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Abstract

In this paper, systems which interact permanently with their environment
are considered. Such systems are encountered, for instance, in real-time
control or signal processing systems, C>-systems, man—machine interfaces,
to mention just a few. The design and implementation of such systems
require a concurrent programming language which can be used to verify and
synthetize the synchronization mechanisms, and to perform transformations
of the concurrent source code to match a particular target architecture.
Synchronous languages are convenient tools for such a purpose: they rely
on the assumption that: 1/ internal actions of synchronous systems are
instantaneous, and, 2/ communication with the environment is performed
via instantaneous flashes involving some external stimuli. In this paper, we
present a mathematical model of synchronous languages and illustrate its
use on the SIGNAL language. This model is denotational, and encompasses
both relational and functional styles of specification. It allows us to answer
fundamental questions related to synchronous languages, such as “what are
the basic constructions which should be provided by such languages?”



1 Introduction

Reactive systems' are considered in this paper. These are systems which in-

teract permanently with their environment at rates which may be driven by
this environment. Such systems are encountered, for instance, in real-time
control or signal processing systems, C>—systems, man-machine interfaces,
to mention just a few. It is usually recognized that a reliable design of
such systems should be supported by a concurrent programming style. On
the other hand, the highly demanding nature of these applications forces
to consider as well the requirement of highly efficient and reliable imple-
mentation, in both cases of sequential or distributed implementation. This
requires powerful formal tools to prove equivalence of such different imple-
mentations. Hence fundamental studies on mathematical models of reactive
systems are requested to provide the basis for the above mentioned tools.
We shall not discuss here the drawbacks and merits of current tools in
programming reactive systems (finite state machines, Petri Nets, concurrent
programming languages such as ADA or OccaM); the interested reader is
referred to the excellent discussion in [8] [9] on this subject. We shall merely
concentrate on the discussion of the synchronous approach we follow in this

paper.

1.1 The basic synchronicity hypotheses

While classical (i.e. asynchronous) concurent languages do implicitly or
explicitly refer to some external and universal time reference, the notion of
“time” is completely different in synchronous reactive systems. To be more
explicit, synchronous reactive systems differ from asynchronous ones in the
following aspects:

1. The internal mechanisms of the system: every action (computation or
internal communication) is instantaneous, i.e. has a zero duration;

2. The communications with the external world: the set of the possible
input channels is fixed and known in advance, and the flows carried
by these channels are specified through both

e the values they carry

e a total ordering of the “instants” at which these values are avail-
able at the external ports.

'this name was introduced in [19] [20], and extensively used in [8]



Of course, this last requirement is the fundamental feature which character-
izes the way synchronous reactive systems communicate with the external
world, compared to asynchronous ones. Let us illustrate this point using a
simple example. Consider a reactive system with two inputs:

1. a data input carrying an ordered file of data named x,

2. an interrupt input port named s.

Then, the specification of an input history according to the synchronous
point of view must be of the form

X1 X9 X3 1
1 s L 84 elc..

(as usually, L denotes the absence of data) i.e. both the values and their
global interleaving must be specified; the integer index n = 1,2, ... is used
for this purpose. The progression of this index n has to be considered as
the proper notion of time flow in synchronous systems. In other words, the
essentially nondeterministic character of the communications with the exter-
nal world in reactive systems is concentrated inside some (ignored) external
mechanism which decides this global ordering. Hence, the advantage of the
synchronous point of view is that the nondeterminism of external communi-
cations is strictly concentrated on this mechanism, and it is not propagated
inside the body of the system itself.

A first consequence is that any function of, or any constraint on these in-
put stimuli may be specified by mathematical recurrent equations. Another
fundamental consequence is that the notion of time is local to a given sub-
system: there is no universal time reference, as we shall see later when
communications will be studied.

Theses are the fundamental reasons of the power of the synchronous
approach. Among languages relying on this synchronicity assumption are
the imperative language ESTEREL ([8] [18]), the declarative and functional
language LUSTRE ([12] [11] [27]), and the declarative and relational language
SIGNAL we discuss in this paper; related to the same formalism is also the
approach of STATECHARTS in [19] [20].

1.2 On the semantics of SIGNAL

As argued before, SIGNAL must rely on a mathematical model; such a model
and the language were developed simultaneously. In fact, two models of



different styles were introduced.

A didactic overview of the fundamental issues raised by SIGNAL may be
found in [7]. Then, an operational semantics was given in [6] in terms of
conditional rewriting rules a la Plotkin [28], and, in [5], it was shown how
this operational semantics may be used to develop the SIGNAL compiler. On
the other hand, a data—flow oriented introduction to SIGNAL is presented in
[17], where the Trace model for SIGNAL, we further develop in the present
paper, was introduced first.

The purpose of the present paper is different. We want to concentrate on
fundamental aspects of the synchronous approach for reactive systems. This
will be done by developping a new denotational semantics. This denotational
model is related to the mathematical notion of “discrete—time dynamical
system”, or “system of recurrent equations”, a discrete—time counterpart of
differential systems. Such ideas are found in Lucip [3] [2] which is pro-
posed as a model for data—flow languages. But the allowance of uncausality
and particular ways to handle timing make LuciD not suitable as a model
of reactive systems, as discussed in [11]. To our knowledge, the pioneering
work relevant to the denotational style of semantics is the Dynamic Network
Processes model introduced in [22] [21]. DNP’s are functions mapping input
histories into output histories; their denotational semantics has been stud-
ied in detail in [15]. Kahn’s model has been used with suitable extensions
and modifications in [27] to cope with the synchronicity assumption as a
model for the LUSTRE language. Let us emphasize that these are non trivial
modifications of the original DNP model, which was essentially free from
any notion of synchronicity. Studies on synchronisation mechanisms within
data—flow languages are presented in the excellent article [13], see also [23]
for a data—flow model loosely related to SIGNAL.

Here, we shall introduce our approach via the very simple mathematical
notion of Multiple Clocked Recurrent Systems (MCRS), an immediate ex-
tension of systems of recurrent equations to properly reason about synchro-
nization and timing. From this easily accepted starting point, the relevance
of a “Trace” model of relational style will clearly follow. By “relational”
we mean a model where behaviours are specified via constraints or relations
rather than functions. This model may be considered as a suitable general-
ization of w-languages (or Biichi automata in the regular case [10][25][24])
in order to handle synchronisation and data types which are not finite al-
phabets; they also have a flavour of the theory of traces [1]. This Trace



model is first used to give the semantics of SIGNAL.

Then our purpose is to study fundamental questions related to syn-
chronous reactive systems such as: what are the basic constructions a syn-
chronous language should provide? To study this, we must refine our purely
relational Trace model in order to be able to introduce azioms that our basic
synchronisation tools (signals and clocks) should satisfy. This yields the £
model. The ideas behind the £ model are borrowed from the probability and
ergodic theories ([26][14]). Its advantages are that

1. it allows us to axiomatize the notions of signal and clock,
2. it encompasses both relational and functional styles of specification,
3. parallelism is a built-in notion.

Using this £ model, we are able to prove that SIGNAL provides the right
primitives to achieve the mazximum expressive power for synchronisation
mechanisms in reactive systems.

1.3 Organization of the paper

Section 2 is devoted to an informal introduction to MCRS and the SIGNAL
language. The Trace model is presented in Section 3, and is used to formally
define the SIGNAL language. Section 4 is the core of the paper: the £2 model
is introduced and studied, and the filtering and multiplexing are exhibited as
fundamental primitives to build any synchronisation mechanism. Finally the
€ model is used in Section 5 to study some properties of SIGNAL and show by
the way that is possesses a maximum expressive power for synchronisation
mechanisms.

2 Multiple Clocked Recurrent Systems and the
SIGNAL language

2.1 An informal introduction to Multiple Clocked Recurrent
Systems

Consider a discrete-time dynamical system described by a set of recurrent
equations:

Tp41 = f($n7yn)
0 = g(xn,yn) (1)



where the variables z, and y, are both vector valued and n = 1,2,3,.....
The z,’s are internal variables, or states, and we may define some of the
components in y, to be input variables, and some as output variables and
investigate the resulting input-output behaviour of this system. Clearly,
depending on the peculiarity of the functions f and g, at a given instant,
the output may not exist for a given input and state, or multiple solutions
may exist. In this sense, this is a relational dynamical system.

What is new is a certain kind of restricted asynchronism. This is ex-
plained next. Assume that each variable, in addition to the normal values
it takes in its range, can also take a special value representing the absence
of data at that instant. The symbol used for absence is L. Therefore, an
infinite time sequence of a variable (we shall refer to informally as a signal
in this discussion) may look like

1,-4,1,1,4,2, 1, ... (2)

which is interpreted as the signal being absent at the instants n = 3,4, 7, ...
etc. Systems such as (1) where the signals are of the form (2) will be termed
Multiple Clocked Recurrent Systems (MCRS). The following questions are
immediate from this definition:

(1) If a single signal is observed, should we distinguish the follow-
ing samples from each other?

1,—4,1,1,4,2,1, ...
1,1, 0, -4, 1,4, 1,2, 1, ...

1,-4,4,2, ...

Consider an “observer”?

who monitors this single signal and does nothing
else. Since he is assumed to observe only present values, there is no reason
to distinguish the samples above. In fact, the symbol L is simply a tool to
specify the relative presence or absence of a signal, given an environment,
i.e. other signals that are also observed. Jointly observed signals taking the
value L simultaneously for any environment will be said to possess the same
clock, and they will be said to possess different clocks otherwise. Hence
clocks may be considered as equivalence classes of signals that are present
simultaneously. As a first consequence, we prefer to omit the time index n
when referring to signals since clocks are only relative rather than absolute
notions.

%in the common sense, no mathematical definition is referred to here



(2) How to interconnect two MCRS of the form (1)? Consider the
following two MCRS:

Yy, = if x, > 0 then z,, else L (3)
and the usual addition on sequences, namely

In combining these MCRS, it is certainly preferable to match the successive
occurrences ¥y, ¥z, ... in (4) with the corresponding present occurrences in
(3). But this is in contradiction with the immediate mathematical interpre-
tation of the system of equations

Yy, = if z, > 0 then x, else L

Zn = Yn +Up

which yields z, = L 4+ w, whenever z,, < 0, and certainly does not match
the usual interpretation of the addition of sequences. This kind of subtlety
should convince the reader that the naive writing (1) for MCRS is incon-
venient as either a specification technique or as a mathematical model. In
the following section, we shall introduce informally the kernel of the SIGNAL
language to specify MCRS. A more extensive discussion of such and related
issues may be found in [7].

2.2 SigNaAL-kernel

We shall introduce only the primitives of the SIGNAL language, and drop
any reference to typing, modular structure, and various declarations; the
interested reader is referred to [16]. SIGNAL handles (possibly infinite) se-
quences of data with time implicit: such sequences will be referred to as
signals. At a given instant, signals may have the status absent (denoted by
1) and present. If x is a signal, we denote by {z,},>1 the sequence of its
values when it is present. Signals that are always present simultaneously
are said to have the same clock, so that clocks are equivalence classes of si-
multaneously present signals. Instructions of SIGNAL are intended to relate
clocks as well as values of the various signals involved in a given system. We
term a system of such relations program; programs may be used as modules
and further combined as indicated later.

A basic principle in SIGNAL is that a single name is assigned to every
signal, so that in the sequel, identical names refer to identical signals. The



kernel-language SIGNAL possesses 6 instructions, the first of them being a
generic one.

(1) R(x1,...,xp)

(ii) y :=x ¢ %0

(iii) y := x when b
(iv) y := u default v
(v) P1Q

(vi) P '! x1,...,xp

Their intuitive meaning is as follows (for a formal definition, see the section
3):

(i) direct extension of instantaneous relations into relations acting on sig-
nals:
R(x1,...,xp) < Vn: R(x1,,...,xp,) holds

where R(...) denotes a relation and the index n enumerates the instants at
which the signals xi are present. Examples are functions such as z := x+y
(Vn : z, = x, + y,) or statements such as (a and b ) or ¢ = true (Vn :
(a, and b,) or ¢, = true). A byproduct of this instruction is that all re-
ferred signals must be present simultaneously, i.e. they must have the same
clock. This is a generic instruction, i.e. we assume a family of relations is
available. If one chooses an instantaneous relation accepting any p-uple, the
resulting SIGNAL instruction only constrains the involved signals to have the
same clock: this is the way we derive the instruction written synchro x,y, ..
which only forces the listed signals to have the same clock.

(i1) shift register.
y:i=x $ x0 <= Vn>1:y,=%,_1,y1 = %0

Here the index n refers to the values of the signals when they are present.
Again this instruction forces the input and output signals to have the same
clock.

(iii) condition (b is boolean): y equals x when the signal x and the boolean
b are available and b is true; otherwise, y is absent; the result is an event-
based undersampling of signals. Here follows a table summarizing this in-
struction:



b || true | false | L
X
x x L L
1 1 1 1

(iv) y merges u and v, with priority to u when both signals are simulta-
neously present; this instruction is the key to oversampling as we shall see
later. Here follows a table summarizing this instruction:

ulf|lu| L
v
v U | v
1 u | L

The instructions (i-iv) specify the elementary programs.
(v) combination of already defined programs: signals with common names
in P and Q are considered as identical. For example

(l'y :=2zy + a
| zy :=y $ x0
1)

denotes the system of recurrent equations:

Yn = ZYn+ay

ZYn = Yn—1, ZY1 = X0

On the other hand, the program

(I y := x when x>0
| z := y+u
)

yields

if a2, >0 then Yn = Tn
Zn = Yn + Un

else y,=u,=2,=1
where (z,,) denotes the sequence of present values of x. Hence the commu-

nication | causes L to be inserted whenever needed in the second system
z:=y+u. This is what we wanted for the example (3,4).



(vi) restriction to the listed set of signals: other signals are local to the
considered program and therefore play no role in program communication.

A formal semantics of SIGNAL is presented in the section 3 using the
Trace model.

3 The Trace model for MCRS and a semantics of
SIGNAL

In this section, a mathematical model for MCRS is presented, and used to
formally define SIGNAL. The reader is referred to Section 2 for the motiva-
tion of the following definitions.

3.1 Histories, signals, clocks

Consider an alphabet (finite set) A of typed variables called ports. For each
a € A, D, is the domain of values (integers, reals, booleans. ..) that may be
carried by a at every instant. Introduce

Da=J (D.u{L})
a€A

where the additional symbol L denotes the absence of the value associated
with a port at a given instant. For two sets A and B, the notation A — B
will denote the set of all maps defined from A into B. Using this notation,
we introduce the following objects.

Events. Fvents specify the values carried by a set of ports at a considered
instant. The set of the A-events (or “events” for short when no confusion is
likely to occur) is defined as

Ea=A—Dy
Events will be generally denoted by e. We shall denote by L the “silent”
event € such that e(a) = L Va € A.
Traces. Traces are infinite sequences of events. Let Ny = {1,2,...} denote

the set of integers, then the set of A-traces (or simply “traces”)is defined as

04 =N, — &y



Compressions. The compression of an A-trace T (deleting the silent
events) is defined as the (unique) A-trace S such that:

Sy =Tk,
where
ko=min{m >0: T,, # L}, ky =min{m > k,_1: T,, # L}

The compression of a trace T will be denoted by T |.

Histories and signals. The condition
T, =1T]

defines an equivalence relation on traces we shall denote by 7" ~ T’. The
corresponding equivalence classes are called histories. The set of all possible
histories on A will be denoted by €4, so that we have®

Q4 =1(04)/.

Elements of Q4 will be generically denoted by w4 or simply «w when no
confusion can occur. While the notion of trace refers to a particular envi-
ronment (since the L’s are explicitly listed), the notion of history does not.
Since

Qa=[Ny — (4 — DA)]/N

any wy € 4 may be written as

wa = (Wq)aea (5)

and the w,’s are termed signals. Hence a signal is a component of a history
specified by selecting a particular port in the alphabet A. The notion of
“signal” has been informally discussed in section 2.1-(1), where we motivated
the definition of signals and histories as equivalence classes with respect to
the relation ~.

3~/~ denotes here the quotient space by the relation ~

10



Clocks. Extend the domains D, with another distinguished value T, in-
tended to encode the status “present” regardless of any particular value.
Consider the map chronosp € Dy — {L, T} defined by

chronosp(L) = L, chronosp(z) =T for x # L

For each event ¢ € &4, there is a unique map in €4 — &4 making the
following diagram commutative, denote it by chronosg:

A
€/ \. chronosg(e)
,DA chro_no}sD ,DA

Similarly, there is a unique map in ©4 — ©4, we denote by chronose,
making the following diagram commutative

Ny
T v \. chronose(T)
SA ch?fn_o}ss SA

This map satisfies the condition 77 ~ T3 = chronose(T1) ~ chronose(1s),
so that it induces a map in Q@4 — 4 we shall now denote by chronos:
the chronos of a history is another history which summarizes the status
{present/absent} of each of its signals (i.e. components).

Now, given w € 24 and @ € A, consider the signal of port a of the history
chronos(w): this signal summarizes the relative status present/absent of the
signal w, given the other signals involved in the history w. We shall call this
signal the clock of w,, or the clock of a for short when no confusion is likely
to occur, and denote it by clock(w,) or clock(a).

3.2 MCRS
Definition of MCRS. A MCRS is simply a subset
QCQy

of the set of all histories on A. In other words, we consider the dynami-
cal system (1), or, better, a SIGNAL program, as a way to specify “legal”
histories.

11



Restricting MCRS. Consider a subset A’ of the alphabet A. The inclu-
sion A" C A induces a projection from €4 onto £,/ we denote by € — enyr.
Following the same argument as for the definition of clocks, we derive the
following family of restrictions we generically denote by -p4s. First, the
following commutative diagram

Ny
T v N Tiar

&4 24 Er

uniquely defines the restriction 7' — Th4s on traces. Since 17 ~ Ty =
(T1)nar ~ (T3)nar holds, a restriction on histories w — w4/ may be defined,
which finally yields a restriction on MCRS we denote by

Q — Qg

This restriction maps the set of MCRS defined over the alphabet A onto
the set of MCRS defined over the alphabet A’. The MCRS Q4 is called
the restriction of  to (the subalphabet) A’: only the signals with ports in
A’ are visible from outside and may be used for MCRS communication we
shall define next.

MCRS communication. Consider two MCRS 1,y respectively de-
fined over the alphabets A; and Aj. Set A = A; U Ay. Then 4]0y will
denote the maximal® MCRS © defined over the alphabet A satisfying the
following conditions:

Qua,
Qna,

&

c
C Q

In other words, the communication constrains the signals in £y and €,
of shared port to be identical (i.e. to be present simultaneously and then
carry the same value). This is exactly what we wanted while discussing the
example of equs (3,4).

3.3 The definition of SIGNAL

According to the preceding section, in order to specify an MCRS over a
given alphabet, we have to describe a subset of all histories that can be

*with respect to the order by inclusion €' C Q defined on MCRS

12



built upon this alphabet. Since histories are defined as equivalence classes
of traces with respect to the relation ~, this may be done by listing a family
of constraints on the set of all traces that can be built on this alphabet. The
equivalence classes of the so specified traces are the specified histories. This
is what we shall do next.

Instruction (i): R(x1,...xp)

Vne Ny, Vi @ xi, #1
Vn e Ny : R(x1,,..,xp,) holds

Here, the notation xi, denotes the value carried by the port with name xi
at the n-th instant of the considered trace. This notation will be further
used in the sequel of this subsection.

Instruction (ii): y := x $ %0

VneNy @ x,#1
Vn>1 @ y,=%x,1
y1 =x0

Instruction (iii): y := x when b

if x, # 1 and b, = true then x,
Vn €Ny, yn = { else L

Instruction (iv): y := u default v

ifu, # L then u,
VneN,, y, =4 elseifu, =L and v, # L then v,
else L

Instruction (v): P | Q
We already defined the operator | on MCRS.

Instruction (vi): P !'! x1,...,xp
We already defined the restriction of MCRS to a subset of ports.

13



3.4 Discussion

At this point the following question should be investigated: did we propose
in the SIGNAL language the right primitives to specify MCRS T More specif-
ically, we would like to prove that no loss occurs in using SIGNAL instead of
the general and abstract mathematical model of section 3.1 to specify con-
straints and relations concerning timing in MCRS. This is the subject of the
rest of the paper.

4 The 2 model for MCRS

4.1 Criticizing the Trace model

In the preceding section, we have introduced the Trace model for MCRS.
Although simple, this model is not powerful enough to analyse the funda-
mentals of timing. To illustrate this claim, let us consider the following
MCRS, that are specified using SIGNAL:

1.y = utv

= x when b

N
o
1

3.y :=u default v

Referring to Section 3, the corresponding MCRS are defined via constraints
on the set of all possible joint behaviours of the signals involved in these
instructions. This is a relational style of specification. Its advantage is to
allow a very simple definition of the MCRS communication. However taking
systematically a relational point of view is certainly restrictive as shown by
the above examples: the signals on the righthand side may be certainly
considered as inputs and y as output. Therefore we shall extend our Trace
model to allow mixed relational/functional styles of specification.

Moreover our intuition is that the example 2. possesses the clocks of
x and b as master clocks whereas the clock of y is entirely determined by
the two master clocks and the values of the boolean signal b. A similar
argument holds for the example 3.

Therefore what we would like to have is a mathematical model of MCRS
with the following features:

e both relational as well as functional point of views should be encom-
passed.

14



e the notion of communication should be easily described.

e more fundamentally, we should be able to define clocks via a set of self-
explanatory azioms and to derive from these axioms how new clocks
may be created from given ones.

Using such a model, we would be able to answer the question we raised
in the preceding section, namely does SIGNAL provide the right primitives
to specify general synchronisation mechanisms for MCRS? The © model
we shall introduce next as a refinement of the Trace model has this as its
objective.

4.2 The fundamentals of timing
4.2.1 Processes and information flows

Consider a MCRS Q. For w € 2, denote by

T(w) (6)
the unique trace such that (cf Section 3.1) VI' € w, T | = T|(w), i.e.

T|(w) is the unique trace representing w with no “silent” events. For two
histories w,w’ € 2, we define the equivalence relation

o & Ym < (@) = [ (7)

When (7) holds, we say that w and w’ possess identical initial segments up
to n. The equivalence relation =, on ) defines a partition of {2 we denote
by 1I,,. The family of partitions (II,,) is ordered as follows: for m < n, IL,
is finer than 1L, written 1L, < II,,, which means that every element of II,,
is a union of elements of II,,. This yields the following definition where N
denotes the set of nonnegative integers:

Definition 1 A process is a pair {Q,(1l,,),en} or {Q, 11} for short, where
o Q isa MCRS,

o for every mn, 1, is a partition of Q into sets of histories of identical
initial segments up to n (cf. (7)), and g is the trivial partition {Q,0}.

The ordered family of partitions (11,,) is called the information flow of the
process.

II,, is to be interpreted as “the information available at time n.” Hence the
refinement of the notion of process with respect to that of MCRS lies in the
attention we pay to initial segments.

15



4.2.2 Clocks

The purpose of this subsection is to generalize the notion of clock we intro-
duced in the Trace model. Recall that in this model, signals are components
of histories and clocks summarize the relative status present/absent of these
signals. But taking components is just a particular function defined on his-
tories, hence we shall extend this notion by allowing more general functions
to be considered. Such functions will have to satisfy special “causality”
conditions as discussed in the next example.

Example. In this example we use the same conventions as in Section 3.3
to specify histories via constraints on traces. Consider the MCRS consist-
ing of all possible single signals w of integer type. Select a threshold A and
consider the successive instants n = nq,n9,... such that w, > A holds. We
define a new signal by setting “y, = if n € {ng} then w, else L”, and the
clock of this signal y is just defined by the sequence of instants {nz}. To
know whether a given instant n is a tick of this clock, it suffices to know
the initial segment [wy,...,w,] of w up to the instant n. This is a sort of
a causality property that will serve as a basis for our axiomatic model we
shall present now.

In this example we illustrated how to create new clocks via (history-dependent)
undersampling, but history-dependent oversampling is useful as well in spec-
ifying synchronisation in MCRS (cf. [7]). For instance, the set N* endowed
with the lexicographic order is useful to represent & — 1 nested loops that
are fired at each instant. To allow for oversampling, we need to consider
with some care what are the time index sets we want to handle.

Given two totally ordered sets 7 and 7’, we shall write

T Cop. T’ (8)

to mean that 7 is a subset of 7’ and that the natural injection from 7 into
T’ is order preserving. Similarly

T Aop. T

denotes the supremum of all 77s satisfying 7 C,, 7" and 7 C,, 7". If T’
and 7" possess a common upperbound for the relation C,, ,, , their supremum
is well defined and is denoted by

T Voo. T

16



Definition 2 A time index set is a denumerable, totally ordered set T
such that N C,, T. Time index sets are generically denoted by T and their
elements by the letters s, t,u,v. The elements 0 and oo of N are assumed to
be respectively the infimum and the supremum of T .

Using the natural embedding of N into 7 allows us to write expressions such
as s < n where s € 7 and n € N.

Comment: we consider that there exists some master time index set N.
The introduction of oversets of N will allow to consider clocks that are more
frequent than N. To face the same need, Gonthier [18] uses the real line
as a universal time index set, but only discrete subsets are effectively used.
We prefer our approach since referring to a universal notion of time might
be misleading in our context.

Clocks may be defined using three equivalent points of view: a set of in-
stants, an increasing sequence of dates, an increasing counter. In any case,
clocks are history-dependent, so that they will be defined as functions of his-
tories. This is consistent with the discussion of Section 4.1. In the following
definition, we are given a time index set 7.

Definition 3 A clock is defined via the following equivalent points of view:

1. Using sets. A clock is specified by a subset H C Q x T satisfying the

property
{(w,s)eH;s<n+ 1,0 ~, w}={(v,s)c H} (9)
We shall use the following notations
Hw,.) = {s€T:(w,s)eH} (10)
H(.,s) = {weQ:(w,s)e H} (11)

2. Using dates. A clock is a function
H:QxN-—=T
satisfying the following properties
H(w,0)=0 , H
m<nand H(w,n)<oo = H
H(w,n)<m+1land ' ~pw => H

~— N N

We shall often write H,(w) instead of H(w,n
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These two definitions are related to each other via the formulae
(wy,s)eH & dn: Hy(w)=s (15)
H,(w) = min {5 cH#{H(w, )N [0,s]} = n}

where #{...} denotes cardinal. Counters were introduced for the same pur-
pose in [12]. They may also be introduced here via the formula

pl(w)y=#{meN: H,(w) < s}

Comments

1. The notion of clock we introduced in Section 3 may be viewed as
a particular case of the first point of view. Given w and a € A,
the clock of w, may be represented by the set of indices n such that
[T)(w)n](a) # L (cf. the notation (6) and the definition of traces in
Section 3). The causality condition (9) is immediate in this case. Only
undersampling was encountered in the Trace model.

2. The second point of view (using dates) will be more convenient than
the first one in the sequel.

3. The conditions (9) or (14) axiomatize the causality property we dis-
cussed in the example of Section 4.1. In particular, (14) expresses
that, to decide whether H,, € [m,m+ 1), it suffices to know the initial
segments up to and including m. This reflects the fact that, while
the “system” may live between m and m + 1, it does not receive fresh
information during this period.

Time changes. Suppose you have a clock, and you are interested in an
infinite sequence of data which are present at each occurrence of this clock.
Then, you would probably like to forget the original time reference, and
prefer to work with the above mentioned clock as if it were the time refer-
ence. For this purpose, it is needed to define how processes are carried out
through such time changes.

Definition 4 Let {2, (11,,)} be a process, and H a clock. Define
wrg,w & m< Hy(w)<m+1 and w =, o' (16)

This is an equivalence relation. Formula (16) defines (1lg, ) as the infor-
mation flow associated with the clock H.
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The fact that (16) defines an equivalence relation is due to the property (14).
The information flow associated with a clock is the good way to encode the
notion of initial segment in the case of time changes.

4.2.3 Signals

To encompass both relational and functional points of view, we shall gener-
alize the notion of signal as introduced in Section 3. In this section, signals
were introduced as being components of histories. But selecting a component
is just a particular function. Hence we shall more generally define signals as
being functions of histories that satisfy suitable causality conditions.

Definition 5 Let {Q,11} be a process, and H a clock. A {Q,11, H } -signal
(or signal of clock H for short when no confusion is likely to occur) taking
its values in a set = is a function

X :Qx Ny — =, written (w,n) — X, (w)

satisfying the following property:

W, w = X (W) = Xa(w) (17)
Definition 5 expresses the fact that X, has to be considered as present and
known at time H,; H,(w) = oo means that X,(w) is never delivered.

Comment: The notion of signal introduced in the section 3 may be viewed
as a particular case of the definition 5. Namely, for a € A, w, as defined in
(5) is equally well specified by the pair

{elock(wa), ((Wa)ny» (Wa)ny, )}

where ny, is the k-th tick of clock(w,) and (wy),, is the value of the k-th
present occurrence of w,. Considering next w as a variable yields exactly a
particular case of definition 5 since the condition (17) is immediate.

4.3 The algebra of clocks

Throughout this section, we are given a fixed process {2, 11}, and all clocks
we shall consider are defined on this process. The aim of this section will
be to introduce a “clock algebra”: writing relations within this algebra will
be the convenient way to specify constraints on clocks. For this purpose we
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shall introduce a partial order on the set of the clocks, and we shall introduce
two useful primitives on this set, namely the filtering and the multiplexing.
And we shall finally prove that these primitives allow us to build any clock
in finitely many steps. This will be the first major result of our paper.
Throughout this section, we shall use the notation

T(H)

to refer to the time index set where the clock H takes its values.

4.3.1 A partial order on the set of the clocks

Given two clocks H and K such that 7(K) C,, 7(H) holds, we define (cf.

(10)) _ _
KCH & Vw: K(w,.)C H(w,.) (18)

In other words, K C H means that the set of occurrences of K is included

in the set of the occurrences of H whatever the history w is.

Warning: since the intersection of two time index sets is a time index set,
any two clocks H and K possess an infimum. Unfortunately, the supremum
of two time index sets is generally not a time index set, so that the supremum
of two arbitrary clocks is not defined in general. The operations of infimum
and supremum (when the latter is properly defined) will be respectively
denoted by

KAH, KVvH (19)
4.3.2 The filtering

Lemma 1 Let H be a clock and T its time index set, and let B be a boolean
stgnal with clock H. The formula

K = {(w,s) € Qx 7T : In such that H,(w) = s and B,(w) = true}
defines a new T —valued clock we shall denote by
K=H|B (20)

and is referred to as the clock obtained by filtering H by B.
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Proof that K is a clock: easy, left to the reader.

The meaning of the filtering is the following: H | B extracts from H
the instants where the boolean B is true. Conversely, we have the following
result:

Lemma 2 If K C H, then we have K = H | B where B is given by

| true  ifHy(w) € K(w,.)
Bu(w) = { false otherwise

The proof is elementary, and is left to the reader. The filtering is a primitive
instruction of the languages LUSTRE and SIGNAL (the when), and may be
built in ESTEREL.

4.3.3 The multiplexing

No tool is usually provided in real time oriented languages to allow over-
sampling at data dependent rates. Our purpose is now to investigate theo-
retically the difficulties behind this notion within our £ model.

We are given a clock H taking values in a time index set 7. Let C be
an integer valued (nonnegative) signal with clock H, such that 0 < C),, < o
for n finite, and C,, = 0. Set

T7'=7T xN
endowed with the lexicographic order defined by
[s,k] <[§, k] & s< s or{s=sand k <k}

Note that 7 is naturally identified with the subset 7 x {0} of 77, we shall
often use this embedding in the sequel.

Definition 6 The multiplexing of the clock H by the signal C is denoted

by
K=H1|C

and is the T'—valued clock K defined as follows:
(w,[8,k]) e K & {Im: Hyp(w)=sand 0 <k < Cp(w)} (21)

where Co(w) = 0 by convention.
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Figure 1: The multiplexing

The figure 1 depicts this procedure. The T’s denote an increase by 1 of the
second component of H T C, whereas the |’s replace at the same time H,,
by H,,4+1 and k = C,, by k = 0. C, specifies how many additional instants
have to be inserted between the n—th and the (n 4 1)-st instants of H. To
justify the above definition, we have to prove the following result:

Theorem 1 K = H | C is a {Q, I} -clock.

Proof: Using (21) we have

so that
([, 1) € K
[s,k] <n+1 = (W,s)e H (22)
W, w

since [s,k] < m+ 1 = s < n+4 1 by definition of the lexicographic order.
Then take m as in (18), since C' is a signal of clock H, we have

Wmpw = Cpw) = Cp(w) (23)

Finally, (22) and (23) together prove the theorem.

The next theorem is the fundamental result of this paper. It expresses the
fact that the filtering and multiplexing are the right primitives to construct
any clock.

Theorem 2 Let H be a T -valued clock, where

T=N'o0<IL<x
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1s endowed with the lexicographic order. Then H may be decomposed as

follows:
H° = Id
H' = H°| B!
Vi>0: HFY = (H’TCZ)lBl
o = ot (24)

where B' and C! respectively are boolean and nonnegative integer signals®,
and Id denotes the clock “Identity” defined by Id,(w) = n. Furthermore,
among all possible decompositions, there is @ minimal one, we denote by
HO,...,HE, such that

Vi<L: H.CH (25)

for any decomposition (24).
Proof: Denote by proj; the projection of 7 onto N! obtained by discarding
the L — [ last coordinates of ¢ to get proji(t). Using the notation (9) we

define the clock H' by L
H' = proji(H) (26)

To prove the theorem, it suffices

1. to verify that H' satisfies the condition (9),
2. to prove that H'*" and H' are related via (24).
The first assertion is proved by induction over [. Write for short
t(l) = proji(t)

and decompose t(I + 1) = [t(1),k]. Consider n such that n < ¢(I) < n + 1.
The definition of the lexicographic order implies that n < ¢l 4+ 1) < n+1
also holds. The formula

H = proji( H!*T)
implies in this case that®
11y = proji (HF(.,u(1))
= JH( D). k])
k

®of suitable clocks so that the corresponding formulae make sense
we use the notation (11)
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so that
{(w,t(l)) € Hl and o' ~, w} = {(w’,t(l)) € ﬁ}

which proves the first assertion by induction.
To prove the second assertion, select m as in (21) and set

Cl(w)= max{k >0: [t(l),k] € HF(w, )}

Then apply Lemma 1 to the clocks H+1 C H!' | C' to get B,
To prove (25) we remark that the formula (26) yields the desired decom-
position. This finishes the proof of Theorem 1.

Comments.

1. The most general time index set we may expect is any denumerable
ordinal 7. But, if ¢ denotes a limit ordinal in 7, there exists an
increasing sequence in 7 converging to t. Hence only finitely many
such limit ordinals may exist in 7, otherwise 7 would contain NN
with lexicographic order, but this latter ordinal is isomorphic to N,
which is not denumerable. Finally 7 must be a subset of N” for some
finite L, so that Theorem 2 is the most general one may expect.

2. This theorem states that assuming that every clock is defined in terms
of the most frequent one is incorrect from the mathematical point of
view: both multiplexing and filtering should be used in general.

3. The combined use of the operations T and V on clocks may cause
difficulties, as the following example shows. Consider two different

nonnegative integer signals C' and C’ of clock I'd. Should we consider
that the two clocks Id T C and Id | C' take their values

(a) in the same, or

(b) in different

copies of the set NxN? In the first case, the supremum (Id | C)v(Id |
C") does exist, while it does not in the second case since no total order
is defined on the union of these two different copies.

Although simpler, the first choice is not very convenient, for it would
result in very strange situations. Take for instance C' =1 and C’ = 3:
one may expect that this should correspond to increasing the sampling
by a rate 2 and 4 respectively. Unfortunately this is not what we get
by applying the definition of multiplexing, which yields instead

24



ticks of Id: || e . °
ticksof Id T C: || @ | ® o e oo
ticksof Id]C':||e|o |0 0|0 |0 |0 0|0 o e e

Finally, the most reasonable choice is the second one, namely to always
assume that different signals C create clocks with values in different
time index sets. This should be kept in mind in the sequel.

4. The main result of this section is that the algebra of the clocks of
a given process is equipped with the operations A and V in a
natural way, and that the filtering and the multiplexing are the
convenient constructions to build any clock. Obviously (as it
has been pointed out in [27]), these two constructions may be combined
into a single one provided that in Definition 6, C;, be interpreted as the
amount of instants inside the semi-closed interval [H,,, H,41) instead
of the open one (H,,, H,11) as we have done. But we preferred to keep
this distinction since only the multiplexing may create problems.

4.4 TIsomorphisms and process algebra

Notice that, given two processes P = {Q, 11} and P’ = {Q/,1I'}, their com-
munication P|P" is well defined: just take the MCRS Q|Q and consider its
information flow according to Definition 1. The same holds for the restric-
tion P!'A which is built over Qn4. Hence the set of processes equipped with
the communication and restriction will be called the process algebra. We
state now a notion of isomorphism within the process algebra.

Definition 7 Two processes P = {Q,11} and P' = {Q',1I'} are said to be
isomorphic, written
pxp

if there exists a bijection ® : Q — Q' such that ®(11,,) = 1T

n

Clearly, this notion of isomorphism is a congruence, namely
PP andQ=qQ = PlQ=P|Q

A natural notion of morphism may be defined as well: the map ® introduced
in the above definition is a morphism from P into P’ if ®~1(11/,) < II,,, where
®~! denotes the inverse map of ® (wich acts on subsets of '), and < is the
ordering on partitions we introduced just before the definition 1. But we
shall not discuss the notion of morphism any further.
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4.5 Processes revisited: a more abstract definition

In Definition 4 we introduced time changes. Referring to this definition we
may wish to set I, = Iy, and consider objects such as {Q,1}. Unfortu-
nately, such objects are not covered by Definition 1 since the elements of the
partition II,, are not initial segments of € of length n.

However it is not until the beginning of subsection 4.4 that we used the
fact that the £2’s are MCRS and the II’s associated information flow of initial
segments. In fact this property has only been explicitly used in defining the
process communication P|P’. In all other statements and proofs the only
properties we really needed on the objects Q,11,,, ~,, were the following:

o () 1is a set.

e (II,,)is an ordered family of partitions of 2 and w ~,, ' if by definition
w and w’ belong to the same element of the partition II,,.

Let us state this more precisely.

Definition 1 revisited A process is a pair {Q,(1l,,),en} or {Q, 11} for
short, where

o () is a set

o for every n, I, is a partition of Q and we write w =, W' to mean that
w and W' belong to the same element of the partition 11,,,

e the family of partitions (11,,) is ordered by refinement, i.e. for m < n,
each element of 1, is a union of elements of 1l,,; moreover, Ilg =

{Q,0}.

The ordered family of partitions (11,,) is called the information flow of the
process.

Everything in this section 4 carries out to this more abstract notion of
process, except the definition of process communication for which the defi-
nition we gave explicitly used the fact that € is a MCRS. In particular, we
may use the results on the algebra of clocks for the (time changed) process
{9, ﬁ} we introduced at the beginning of this subsection, and we may also
use the notion of process isomorphism. This generalization will be required
in Section 5 where some properties of SIGNAL are studied.
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In fact, the whole 2 model might have been developed entirely based on
this abstract definition, including the notion of process communication. This
makes the whole theory harder to follow so that we preferred the presentation
of this paper. The reader interested in the abstract version of the € model
is referred to [4] [5].

4.6 Discussion

We have introduced the Q model as a refinement of the Trace model. We first
equipped the notion of MCRS with the structure of initial segments to derive
the notion of process. Then we built on this new notion a denotational theory
which encompasses both relational and functional styles of specification.
Finally we have shown how this theory may perfectly fit a more abstract
notion of process that covers in particular the use of time changes.

We used this model to study the algebra of clocks and shown that the
filtering and multiplexing are convenient primitives to build any synchroni-
sation mechanism. Unfortunately it appeared that the multiplexing as such
causes difficulties to occur since the supremum of two clocks obtained via
multiplexing is generally not properly defined. The £ model will be used in
the next section to investigate the properties of SIGNAL.

5 Properties of SIGNAL

In this section, we show that SIGNAL satisfies the following properties:

1. The semantics of any program may be stated using a process which
possesses Id as the most frequent” clock. Consequently, no multiplex-
ing is involved in such semantics and we do not encounter the problems
that may be caused by the simultaneous use of V and | operators on
clocks (cf. the warning of subsection 4.3.1 and the comment 3. follow-
ing the proof of theorem 2).

2. However SIGNAL allows to simulate the multiplexing in a sense we
shall formalize. Hence this ensures that SIGNAL has the mazimum de-
scriptive power to specify synchronisation mechanisms in synchronous
reactive systems.

3. The 2 model may be used to define different semantics of a SIGNAL
program, from purely relational to purely functional ones, and these

Tor maximal in the sense of the ordering on the clock algebra
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different semantics are shown to be bisimulation equivalent in a sense
we shall make precise.

Because of point 3, we shall indicate explicitly whether we consider the
Trace—semantics of a SIGNAL program, or one of its Q—semantics. In han-
dling SIGNAL programs and their semantics, we shall use the following nota-
tions: for each signal X involved in a SIGNAL program, we denote by X and
H(X) the corresponding signal and its clock in the considered semantics.
5.1 SIGNAL does not use the multiplexing as such

Theorem 3 The Trace—semantics of any SIGNAL program may be stated

without the use of multiplexing.

Proof: this is an immediate consequence of the two following facts:

1. the Trace—semantics of SIGNAL has been given in terms of the Trace
model of Section 3,

2. no oversampling of clocks is possible within the Trace model, cf. the
comment 1. following definition 3.

5.2 SIGNAL allows to “simulate” the multiplexing

The undefined notations may be found in Section 4.3.3. Consider the clock

H=1d7C
We may write
Hy = [Ny, My] (27)
where®
N, = if (Mk—l = CNk—l) then Ni_1 +1 else Np_q
M, = if (My_1=Cn,_,) then 0 else My_1+1 (28)

We shall translate these formulae into a SIGNAL program. The current
instant is k: it will be handled implicitly.

However we also need to handle the signal C,: this signal may be
produced by the following program:

8these formulae are an immediate writing of the figure 1
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(| CURRENT_C := C default LAST_C
| LAST_C := CURRENT_C $ O
| synchro CURRENT_C, M, N
1)

The last instruction specifies that the three mentioned signals must have the
same clock. Then, CURRENT_C carries the most recent value of C, and C,, is
represented by the signal CURRENT_C.

The boolean signal (my_y = C,,_,) is also needed. The input signal C
is received the instant following a true occurrence of this boolean (this is
expressed by the last synchro instruction). The corresponding program is

(| DOWN_NEXT_TIME := (M = CURRENT_C)
| DOWN := DOWN_NEXT_TIME $ true
| synchro C, true when DOWN

1

Then it remains to encode the two equations (28):

(I(l N := (ZN+1 when DOWN) default ZN
| ZN := N $ O
D)

(] M := (0O when DOWN) default ZM+1
| ZM :=M $ O
D)

D)

This gives finally the program?

MUX {?C ! N,M 3} h 7 list of inputs, ! list of outputs %

(1 (|l CURRENT_C := C default LAST_C
| LAST_C := CURRENT_C $ 0
| synchro CURRENT_C, M, N
D)
| (| DOWN_NEXT_TIME := (M = CURRENT_C)
| DOWN := DOWN_NEXT_TIME $ true
| synchro C, true when DOWN

?a much more concise program exhibiting a multiplexing mechanism has been presented
in [7], it is based on a decreasing counter; the present form is useful for our theoretical

purpose
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1

[ (Il N := (ZN+1 when DOWN) default ZN
| ZN := N $ O
D)
(] M := (0O when DOWN) default ZM+1
| ZM :=M $ O
D)
D)
|) '*v C,M,N % visible ports %

For each of the three modules we have introduced, it is straightforward al-
though tedious to verify using the Trace—semantics of Section 3.3 that it
implements the desired formulae, namely (27) and (28).

Next, consider the following two processes:'”

PRIMITIVE_MUX = {Q¢Il¢}, where (29)
C is the alphabet {C}
Q¢ is  the set of all possible histories of C

and Il¢ is the associated information flow, and

MUX = {Q,11}, where (30)

@ is the Trace—semantics of program MUX, cf Section 3.3

and II is the associated information flow. According to (5), each w € § is of
the form
W = (WC,WI\],WM)

and we denote by ® the first projection:
d: wed — we€ Qe

On the other hand, denote by H the clock of C' in MU X, and consider the
time—changed information flow (cf. Definition 4)

=AAN
I 2 Iy,

on MUX. Then we have the following theorem where the abstract notion
of process as in Definition 1 revisited is used:

10.f Section 3.1 and 4.2 for undefined notations
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Theorem 4 1. We have

© R, @ = wapw
Hy(w) <k< Hy(w) ~k

2. The map ® is an isomorphism from the process {Q, f[n} onto the pro-

cess {Q¢, (Ilg),, }, and the image by ® of the N? —valued signal [N, M]
is the clock Id | C.

Comment: the first statement expresses that no fresh information is re-
ceived by MUX between two successive occurrences of C, so that no loss
occurs by replacing the original information flow (II,,) by the time changed
one (II,). And the second statement gives a precise meaning to what we
mean by “simulating the multiplexing”.

Proof: Tor
H,(w)<k< Hyp1(w) (31)

it is easily checked on the Trace—semantics of MU X that this process evolves
as follows:

Nipa(w) = Np(w), Mpqa(w) = My(w) + 1

which proves statement 1 since the condition (31) only depends on the initial
segment of length H,,.

That ® is a bijection is a consequence of the fact that the behaviour
of the process MUX is entirely determined by its input C. Finally, that
[N, M]is mapped onto Id T C'is an immediate consequence of the fact that
the program MUX implements the formulae (27)(28).

Discussion: The reader may have found what is the deep reason for SiG-
NAL to be able to simulate the multiplexing. The key tool is in fact process
communication. The multiplexing is rebuilt within the program MUX accord-
ing the following two pieces:

1. The first piece is the two following instructions
(| CURRENT_C := C default LAST_C

| LAST_C := CURRENT_C $ O
1)
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5.3

The communication causes the two signals LAST_C and CURRENT_C to
have the same clock, and the first instruction asserts that C is less fre-
quent than the two other signals. This program causes a (non deter-
minate) amount of L’s to be inserted between successive occurrences
of C. More generally, the effect of the communication as defined in Sec-
tion 3 may also be expressed on the “compressed” traces (i.e. traces
with no silent events): in P|Q the traces of P and @) are “expansed”
(i.e. silent events are inserted) to allow for signals of shared ports to be
identical. This expansion mechanism is a sort of “weak” multiplexing,
i.e. a multiplexing which is not determined entirely by P, but needs a
communication with another process in order to occur.

The second piece is the instruction

(| synchro C, true when DOWN
1)

Since DOWN is a function of C, this instruction specifies the amount of
inserted silent events between successive occurrences of C as a func-
tion of C itself. This fixes the “weak” multiplexing created by the
communication and makes it a deterministic operator.

From Trace—semantics to 2—semantics of SIGNAL programs

Theorem 4 states that at least two different semantics may be of interest for
the program MUX {?C !N,M}, and that they are related via a time change
followed by the isomorphism ®. We shall show that this situation may be
generalized.

Example: a semantics of the instruction Y := X when B may be given in
the two following ways:

1.

Its Trace—semantics, namely
b= {Qv H}

where ) is the Trace—semantics built according to the rules of Section
3.3 and II is the associated flow of initial segments. This is a purely
relational style of semantics.

32



2. A new semantics, namely

Py = {Q{X,B}v H{X,B}}

where Q¢x gy is the set of all histories on the alphabet {X,B}, as defined
in Section 3.3 and Il xp) is the associated flow of initial segments,
whereas Y and its clock H(Y) are defined by

H(Y) = H(X)A (H(B) | B)
H(Y)u(@) = H(X)u(@) = Yil@) = Xul)  (32)

This is a purely functional style of semantics as wished at the beginning
of Section 4.

In either case 1 or 2, however, a triple {Y, X, B} of signals were defined on a
process {2, 11}, which satisfied the relations (32). This is a situation similar
to that of Section 5.2, and we show next that both examples are particular
cases of a general result.

5.3.1 Determinism

Consider a SIGNAL program P and partition the set of its signals as {U1,...,Up;
Y1,...,Yq}. Denote by Q its Trace—semantics. We consider also the associ-
ated process P = {Q, 11} where II is the information flow of initial segments
of (.

The information on P an observer may learn by having access toUl, ... ,Up
only is represented by an information flow we denote by IV and call the
information flow generated by the Ui’s. This information flow may be con-
structed as follows. Consider the family of all information flows on Q making
each of the U; (¢ = 1,...,p) to be a signal of clock H(U;). This set is not
empty since it contains 1I. Referring to the order on information flows de-
fined by I’ < TI" if by definition Vn, I/, < T, this set is stable by finite
infimum. Hence a minimal information flow does exist within this set: this
is Y. The information flow IIV is characterized by the following property:
for (w, k) define the index n; via

H(Us)p(w) <k < H(Ui)p41(w)
then, we have

w R Y (33)
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: H(Ui)n() = H(Ui)n(w)
Vi=1,...,p; n<mn:
{ (Un(&) = (Ui)a(w)
This formula expresses that IIV is entirely known when the Ui’s are observed.
Definition 8 The program P is said to be deterministic w.r.t. Ul,...,Up
if
nv =1, (34)

holds (no information is lost by observing only the Ui’s).
It turns out that the reasoning of Section 5.2 may be borrowed here. Set
H=HU)Vv..vHU,)
and write ﬁn = Ilg,. Then the following theorem holds:
Theorem 5 If P is determuinistic w.r.t. Ul,...,Up then
1. no fresh information is received between H, and H,41:
~ /
Hn(:; ;;f’; “I’{W(w) } = wrpd (35)
2. writing w = (wy1, cees WUP; WY1, ...,qu), the map
d: w— (wUl, ...,wUp)
is an isomorphism from {Q,ﬁ} onto {Quy, ny} where Quy is the re-

striction of Q to the subalphabet U = {U1,...,Up} and Iy is the asso-
ciated information flow of initial segments.

Proof: statement 1 is just a rewriting of (33), and statement 2 is an im-
mediate consequence of 1. Notice that it is not assumed here that the Ui’s
are free intputs: they may be constrained, hence the use of the restriction
Quy which is in general different from the set of all possible histories on the
alphabet {U1,...,Up}.

Sufficient conditions to guarantee for a SIGNAL program to be determin-
istic are checked by the SIGNAL compiler as shown in [6] [5].
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5.3.2 Bisimulations

Consider a process {2, I} where € is a MCRS and 1II the associated infor-
mation flow of initial segments. Then assume we are given another process
{Q,1I'} in the generalized sense of Definition 1 revisited.

Definition 9 A bisimulation from {Q,11} onto {Q',1I'} is a pair (H,®)
where

1. H is a clock on {Q,11} satisfying the condition (35)
2. ® is an isomorphism from {Q, 11} onto {11} where 11, = Iy, .

We write 1o
{Q,H}’—> {Q’,H’}

to refer to the above property and we define the bisimulation equivalence
as its transitive and reflexive closure.

Comment: Hence, observing two processes that are bisimulation equiva-
lent provides the same information, however at rates that may be different
(cf. the theorem 6 below for a precise statement of this). The communica-
tion of a given process with two processes that are bisimulation equivalent
also yields two processes that are bisimulation equivalent. These remarks
justify the use of the name “bisimulation” which is classical in process cal-
culi. Finally, note that theorem 5 relates bisimulation with determinism.

Theorem 6 We are given a bisimulation
om0

and we set Cp(w) = Hyp1(w) — Hy(w). We define the map
(H,®): K — K’

where K is a clock on the process {Q, 11} which we decompose according to
theorem 2

K = (...(Idl BY...1 CL) | B

Mwe use in fact the “minimal” decomposition labelled with ..’s in theorem 2
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and K' is then given by'?
K' = [(...([Icm C1| BY... 1 CL) lBL] 0!

Then the map (H,®)* is an isomorphism between the clock algebras of

{Q, 1} and {Q', 1T'}.

Proof:
1. Co®~ ! is a signal of clock Id on {€',1I'}. Since H is a clock, we have

Hn_|_1(w1) >k
Wy R W

} = Hn_|_1(w2) >k

From this and condition (35) we derive

Cn(wl) > k — Hn(wl)
W2 ~H,

} = Cplwg) >k — Hy(ws)

so that
wr RE, w1 = Cp(wa) > Cpwr)

whence equality follows by symmetry: this proves step 1. Conse-
quently Id | (C o ®~1}is a clock on {Q/,1I'}.

2. K' is a clock on {Q',1I'} and the image by ® of the partition Mg, is
the partition 1%, . We prove this by induction on the length L of the
decomposition of K. The result for L = 1 was proved in step 1. Hence

we assume the result to hold for K as in the theorem, and prove it for
the clock (K | C**1) | BL*!. By definition of the multiplexing

wy R, w1 = CEHl(wy) = CLHl(w)
But by assumption
wo R, w1 & Pws) K b(wy)

so that CL+1 o ®~1 is constant on the elements of the partition 1

whence (K | C1H1)o®~!is a clock. Similarly we prove that BX+t1o®~!
is constant on the elements of the partition I}, where K" = (K |

CF+1y o @1, This proves step 2.

12 £ 6 ¢ denotes the composition of the maps f and ¢
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‘ program H clocks ‘ signals ‘
R(x1,...,xp) H==H(z)=..=H(z,) H:R(zq,...,xp)
y :=x $ xo H=H(y)= H(z) H:y, =2,
y := x when b H=Hy)=H(x)AN(H((b)|b) | H:y==
Y :=u default v || H(y)= H(u)V H(v) Hu):y=u
Hw)— H(u):y=v
PIQ H(P)U H(Q) sig(P) U s19(Q)
Table 1:

3. The map (H,®)* is invertible and its inverse is K' — K where
K= (...(Idl BY.. C’L) | B'*

and

K = ((H | BY.1 CL) | B

where B! = B o $,Cl = C"'o ®. This is easy although tedious to

verify.

4. That (H,®)* is an isomorphism of clock algebras follows immediately
from the preceding steps. For instance Ky = Ky | B yields K} =
K] | B’ where B' = Bo ®~!. Similarly K = K; V K, rewrites to
K=K | By and Ky = K | By where ByorB; = true which carries
out through the map (H,®)*. This finishes the proof of the theorem.

5.3.3 The Q—semantics of a SIGNAL program

Consider the table 1 where H : y = x is a short-hand to mean
[Hi(w) = H(y)n(w) = H(2)m(w)] = [yn(w) = 2m(w)],

H(v)—H (u) denotes the unique clock K such that H(v) = KV(H (u)AH(v)).
This table shows how to derive the system of clock equations H(P) and signal
equations sig(P) associated with the program P.

Definition 10 We are given a SIGNAL program P with involved signals
{ut,...,up; yi,...
Then we term a Q—semantics of P a triple {Qu, Ily; [u1, ..., wp, Y1, .o, Yol }
where
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o Qu is the Trace—semantics of the program P!'ut,...,up"® and Ily is
the associated information flow of initial segments

o fori=1,....,p, u; is the i-th signal of the history wy € Qu and H(u;)
its clock

o for j=1,....,q, y; is a signal of clock H(y;) on the process {Qy, lly}

and the family of signals [uq, ..., Up, Y1, ..., Y4] salisfy the constraints specified
by the program P according to the table 1.

Summary. The -semantics of a program is generally not unique as
shown by the examples of the MUX and of the when. Theorems 5 and 6
provide a way to build different 2-semantics of a program by starting from
its Trace—semantics and selecting any t-uple making this program determin-
istic. The so obtained Q—semantics are bisimulation equivalent.

6 Conclusion

Starting from elementary discussions related to systems of dynamical equa-
tions we motivated the introduction of SIGNAL as a language to specify and
program reactive systems. As a first attempt to provide a denotational se-
mantics of SIGNAL we introduced the Trace model which is purely relational
and exhibits built-in parallelism: objects within this model are defined as
restrictions on the set of all possible joint behaviours of “signals”. To further
investigate fundamental issues related to synchronous languages and reactive
systems we introduced a drastically new {2 model which encompasses both
relational and functional styles of specification, and allowed us to introduce
the notions of clock and signal via azioms. Then two basic constructions
where proved able to build any new clock from a master one, namely the
filtering (or event based undersampling) and multiplexzing (or event based
oversampling). Finally we proved that SIGNAL possesses the first construc-
tion as a built-in primitive while the second one may be “simulated” in some
precise sense. This shows in particular that SIGNAL possesses maximum de-
scriptive power for synchronisation mechanisms. Finally, we have shown
how the £ model may be used as an alternative semantic domain of SIGNAL
to obtain different semantics (from relational to purely functional ones) that
are bisimulation equivalent.

3the restriction of P to the listed signals
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We believe that, although probably unfamiliar to the computer science
community, our £ model is a significant contribution to fundamental stud-
ies on synchronous reactive systems. In particular a variation of this model
provided us recently with a multiple clocked generalisation of Leiserson and
Saxe’s theory of retiming that may be applied to various proofs of equivalence
of synchronous reactive systems. This will be presented in a forthcoming

paper.
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Appendix: notations

T

Q4,04

wa

clock(a), clock(wg)
Q

Q

1

)

10, 11,
{011}

75 s,t
H,H, H(X)
%Hn

H|B
H1iC

VA
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