associated prepotential
via

Wn (x;ω, a) = −
∫
un(x;ω, a+ n)dx = −ω

4
x2 − a+ n− 1

x
+ log

(
L
−(a+n−1/2)
n

(
ωx2/2

))
(90)

and the family of regular rational extensions obtained is exactly the L2 one.

C. Rational extension of the L3 series

Finally, wk and rn being also associated to the same potential but with different eigenvalues (cf Eq(63)), here again
we can use rn to build a DBT A (rn) and apply it to wk

wk(x;ω, a)
A(rn)→ w

(n)
k (x;ω, a) = −rn(x;ω, a) +

Ek(ω)− E−(n+1)(ω)

rn(x;ω, a)− wk(x;ω, a)
, (91)

where w
(n)
k (x;ω, a) satisfies

− w
(n)′
k (x;ω, a) +

(
w

(n)
k (x;ω, a)

)2
=W (n)(x;ω, a)− Ek(ω), (92)
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with

W (n)(x;ω, a) = V (x;ω, a) + 2r′n(x;ω, a). (93)

If n = 2l and a > 2l + 1/2, W (2l)(x;ω, a) is regular on the positive half line and isospectral to V (x;ω, a)

W (2l)(x;ω, a) ≡
iso

V (x;ω, a). (94)

As for the eigenfunctions, we have

ψ
(2l)
k (x;ω, a) =

1√
Ek(a)− E−(2l+1)(a)

A (r2l)ψk(x;ω, a), (95)

which is an eigenstate regular and normalizable of H(2l)(ω, a) = −d2/dx2 +W (2l)(x;ω, a).
Since (cf Eq.(65))

V (x;ω, a) + 2r′0(x;ω, a) = V (x;ω, a−1)− 2ω, (96)

using Eq.(93) and Eq.(94), we obtain

W (n)(x;ω, a) = V (x;ω, a−1)− 2ω + 2P ′

n(x;ω, a) ≡
iso

V (x;ω, a). (97)

Since T1(x;ω, a) = R1(x;ω, a− 2), the first rational extension of this family has the same functional form than the
first rational extension of the L0 family.

For n = 2, we have

T2(x;ω, a) =
−4ωx

(
ωx2 − (2a− 3)

)

(ωx2 − (2a− 3))
2
+ 2(2a− 3)

, (98)

which is regular if a ≥ 2 (l ≥ 1) and corresponds to Quesne10 second rational extension of the L3 series.
If we redefine a→ 2l+ 1/2 + a,

T2l(x;ω, 2l + a+ 1/2) = − log
(
L
−(a+2l)
2l

(
−ωx2/2

))′
(99)

and W (2l)(x;ω, a+ 2l + 1/2) are regular on the positive half line for a > 0.

VIII. SHAPE INVARIANCE PROPERTIES OF THE EXTENSIONS OF THE ISOTONIC OSCILLATOR

As observed initially by Quesne9,10 on the n = 1 and n = 2 examples, the rational extended potentials of the L1
and L2 series inherit of the shape invariance properties of the isotonic potential. Several general proofs of this result
have been recently proposed16,17, in particular by Gomez-Ullate et al8. In the present approach, this shape invariance
properties can be derived in a very direct and transparent manner and we can prove that, although not strictly shape
invariant, the L0 and L3 series of extended potentials are stable under the SUSY partnership.

A. Shape invariance of the extended potentials of the L1 series

The superpartner of a potential of the L1 series V (n)(x;ω, a) = V (x;ω, a) + 2v′n(x;ω, a) is defined as

Ṽ (n)(x;ω, a) = V (n)(x;ω, a) + 2w
(n)′
0 (x;ω, a), n ≥ 0, (100)

w
(n)
0 (x;ω, a) (see Eq.(69)) being the RS function associated to the ground level of V (n) (E0 (ω) = 0).
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We then have

Ṽ (n)(x;ω, a) = V (n)(x;ω, a)− 2v′n(x;ω, a)− 2

(
E−(n+a+1/2)(ω)

vn(x;ω, a)− w0(x;ω, a)

)′

(101)

= V (x;ω, a)− 2

(
E−(n+a+1/2)(ω)

vn(x;ω, a)− w0(x;ω, a)

)′

.

Using Eq(53), the shape invariance property of V (x;ω, a) in Eq.(31) can also be formulated as

V (x;ω, a) + 2v′0(x;ω, a) = V (x;ω, a1). (102)

Inserting Eq(102) in Eq(101), we obtain

Ṽ (n)(x;ω, a) = V (x;ω, a1)− 2

(
E−(n+a+1/2)(ω)

vn(x;ω, a)− w0(x;ω, a)
+ v0(x;ω, a)

)′

(103)

= V (n)(x;ω, a1)− 2
(
∆1

n

)′
,

where

∆1
n =

E−(n+a+1/2)(ω)

vn(x;ω, a)− w0(x;ω, a)
+ v0(x;ω, a) + vn(x;ω, a1). (104)

As an example, consider the special case n = 1. Using Eq(54), we can write

∆1
1 = −2ω (a+ 3/2)

1
E1(ω)

v0(x;ω,a)+v0(x;ω,a1)
− ωx

− ωx− 2a+ 1

x
+

E1(ω)

v0(x;ω, a1) + v0(x;ω, a2)
(105)

= (2a+ 3)
ωx+ 2a+1

x

ωx2 + (2a+ 3)
− ωx− 2a+ 1

x
− 2ωx

ωx2 + (2a+ 3)
= −ωx.

We obtain

Ṽ (1)(x;ω, a) = V (1)(x;ω, a1) + 2ω, (106)

which implies that V (1)(x;ω, a) has the same shape invariance properties as V (x;ω, a).
More generally, using Eq(54) and defining z = −ωx2/2 and α = a+ 1/2, we obtain

∆1
n = E−(a+n+1/2)(ω)

1

Qn(x;ω, a)− ωx
+ (v0(x;ω, a) + v0(x;ω, a1)) +Qn(x;ω, a1) (107)

=
2α+ 2

x

L
(α−1)
n (z)

L
(α)
n−1 (z) + L

(α−1)
n (z)

− ωx
L
(α+1)
n−1 (z) + L

(α)
n (z)

L
(α)
n (z)

− 2α

x
.

But the generalized Laguerre polynomials satisfy the identity

L
(α)
n (z) + L

(α+1)
n−1 (z) = L

(α+1)
n (z) , (108)

which gives

∆1
n = −ωx(α+ n)L

(α−1)
n (z) + zL

(α+1)
n (z)− αL

(α)
n (z)

zL
(α)
n (z)

. (109)

The other fundamental recurrence
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(n+ α)L
(α)
n−1 (z)− zL(α+1)

n (z)− (n− z)L(α)
n (z) = 0, (110)

combined with Eq(108) gives then directly

∆1
n = −ωx, (111)

that is,

Ṽ (n)(x;ω, a) = V (n)(x;ω, a1) + 2ω. (112)

Consequently V (n)(x;ω, a) inherits of the shape invariance properties of V (x;ω, a) for every value of n.

B. Shape invariance of the extended potentials of the L2 series

The superpartner of a potential U (n)(x;ω, a) = V (x;ω, a) + 2u′n(x;ω, a) of the L2 series is defined as

Ũ (n)(x;ω, a) = U (n)(x;ω, a) + 2w
(n)′
0 (x;ω, a), n ≥ 0, (113)

w
(n)
0 (x;ω, a) (see Eq.(80)) being the RS function associated to the ground level of U (n) . Then

Ũ (n)(x;ω, a) = V (x;ω, a)− 2

(
En+1/2−a(ω)

un(x;ω, a)− w0(x;ω, a)

)′

. (114)

Using as before, the shape invariance properties of V (x;ω, a), this gives

Ũ (n)(x;ω, a) = V (x;ω, a1)− 2

(
En+1/2−a(ω)

un(x;ω, a)− w0(x;ω, a)
+ v0(x;ω, a)

)
(115)

= U (n)(x;ω, a1)− 2
(
∆2

n

)′
,

where

∆2
n = En+1/2−a(ω)

1

un(x;ω, a)− w0(x;ω, a)
+ v0(x;ω, a) + un(x;ω, a1). (116)

Using Eq(54) and defining z = ωx2/2 and α = 1/2− a, this becomes

∆2
n =

(2n− 2a+ 1)ω

Pn(x;ω, a) +
2a−1

x

+ Pn(x;ω, a1) = ωx

(
L
(α)
n (z)

L
(α−1)
n−1 (z)

+
(n+ α)L

(α)
n (z)

−αL(α)
n (z) + zL

(α+1)
n−1 (z)

)
, (117)

But the generalized Laguerre polynomials satisfy the identity

zL
(α+1)
n−1 (z) = (n+ α)L

(α)
n−1 (z)− nL(α)

n (z) , (118)

which combined to Eq(108) gives

∆2
n = −ωx. (119)

Then U (n)(x;ω, a) has the same shape invariance properties as V (x;ω, a) for every value of n, that is

Ũ (n)(x;ω, a) = U (n)(x;ω, a1) + 2ω. (120)
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C. SUSY partners of the L0 series extended potentials

The superpartner of a singular potential V (n)(x;ω, a) = V (x;ω, a) + 2w′

n(x;ω, a) of the L0 series is defined as

Ṽ (n)(x;ω, a) = V (n)(x;ω, a) + 2w
(n)′
0 (x;ω, a), n ≥ 1 (121)

w
(n)
0 (x;ω, a) (see Eq(22)) being the RS function associated to the ground level of V (n) .
We then have

Ṽ (n)(x;ω, a) = V (n)(x;ω, a)− 2w′

n(x;ω, a)− 2

(
En(ω)

wn(x;ω, a)− w0(x;ω, a)

)
′

(122)

= V (x;ω, a)− 2

(
En(ω)

Rn(x;ω, a)

)
′

.

or, using Eq(35)

Ṽ (n)(x;ω, a) = V (x;ω, a) + 2
(
w′

0(x;ω, a) + w′

n−1(x;ω, a1)
)
. (123)

Using Eq(31) we have

Ṽ (n)(x;ω, a) = V (x;ω, a1) + 2ω + 2w′

n−1(x;ω, a1) (124)

= V (n−1)(x;ω, a1) + 2ω.

Consequently, V (n) has not the same shape invariance properties as V . In fact the SUSY partner of V (n) has the
same functional form than V (n−1) (rather than V (n) itself).

D. SUSY partners of the L3 series extended potentials

The superpartner of a potential W (n)(x;ω, a) = V (x;ω, a) + 2r′n(x;ω, a) of the L3 series is defined as

Ṽ (n)(x;ω, a) = V (n)(x;ω, a) + 2w
(n)′
0 (x;ω, a), n ≥ 0, (125)

w
(n)
0 (x;ω, a) (see Eq(91)) being the RS function associated to the ground level of W (n).
We have

W̃ (n)(x;ω, a) = V (x;ω, a)− 2

(
E−n−1(ω)

rn(x;ω, a)− w0(x;ω, a)

)
′

(126)

= V (x;ω, a) + 2

(
2(n+ 1)ω

−ωx+ 2a−1
x + Tn(x;ω, a)

)
′

.

But Eq(66) can be rewritten as

Tn+1(x;ω, a1) =
2 (n+ 1)ω

−ωx+ 2a−1
x + Tn(x;ω, a)

. (127)

and Eq(126) becomes

W̃ (n)(x;ω, a) = V (x;ω, a) + 2T ′

n+1(x;ω, a1) (128)

= V (x;ω, a) + 2r′n+1(x;ω, a1)− 2r′0(x;ω, a1).



17

Using the identity

r0(x;ω, a1) = −ω
2
x+

a

x
= −w0(x;ω, a) (129)

we obtain

W̃ (n)(x;ω, a) = V (x;ω, a1) + 2ω + 2r′n+1(x;ω, a1),

that is,

W̃ (n)(x;ω, a) =W (n+1)(x;ω, a1) + 2ω. (130)

It results that W (n) has not the same shape invariance properties as V , the SUSY partner of W (n) having the same
functional form as W (n+1).

IX. CONCLUSION AND PERSPECTIVES

In this article, a new method to generate the regular rational extensions of the isotonic oscillator associated to the
L1 and L2 families of exceptional Laguerre polynomials is presented. It is based on first order Darboux-Bäcklund
Transformations which are built from excited states RS functions regularized by using specific symmetries of the
isotonic potential. Starting from this primary shape invariant potential and using the combination of these symmetries
and DBT (as covariance transformations), we generate four towers of secondary potentials, the four series L0, L1, L2
and L3. Among them, the potentials belonging to the L1 and L2 series are regular as well as half of the potentials
of the L3 series, the other ones being singular on the positive half line. The secondary potentials of the L1 and L2
series inherit of the same translational shape invariance properties as the primary isotonic potential.
These new potentials being obtained, it is still possible to use the Krein-Adler theorem40,41 and its subsequent

extension obtained by Samsonov42, to generate other secondary potentials by applications of some particular nth

order DBT.
A similar study can be conducted for the other second category potentials (Darboux-Pöschl-Teller or Scarf hyperbolic

and trigonometric). This work is in progress and will be the object of a forthcoming paper.
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6 D. Gómez-Ullate, N. Kamran, and R. Milson, “An extended class of orthogonal polynomials defined by a Sturm-Liouville
problem”, J. Math. Anal. Appl. 359, 352 (2009).
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