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A denotational theory of synchronous reactive systems

In this paper, systems which interact permanently with their environment are considered. Such systems are encountered, for instance, in real{time control or signal processing systems, C 3 {systems, man{machine interfaces, to mention just a few. The design and implementation of such systems require a concurrent programming language which can be used to verify and synthetize the synchronization mechanisms, and to perform transformations of the concurrent source code to match a particular target architecture. Synchronous languages are convenient tools for such a purpose: they rely on the assumption that: 1/ internal actions of synchronous systems are instantaneous, and, 2/ communication with the environment is performed via instantaneous ashes involving some external stimuli. In this paper, we present a mathematical model of synchronous languages and illustrate its use on the Signal language. This model is denotational, and encompasses both relational and functional styles of speci cation. It allows us to answer fundamental questions related to synchronous languages, such as \what are the basic constructions which should be provided by such languages?"

Introduction

Reactive systems 1 are considered in this paper. These are systems which interact permanently with their environment at rates which may be driven by this environment. Such systems are encountered, for instance, in real{time control or signal processing systems, C 3 {systems, man{machine interfaces, to mention just a few. It is usually recognized that a reliable design of such systems should be supported by a concurrent programming style. On the other hand, the highly demanding nature of these applications forces to consider as well the requirement of highly e cient and reliable implementation, in both cases of sequential or distributed implementation. This requires powerful formal tools to prove equivalence of such di erent implementations. Hence fundamental studies on mathematical models of reactive systems are requested to provide the basis for the above mentioned tools.

We shall not discuss here the drawbacks and merits of current tools in programming reactive systems ( nite state machines, Petri Nets, concurrent programming languages such as Ada or Occam); the interested reader is referred to the excellent discussion in 8] 9] on this subject. We shall merely concentrate on the discussion of the synchronous approach we follow in this paper.

The basic synchronicity hypotheses

While classical (i.e. asynchronous) concurent languages do implicitly or explicitly refer to some external and universal time reference, the notion of \time" is completely di erent in synchronous reactive systems. To be more explicit, synchronous reactive systems di er from asynchronous ones in the following aspects:

1. The internal mechanisms of the system: every action (computation or internal communication) is instantaneous, i.e. has a zero duration; 2. The communications with the external world: the set of the possible input channels is xed and known in advance, and the ows carried by these channels are speci ed through both the values they carry a total ordering of the \instants" at which these values are available at the external ports.

1 this name was introduced in 19] 20], and extensively used in 8] 1

Of course, this last requirement is the fundamental feature which characterizes the way synchronous reactive systems communicate with the external world, compared to asynchronous ones. Let us illustrate this point using a simple example. Consider a reactive system with two inputs: 1. a data input carrying an ordered le of data named x, 2. an interrupt input port named s. Then, the speci cation of an input history according to the synchronous point of view must be of the form x 1 x 2 x 3 ? ? s 2 ? s 4 etc:::

(as usually, ? denotes the absence of data) i.e. both the values and their global interleaving must be speci ed; the integer index n = 1; 2; ::: is used for this purpose. The progression of this index n has to be considered as the proper notion of time ow in synchronous systems. In other words, the essentially nondeterministic character of the communications with the external world in reactive systems is concentrated inside some (ignored) external mechanism which decides this global ordering. Hence, the advantage of the synchronous point of view is that the nondeterminism of external communications is strictly concentrated on this mechanism, and it is not propagated inside the body of the system itself.

A rst consequence is that any function of, or any constraint on these input stimuli may be speci ed by mathematical recurrent equations. Another fundamental consequence is that the notion of time is local to a given subsystem: there is no universal time reference, as we shall see later when communications will be studied.

Theses are the fundamental reasons of the power of the synchronous approach. Among languages relying on this synchronicity assumption are the imperative language Esterel [START_REF] Benveniste | Dynamical Systems Theory and the Signal Language[END_REF] 18]), the declarative and functional language Lustre ( 12] 11] 27]), and the declarative and relational language Signal we discuss in this paper; related to the same formalism is also the approach of Statecharts in 19] 20].

On the semantics of Signal

As argued before, Signal must rely on a mathematical model; such a model and the language were developed simultaneously. In fact, two models of di erent styles were introduced.

A didactic overview of the fundamental issues raised by Signal may be found in 7]. Then, an operational semantics was given in 6] in terms of conditional rewriting rules a la Plotkin 28], and, in 5], it was shown how this operational semantics may be used to develop the Signal compiler. On the other hand, a data{ ow oriented introduction to Signal is presented in 17], where the Trace model for Signal, we further develop in the present paper, was introduced rst.

The purpose of the present paper is di erent. We want to concentrate on fundamental aspects of the synchronous approach for reactive systems. This will be done by developping a new denotational semantics. This denotational model is related to the mathematical notion of \discrete{time dynamical system", or \system of recurrent equations", a discrete{time counterpart of di erential systems. Such ideas are found in Lucid 3] 2] which is proposed as a model for data{ ow languages. But the allowance of uncausality and particular ways to handle timing make Lucid not suitable as a model of reactive systems, as discussed in 11]. To our knowledge, the pioneering work relevant to the denotational style of semantics is the Dynamic Network Processes model introduced in 22] 21]. DNP's are functions mapping input histories into output histories; their denotational semantics has been studied in detail in 15]. Kahn's model has been used with suitable extensions and modi cations in 27] to cope with the synchronicity assumption as a model for the Lustre language. Let us emphasize that these are non trivial modi cations of the original DNP model, which was essentially free from any notion of synchronicity. Studies on synchronisation mechanisms within data{ ow languages are presented in the excellent article 13], see also [START_REF] Kahn | \Coroutines and Network of Parallel Processes[END_REF] for a data{ ow model loosely related to Signal.

Here, we shall introduce our approach via the very simple mathematical notion of Multiple Clocked Recurrent Systems (MCRS), an immediate extension of systems of recurrent equations to properly reason about synchronization and timing. From this easily accepted starting point, the relevance of a \Trace" model of relational style will clearly follow. By \relational" we mean a model where behaviours are speci ed via constraints or relations rather than functions. This model may be considered as a suitable generalization of !{languages (or B uchi automata in the regular case 10] 25] 24]) in order to handle synchronisation and data types which are not nite alphabets; they also have a avour of the theory of traces 1]. This Trace model is rst used to give the semantics of Signal.

Then our purpose is to study fundamental questions related to synchronous reactive systems such as: what are the basic constructions a synchronous language should provide? To study this, we must re ne our purely relational Trace model in order to be able to introduce axioms that our basic synchronisation tools (signals and clocks) should satisfy. This yields the model. The ideas behind the model are borrowed from the probability and ergodic theories [START_REF] Muller | nite Sequences and Finite Machines[END_REF] 14]). Its advantages are that 1. it allows us to axiomatize the notions of signal and clock, 2. it encompasses both relational and functional styles of speci cation, 3. parallelism is a built-in notion. Using this model, we are able to prove that Signal provides the right primitives to achieve the maximum expressive power for synchronisation mechanisms in reactive systems.

Organization of the paper

Section 2 is devoted to an informal introduction to MCRS and the Signal language. The Trace model is presented in Section 3, and is used to formally de ne the Signal language. Section 4 is the core of the paper: the model is introduced and studied, and the ltering and multiplexing are exhibited as fundamental primitives to build any synchronisation mechanism. Finally the model is used in Section 5 to study some properties of Signal and show by the way that is possesses a maximum expressive power for synchronisation mechanisms.

2 Multiple Clocked Recurrent Systems and the Signal language

An informal introduction to Multiple Clocked Recurrent Systems

Consider a discrete-time dynamical system described by a set of recurrent equations:

x n+1 = f(x n ; y n ) 0 = g(x n ; y n ) (1)
where the variables x n and y n are both vector valued and n = 1; 2; 3; ::::. The x n 's are internal variables, or states, and we may de ne some of the components in y n to be input variables, and some as output variables and investigate the resulting input-output behaviour of this system. Clearly, depending on the peculiarity of the functions f and g, at a given instant, the output may not exist for a given input and state, or multiple solutions may exist. In this sense, this is a relational dynamical system. What is new is a certain kind of restricted asynchronism. This is explained next. Assume that each variable, in addition to the normal values it takes in its range, can also take a special value representing the absence of data at that instant. The symbol used for absence is ?. Therefore, an in nite time sequence of a variable (we shall refer to informally as a signal in this discussion) may look like 1; 4; ?; ?; 4; 2; ?; :::

(2) which is interpreted as the signal being absent at the instants n = 3; 4; 7; ::: etc. Systems such as (1) where the signals are of the form (2) will be termed Multiple Clocked Recurrent Systems (MCRS). The following questions are immediate from this de nition:

(1) If a single signal is observed, should we distinguish the following samples from each other? 1; 4; ?; ?; 4; 2; ?; ::: ?; 1; ?; 4; ?; 4; ?; 2; ?; ::: 1; 4; 4; 2; :::

Consider an \observer"2 who monitors this single signal and does nothing else. Since he is assumed to observe only present values, there is no reason to distinguish the samples above. In fact, the symbol ? is simply a tool to specify the relative presence or absence of a signal, given an environment, i.e. other signals that are also observed. Jointly observed signals taking the value ? simultaneously for any environment will be said to possess the same clock, and they will be said to possess di erent clocks otherwise. Hence clocks may be considered as equivalence classes of signals that are present simultaneously. As a rst consequence, we prefer to omit the time index n when referring to signals since clocks are only relative rather than absolute notions.

(2) How to interconnect two MCRS of the form (1)? Consider the following two MCRS: y n = if x n > 0 then x n else ?

(3) and the usual addition on sequences, namely z n = y n + u n [START_REF] Ashcroft | LUCID, the Data{Flow programming language[END_REF] In combining these MCRS, it is certainly preferable to match the successive occurrences y 1 ; y 2 ; ::: in (4) with the corresponding present occurrences in [START_REF] Ashcroft | \LUCID -a formal system for writing and proving programs[END_REF]. But this is in contradiction with the immediate mathematical interpretation of the system of equations y n = if x n > 0 then x n else ? z n = y n + u n which yields z n = ? + u n whenever x n 0, and certainly does not match the usual interpretation of the addition of sequences. This kind of subtlety should convince the reader that the naive writing (1) for MCRS is inconvenient as either a speci cation technique or as a mathematical model. In the following section, we shall introduce informally the kernel of the Signal language to specify MCRS. A more extensive discussion of such and related issues may be found in 7].

Signal-kernel

We shall introduce only the primitives of the Signal language, and drop any reference to typing, modular structure, and various declarations; the interested reader is referred to 16]. Signal handles (possibly in nite) sequences of data with time implicit: such sequences will be referred to as signals. At a given instant, signals may have the status absent (denoted by ?) and present. If x is a signal, we denote by fx n g n 1 the sequence of its values when it is present. Signals that are always present simultaneously are said to have the same clock, so that clocks are equivalence classes of simultaneously present signals. Instructions of Signal are intended to relate clocks as well as values of the various signals involved in a given system. We term a system of such relations program; programs may be used as modules and further combined as indicated later.

A basic principle in Signal is that a single name is assigned to every signal, so that in the sequel, identical names refer to identical signals. The kernel-language Signal possesses 6 instructions, the rst of them being a generic one. (iii) condition (b is boolean): y equals x when the signal x and the boolean b are available and b is true; otherwise, y is absent; the result is an eventbased undersampling of signals. The instructions (i-iv) specify the elementary programs.

(v) combination of already de ned programs: signals with common names in P and Q are considered as identical. For example where (x n ) denotes the sequence of present values of x. Hence the communication | causes ? to be inserted whenever needed in the second system z:=y+u. This is what we wanted for the example [START_REF] Ashcroft | \LUCID -a formal system for writing and proving programs[END_REF][START_REF] Ashcroft | LUCID, the Data{Flow programming language[END_REF]. A formal semantics of Signal is presented in the section 3 using the Trace model. [START_REF] Ashcroft | \LUCID -a formal system for writing and proving programs[END_REF] The Trace model for MCRS and a semantics of Signal In this section, a mathematical model for MCRS is presented, and used to formally de ne Signal. The reader is referred to Section 2 for the motivation of the following de nitions.

Histories, signals, clocks

Consider an alphabet ( nite set) A of typed variables called ports. For each a 2 A, D a is the domain of values (integers, reals, booleans: : : ) that may be carried by a at every instant. Introduce

D A = a2A (D a f?g)
where the additional symbol ? denotes the absence of the value associated with a port at a given instant. For two sets A and B, the notation A ! B will denote the set of all maps de ned from A into B. Using this notation, we introduce the following objects.

Events. Events specify the values carried by a set of ports at a considered instant. The set of the A-events (or \events" for short when no confusion is likely to occur) is de ned as

E A = A ! D A
Events will be generally denoted by . We shall denote by ? the \silent" event such that (a) = ? 8a 2 A.

Traces. Traces are in nite sequences of events. Let N + = f1; 2; :::g denote the set of integers, then the set of A-traces (or simply \traces") is de ned as

A = N + ! E A
Compressions. The compression of an A-trace T (deleting the silent events) is de ned as the (unique) A-trace S such that:

S n = T kn

where k 0 = minfm 0 : T m 6 = ?g; k n = minfm > k n 1 : T m 6 = ?g

The compression of a trace T will be denoted by T #.

Histories and signals. The condition

T # = T 0 # de nes an equivalence relation on traces we shall denote by T T 0 . The corresponding equivalence classes are called histories. The set of all possible histories on A will be denoted by A , so that we have3 

A = ( A ) =
Elements of A will be generically denoted by ! A or simply ! when no confusion can occur. While the notion of trace refers to a particular environment (since the ?'s are explicitly listed), the notion of history does not. Since

A = N + ! (A ! D A )] =
any ! A 2 A may be written as ! A = (! a ) a2A [START_REF] Benveniste | denotational theory of synchronous communicating systems[END_REF] and the ! a 's are termed signals. Hence a signal is a component of a history speci ed by selecting a particular port in the alphabet A. The notion of \signal" has been informally discussed in section 2.1-(1), where we motivated the de nition of signals and histories as equivalence classes with respect to the relation .

Clocks. Extend the domains D a with another distinguished value >, intended to encode the status \present" regardless of any particular value.

Consider the map chronos D 2 D A ! f?; >g de ned by chronos D (?) = ?; chronos D (x) = > for x 6 = ?

For each event 2 E A , there is a unique map in E A ! E A making the following diagram commutative, denote it by chronos E : A

.

& chronos E ( )

D A chronos D ! D A
Similarly, there is a unique map in A ! A , we denote by chronos , making the following diagram commutative

N + T . & chronos (T) E A chronos E ! E A
This map satis es the condition T 1 T 2 ) chronos (T 1 ) chronos (T 2 ), so that it induces a map in A ! A we shall now denote by chronos:

the chronos of a history is another history which summarizes the status fpresent/absentg of each of its signals (i.e. components). Now, given ! 2 A and a 2 A, consider the signal of port a of the history chronos(!): this signal summarizes the relative status present/absent of the signal ! a given the other signals involved in the history !. We shall call this signal the clock of ! a , or the clock of a for short when no confusion is likely to occur, and denote it by clock(! a ) or clock(a).

MCRS De nition of MCRS. A MCRS is simply a subset

A of the set of all histories on A. In other words, we consider the dynamical system (1), or, better, a Signal program, as a way to specify \legal" histories.

Restricting MCRS. Consider a subset A 0 of the alphabet A. The inclusion A 0 A induces a projection from E A onto E A 0 we denote by ! !!A 0 .

Following the same argument as for the de nition of clocks, we derive the following family of restrictions we generically denote by !!A 0. First, the following commutative diagram

N + T . & T !!A 0 E A !!A 0 ! E A 0
uniquely de nes the restriction T ! T !!A 0 on traces. Since T 1 T 2 ) (T 1 ) !!A 0 (T 2 ) !!A 0 holds, a restriction on histories ! ! ! !!A 0 may be de ned, which nally yields a restriction on MCRS we denote by

! !!A 0
This restriction maps the set of MCRS de ned over the alphabet A onto the set of MCRS de ned over the alphabet A 0 . The MCRS !!A 0 is called the restriction of to (the subalphabet) A 0 : only the signals with ports in A 0 are visible from outside and may be used for MCRS communication we shall de ne next.

MCRS communication. Consider two MCRS 1 ; 2 respectively dened over the alphabets A 1 and A 2 . Set A = A 1 A 2 . Then 1 j 2 will denote the maximal 4 MCRS de ned over the alphabet A satisfying the following conditions:

!!A 1 1 !!A 2 2
In other words, the communication constrains the signals in 1 and 2 of shared port to be identical (i.e. to be present simultaneously and then carry the same value). This is exactly what we wanted while discussing the example of eqns [START_REF] Ashcroft | \LUCID -a formal system for writing and proving programs[END_REF][START_REF] Ashcroft | LUCID, the Data{Flow programming language[END_REF].

The de nition of Signal

According to the preceding section, in order to specify an MCRS over a given alphabet, we have to describe a subset of all histories that can be built upon this alphabet. Since histories are de ned as equivalence classes of traces with respect to the relation , this may be done by listing a family of constraints on the set of all traces that can be built on this alphabet. The equivalence classes of the so speci ed traces are the speci ed histories. This is what we shall do next. We already de ned the restriction of MCRS to a subset of ports.

Discussion

At this point the following question should be investigated: did we propose in the Signal language the right primitives to specify MCRS ? More specifically, we would like to prove that no loss occurs in using Signal instead of the general and abstract mathematical model of section 3.1 to specify constraints and relations concerning timing in MCRS. This is the subject of the rest of the paper. [START_REF] Ashcroft | LUCID, the Data{Flow programming language[END_REF] The model for MCRS 1. y := u+v 2. y := x when b 3. y := u default v Referring to Section 3, the corresponding MCRS are de ned via constraints on the set of all possible joint behaviours of the signals involved in these instructions. This is a relational style of speci cation. Its advantage is to allow a very simple de nition of the MCRS communication. However taking systematically a relational point of view is certainly restrictive as shown by the above examples: the signals on the righthand side may be certainly considered as inputs and y as output. Therefore we shall extend our Trace model to allow mixed relational/functional styles of speci cation.

Moreover our intuition is that the example 2. possesses the clocks of x and b as master clocks whereas the clock of y is entirely determined by the two master clocks and the values of the boolean signal b. A similar argument holds for the example [START_REF] Ashcroft | \LUCID -a formal system for writing and proving programs[END_REF].

Therefore what we would like to have is a mathematical model of MCRS with the following features: both relational as well as functional point of views should be encompassed.

the notion of communication should be easily described. more fundamentally, we should be able to de ne clocks via a set of selfexplanatory axioms and to derive from these axioms how new clocks may be created from given ones. Using such a model, we would be able to answer the question we raised in the preceding section, namely does Signal provide the right primitives to specify general synchronisation mechanisms for MCRS? The model we shall introduce next as a re nement of the Trace model has this as its objective.

The fundamentals of timing 4.2.1 Processes and information ows

Consider a MCRS . For ! 2 , denote by T # (!) [START_REF] Benveniste | Dynamical Systems theory and the language SIGNAL[END_REF] the unique trace such that (cf Section 3.1) 8T 2 !; T # = T # (!), i.e. T # (!) is the unique trace representing ! with no \silent" events. For two histories !; ! 0 2 , we de ne the equivalence relation

! n ! 0 , 8m n : T # (!)] m = T # (! 0 )] m (7) 
When ( 7) holds, we say that ! and ! 0 possess identical initial segments up to n. The equivalence relation n on de nes a partition of we denote by n . The family of partitions ( n ) is ordered as follows: for m < n, n is ner than m , written m n , which means that every element of m is a union of elements of n . This yields the following de nition where N denotes the set of nonnegative integers:

De nition 1 A process is a pair f ; ( n ) n2N g or f ; g for short, where is a MCRS, for every n, n is a partition of into sets of histories of identical initial segments up to n (cf. ( 7)), and 0 is the trivial partition f ; ;g.

The ordered family of partitions ( n ) is called the information ow of the process.

n is to be interpreted as \the information available at time n." Hence the re nement of the notion of process with respect to that of MCRS lies in the attention we pay to initial segments.

Clocks

The purpose of this subsection is to generalize the notion of clock we introduced in the Trace model. Recall that in this model, signals are components of histories and clocks summarize the relative status present/absent of these signals. But taking components is just a particular function de ned on histories, hence we shall extend this notion by allowing more general functions to be considered. Such functions will have to satisfy special \causality" conditions as discussed in the next example.

Example. In this example we use the same conventions as in Section 3.3

to specify histories via constraints on traces. Consider the MCRS consisting of all possible single signals ! of integer type. Select a threshold and consider the successive instants n = n 1 ; n 2 ; ::: such that ! n > holds. We de ne a new signal by setting \y n = if n 2 fn k g then ! n else ?", and the clock of this signal y is just de ned by the sequence of instants fn k g. To know whether a given instant n is a tick of this clock, it su ces to know the initial segment ! 1 ; :::; ! n ] of ! up to the instant n. This is a sort of a causality property that will serve as a basis for our axiomatic model we shall present now.

In this example we illustrated how to create new clocks via (history-dependent) undersampling, but history-dependent oversampling is useful as well in specifying synchronisation in MCRS (cf. 7]). For instance, the set N k endowed with the lexicographic order is useful to represent k 1 nested loops that are red at each instant. To allow for oversampling, we need to consider with some care what are the time index sets we want to handle. Given two totally ordered sets T and T 0 , we shall write T o:p: T 0 (8) to mean that T is a subset of T 0 and that the natural injection from T into T 0 is order preserving. Similarly T 0 ^o:p: T 00 denotes the supremum of all T 's satisfying T o:p: T 0 and T o:p: T 00 . If T 0 and T 00 possess a common upperbound for the relation o:p: , their supremum is well de ned and is denoted by T 0 _ o:p: T 00 De nition 2 A time index set is a denumerable, totally ordered set T such that N o:p: T . Time index sets are generically denoted by T and their elements by the letters s; t; u; v: The elements 0 and 1 of N are assumed to be respectively the in mum and the supremum of T .

Using the natural embedding of N into T allows us to write expressions such as s n where s 2 T and n 2 N. Comment: we consider that there exists some master time index set N. The introduction of oversets of N will allow to consider clocks that are more frequent than N. To face the same need, Gonthier 18] uses the real line as a universal time index set, but only discrete subsets are e ectively used. We prefer our approach since referring to a universal notion of time might be misleading in our context.

Clocks may be de ned using three equivalent points of view: a set of instants, an increasing sequence of dates, an increasing counter. In any case, clocks are history-dependent, so that they will be de ned as functions of histories. This is consistent with the discussion of Section 4.1. In the following de nition, we are given a time index set T .

De nition 3 A clock is de ned via the following equivalent points of view:

1. Using sets. A clock is speci ed by a subset H

T satisfying the property f(!; s) 2 H; s < n + 1; ! 0 n !g ) f(! 0 ; s) 2 Hg [START_REF] Berry | ESTEREL synchronous programming language: design, semantics, implementation[END_REF] We shall use the following notations H(!; :) = fs 2 T : (!; s) 2 Hg [START_REF] Berry | Time Programming: Special Purpose Languages or General Purpose Languages[END_REF] H(:; s) = f! 2 : (!; s) 2 Hg [START_REF] Uchi | a Decision Method in Restricted Second Order Arithmetic[END_REF] 2. Using dates. A clock is a function H : N ! T satisfying the following properties H(!; 0) = 0 ; H(!; 1) = 1 (12) m < n and H(!; n) < 1 ) H(!; m) < H(!; n) [START_REF] Caspi | functional model for describing and reasoning about time behaviour of computing systems[END_REF] H(!; n) < m + 1 and ! 0 m ! ) H(! 0 ; n) = H(!; n) [START_REF] Caspi | \Clocks in Data{ ow languages[END_REF] We shall often write H n (!) instead of H(!; n).

These two de nitions are related to each other via the formulae (!; s) 2 H , 9n : H n (!) = s [START_REF] Dellacherie | Probabilit es et Potentiels[END_REF] H n (!) = min n s : #fH(!; :) \ 0; s]g = n o where #f:::g denotes cardinal. Counters were introduced for the same purpose in 12]. They may also be introduced here via the formula H s (!) = #fm 2 N : H m (!) sg Comments 1. The notion of clock we introduced in Section 3 may be viewed as a particular case of the rst point of view. Given ! and a 2 A, the clock of ! a may be represented by the set of indices n such that T # (!) n ](a) 6 = ? (cf. the notation (6) and the de nition of traces in Section 3). The causality condition ( 9) is immediate in this case. Only undersampling was encountered in the Trace model. 2. The second point of view (using dates) will be more convenient than the rst one in the sequel. 3. The conditions ( 9) or ( 14) axiomatize the causality property we discussed in the example of Section 4.1. In particular, [START_REF] Caspi | \Clocks in Data{ ow languages[END_REF] expresses that, to decide whether H n 2 m; m + 1), it su ces to know the initial segments up to and including m. This re ects the fact that, while the \system" may live between m and m + 1, it does not receive fresh information during this period. 

This is an equivalence relation. Formula (16) de nes ( Hn ) as the information ow associated with the clock H.

The fact that (16) de nes an equivalence relation is due to the property [START_REF] Caspi | \Clocks in Data{ ow languages[END_REF]. The information ow associated with a clock is the good way to encode the notion of initial segment in the case of time changes.

Signals

To encompass both relational and functional points of view, we shall generalize the notion of signal as introduced in Section 3. In this section, signals were introduced as being components of histories. But selecting a component is just a particular function. Hence we shall more generally de ne signals as being functions of histories that satisfy suitable causality conditions.

De nition 5 Let f ; g be a process, and H a clock. A f ; ; Hg{signal (or signal of clock H for short when no confusion is likely to occur) taking its values in a set is a function

X : N + ! ; written (!; n) ! X n (!)
satisfying the following property:

! 0 Hn ! ) X n (! 0 ) = X n (!) (17) 
De nition 5 expresses the fact that X n has to be considered as present and known at time H n ; H n (!) = 1 means that X n (!) is never delivered.

Comment: The notion of signal introduced in the section 3 may be viewed as a particular case of the de nition 5. Namely, for a 2 A, ! a as de ned in ( 5) is equally well speci ed by the pair fclock(! a ); ((! a ) n 1 ; (! a ) n 2 ; :::)g where n k is the k-th tick of clock(! a ) and (! a ) n k is the value of the k-th present occurrence of ! a . Considering next ! as a variable yields exactly a particular case of de nition 5 since the condition (17) is immediate.

The algebra of clocks

Throughout this section, we are given a xed process f ; g, and all clocks we shall consider are de ned on this process. The aim of this section will be to introduce a \clock algebra": writing relations within this algebra will be the convenient way to specify constraints on clocks. For this purpose we shall introduce a partial order on the set of the clocks, and we shall introduce two useful primitives on this set, namely the ltering and the multiplexing. And we shall nally prove that these primitives allow us to build any clock in nitely many steps. This will be the rst major result of our paper. Throughout this section, we shall use the notation T (H) to refer to the time index set where the clock H takes its values.

A partial order on the set of the clocks

Given two clocks H and K such that T (K) o:p: T (H) holds, we de ne (cf. ( 10)) K H , 8! : K(!; :) H(!; :) [START_REF] Le Guernic | ow to Von Neumann: the Signal approach[END_REF] In other words, K H means that the set of occurrences of K is included in the set of the occurrences of H whatever the history ! is.

Warning: since the intersection of two time index sets is a time index set, any two clocks H and K possess an in mum. Unfortunately, the supremum of two time index sets is generally not a time index set, so that the supremum of two arbitrary clocks is not de ned in general. The operations of in mum and supremum (when the latter is properly de ned) will be respectively denoted by 

K = H # B ( 20 
)
and is referred to as the clock obtained by ltering H by B.

Figure 1: The multiplexing

The gure 1 depicts this procedure. The "'s denote an increase by 1 of the second component of H " C, whereas the #'s replace at the same time H m by H m+1 and k = C m by k = 0. C n speci es how many additional instants have to be inserted between the n{th and the (n + 1){st instants of H. To justify the above de nition, we have to prove the following result:

Theorem 1 K = H " C is a f ; g{clock.

Proof: Using (21) we have

(!; s; k]) 2 K ) (!; s) 2 H so that (!; s; k]) 2 K s; k] < n + 1 ! 0 n ! 9 > = > ;
) (! 0 ; s) 2 H [START_REF] Kahn | \The semantics of a Simple Language for Parallel Programming[END_REF] since s; k] < n + 1 ) s < n + 1 by de nition of the lexicographic order. Then take m as in [START_REF] Le Guernic | ow to Von Neumann: the Signal approach[END_REF], since C is a signal of clock H, we have ! 0 n ! ) C m (! 0 ) = C m (!) (23) Finally, [START_REF] Kahn | \The semantics of a Simple Language for Parallel Programming[END_REF] and [START_REF] Kahn | \Coroutines and Network of Parallel Processes[END_REF] together prove the theorem.

The next theorem is the fundamental result of this paper. It expresses the fact that the ltering and multiplexing are the right primitives to construct any clock.

Theorem 2 Let H be a T {valued clock, where T = N L ; 0 < L < 1 is endowed with the lexicographic order. Then H may be decomposed as follows:

H 0 = Id H 1 = H 0 # B 1 8l > 0 : H l+1 = H l " C l # B l H = H L (24) 
where B l and C l respectively are boolean and nonnegative integer signals 5 , and Id denotes the clock \Identity" de ned by Id n (!) = n. Furthermore, among all possible decompositions, there is a minimal one, we denote by H 0 ; :::; H L , such that 8l L : H l H l (25) for any decomposition [START_REF] Lee | \Consistency in Data{Flow graphs[END_REF].

Proof: Denote by proj l the projection of T onto N l obtained by discarding the L l last coordinates of t to get proj l (t). Using the notation (9) we de ne the clock H l by H l = proj l (H) (26) To prove the theorem, it su ces 1. to verify that H l satis es the condition (9), 2. to prove that H l+1 and H l are related via [START_REF] Lee | \Consistency in Data{Flow graphs[END_REF]. The rst assertion is proved by induction over l. Write for short t(l) = proj l (t) and decompose t(l + 1) = t(l); k]. Consider n such that n t(l) < n + 1. The de nition of the lexicographic order implies that n t(l + 1) < n + 1 also holds. The formula H l = proj l (H l+1 ) implies in this case that 6 H l (:; t(l)) = proj l H l+1 (:; t(l)) = k H l (:; t(l); k]) 5 of suitable clocks so that the corresponding formulae make sense 6 we use the notation [START_REF] Uchi | a Decision Method in Restricted Second Order Arithmetic[END_REF] so that n (!; t(l)) 2 H l and ! 0 n ! o ) n (! 0 ; t(l)) 2 H l o which proves the rst assertion by induction.

To prove the second assertion, select m as in [START_REF] Harel | proc. NATO Advanced Study Institute on Logics and Models for Veri cation and Speci cation of Concurrent Systems[END_REF] To prove [START_REF] Mcnaughton | \Testing and generating In nite Sequences, bynite Automata[END_REF] we remark that the formula ( 26) yields the desired decomposition. This nishes the proof of Theorem 1.

Comments.

1. The most general time index set we may expect is any denumerable ordinal T . But, if t denotes a limit ordinal in T , there exists an increasing sequence in T converging to t. Hence only nitely many such limit ordinals may exist in T , otherwise T would contain N N with lexicographic order, but this latter ordinal is isomorphic to @ o which is not denumerable. Finally T must be a subset of N L for some nite L, so that Theorem 2 is the most general one may expect.

2. This theorem states that assuming that every clock is de ned in terms of the most frequent one is incorrect from the mathematical point of view: both multiplexing and ltering should be used in general. 3. The combined use of the operations " and _ on clocks may cause di culties, as the following example shows. Consider two di erent nonnegative integer signals C and C 0 of clock Id. Should we consider that the two clocks Id " C and Id " C 0 take their values (a) in the same, or (b) in di erent copies of the set N N? In the rst case, the supremum (Id " C)_(Id " C 0 ) does exist, while it does not in the second case since no total order is de ned on the union of these two di erent copies. Although simpler, the rst choice is not very convenient, for it would result in very strange situations. Take for instance C 1 and C 0 3: one may expect that this should correspond to increasing the sampling by a rate 2 and 4 respectively. Unfortunately this is not what we get by applying the de nition of multiplexing, which yields instead ticks of Id: ticks of Id " C: ticks of Id " C 0 : Finally, the most reasonable choice is the second one, namely to always assume that di erent signals C create clocks with values in di erent time index sets. This should be kept in mind in the sequel. [START_REF] Ashcroft | LUCID, the Data{Flow programming language[END_REF]. The main result of this section is that the algebra of the clocks of a given process is equipped with the operations ^and _ in a natural way, and that the ltering and the multiplexing are the convenient constructions to build any clock. 

Isomorphisms and process algebra

Notice that, given two processes P = f ; g and P 0 = f 0 ; 0 g, their communication PjP 0 is well de ned: just take the MCRS j 0 and consider its information ow according to De nition 1. The same holds for the restriction P!!A which is built over !!A . Hence the set of processes equipped with the communication and restriction will be called the process algebra. We state now a notion of isomorphism within the process algebra.

De nition 7 Two processes P = f ; g and P 0 = f 0 ; 0 g are said to be isomorphic, written P = P 0 if there exists a bijection : ! 0 such that ( n ) = 0 n Clearly, this notion of isomorphism is a congruence, namely P = P 0 and Q = Q 0 ) PjQ = P 0 jQ 0

A natural notion of morphism may be de ned as well: the map introduced in the above de nition is a morphism from P into P 0 if 1 ( 0 n ) n , where 4.5 Processes revisited: a more abstract de nition

In De nition 4 we introduced time changes. Referring to this de nition we may wish to set ~ n = Hn and consider objects such as f ; ~ g. Unfortunately, such objects are not covered by De nition 1 since the elements of the partition ~ n are not initial segments of of length n.

However it is not until the beginning of subsection 4.4 that we used the fact that the 's are MCRS and the 's associated information ow of initial segments. In fact this property has only been explicitly used in de ning the process communication PjP 0 . In all other statements and proofs the only properties we really needed on the objects ; n ; n were the following: is a set.

( n ) is an ordered family of partitions of and ! n ! 0 if by de nition ! and ! 0 belong to the same element of the partition n .

Let us state this more precisely.

De nition 1 revisited A process is a pair f ; ( n ) n2N g or f ; g for short, where is a set for every n, n is a partition of and we write ! n ! 0 to mean that ! and ! 0 belong to the same element of the partition n , the family of partitions ( n ) is ordered by re nement, i.e. for m n, each element of m is a union of elements of n ; moreover, 0 = f ; ;g. The ordered family of partitions ( n ) is called the information ow of the process.

Everything in this section 4 carries out to this more abstract notion of process, except the de nition of process communication for which the denition we gave explicitly used the fact that is a MCRS. In particular, we may use the results on the algebra of clocks for the (time changed) process f ; ~ g we introduced at the beginning of this subsection, and we may also use the notion of process isomorphism. This generalization will be required in Section 5 where some properties of Signal are studied.

In fact, the whole model might have been developed entirely based on this abstract de nition, including the notion of process communication. This makes the whole theory harder to follow so that we preferred the presentation of this paper. The reader interested in the abstract version of the model is referred to 4] 5].

Discussion

We have introduced the model as a re nement of the Trace model. We rst equipped the notion of MCRS with the structure of initial segments to derive the notion of process. Then we built on this new notion a denotational theory which encompasses both relational and functional styles of speci cation. Finally we have shown how this theory may perfectly t a more abstract notion of process that covers in particular the use of time changes.

We used this model to study the algebra of clocks and shown that the ltering and multiplexing are convenient primitives to build any synchronisation mechanism. Unfortunately it appeared that the multiplexing as such causes di culties to occur since the supremum of two clocks obtained via multiplexing is generally not properly de ned. The model will be used in the next section to investigate the properties of Signal.

Properties of Signal

In this section, we show that Signal satis es the following properties:

1. The semantics of any program may be stated using a process which possesses Id as the most frequent 7 clock. Consequently, no multiplexing is involved in such semantics and we do not encounter the problems that may be caused by the simultaneous use of _ and " operators on clocks (cf. the warning of subsection 4.3.1 and the comment 3. following the proof of theorem 2). 2. However Signal allows to simulate the multiplexing in a sense we shall formalize. Hence this ensures that Signal has the maximum descriptive power to specify synchronisation mechanisms in synchronous reactive systems. 3. The model may be used to de ne di erent semantics of a Signal program, from purely relational to purely functional ones, and these di erent semantics are shown to be bisimulation equivalent in a sense we shall make precise. Because of point 3, we shall indicate explicitly whether we consider the Trace{semantics of a Signal program, or one of its {semantics. In handling Signal programs and their semantics, we shall use the following notations: for each signal X involved in a Signal program, we denote by X and H(X) the corresponding signal and its clock in the considered semantics. Proof: this is an immediate consequence of the two following facts:

Signal does not use the multiplexing as such

1. the Trace{semantics of Signal has been given in terms of the Trace model of Section 3, 2. no oversampling of clocks is possible within the Trace model, cf. the comment 1. following de nition 3.

Signal allows to \simulate" the multiplexing

The unde ned notations may be found in Section 4.3.3. Consider the clock H = Id " C

We may write

H k = N k ; M k ] (27) where 8 
N k = if (M k 1 = C N k 1 ) then N k 1 + 1 else N k 1 M k = if (M k 1 = C N k 1 ) then 0 else M k 1 + 1 (28)
We shall translate these formulae into a Signal program. The current instant is k: it will be handled implicitly.

However we also need to handle the signal C N k : this signal may be produced by the following program: Then it remains to encode the two equations ( 28): For each of the three modules we have introduced, it is straightforward although tedious to verify using the Trace{semantics of Section 3.3 that it implements the desired formulae, namely ( 27) and [START_REF] Plaice | emantique et compilation de LUSTRE, un langage d eclaratif synchrone[END_REF].

Next, consider the following two processes: 10 PRIMITIV E MUX = f C ; C g ; where (29) C is the alphabet fCg C is the set of all possible histories of C and C is the associated information ow, and MUX = f ; g ; where That is a bijection is a consequence of the fact that the behaviour of the process MUX is entirely determined by its input C. Finally, that N; M] is mapped onto Id " C is an immediate consequence of the fact that the program MUX implements the formulae [START_REF] Ornstein | Ergodic Theory, Randomness, and Dynamical Systems[END_REF] [START_REF] Plaice | emantique et compilation de LUSTRE, un langage d eclaratif synchrone[END_REF].

Discussion: The reader may have found what is the deep reason for Signal to be able to simulate the multiplexing. The key tool is in fact process communication. The multiplexing is rebuilt within the program MUX according the following two pieces:

1. The rst piece is the two following instructions

The communication causes the two signals LAST C and CURRENT C to have the same clock, and the rst instruction asserts that C is less frequent than the two other signals. This program causes a (non determinate) amount of ?'s to be inserted between successive occurrences of C. More generally, the e ect of the communication as de ned in Section 3 may also be expressed on the \compressed" traces (i.e. traces with no silent events): in PjQ the traces of P and Q are \expansed" (i.e. silent events are inserted) to allow for signals of shared ports to be identical. This expansion mechanism is a sort of \weak" multiplexing, i.e. a multiplexing which is not determined entirely by P, but needs a communication with another process in order to occur. 2. The second piece is the instruction

(| synchro C, true when DOWN |)
Since DOWN is a function of C, this instruction speci es the amount of inserted silent events between successive occurrences of C as a function of C itself. This xes the \weak" multiplexing created by the communication and makes it a deterministic operator.

From Trace{semantics to {semantics of Signal programs

Theorem 4 states that at least two di erent semantics may be of interest for the program MUX f?C !N,Mg, and that they are related via a time change followed by the isomorphism . We shall show that this situation may be generalized.

Example: a semantics of the instruction Y := X when B may be given in the two following ways:

1. Its 

(Y ) = H(X) ^(H(B) # B) H(Y ) n (!) = H(X) m (!) ) Y n (!) = X m (!) (32) 
This is a purely functional style of semantics as wished at the beginning of Section 4.

In either case 1 or 2, however, a triple fY; X; Bg of signals were de ned on a process f ; g, which satis ed the relations (32). This is a situation similar to that of Section 5.2, and we show next that both examples are particular cases of a general result.

Determinism

Consider a Signal program P and partition the set of its signals as fU1,...,Up; Y1,...,Yqg. Denote by its Trace{semantics. We consider also the associated process P = f ; g where is the information ow of initial segments of .

The information on P an observer may learn by having access to U1,...,Up only is represented by an information ow we denote by U and call the information ow generated by the Ui's. This information ow may be constructed as follows. Consider the family of all information ows on making each of the U i (i = 1; :::; p) to be a signal of clock H(U i ). This set is not empty since it contains . Referring to the order on information ows dened by 0 00 if by de nition 8n; 0 n 00 n , this set is stable by nite in mum. Hence a minimal information ow does exist within this set: this is U . The information ow U is characterized by the following property: 

for (!; k) de ne the index n i via H(U i ) n i (!) k < H(U i ) n i +1 (!) then, we have ! U k ! 0 (33) 
! Hn ! 0 H n (!) k < H n+1 (!) ) ) ! k ! 0 (35)
2. writing ! = ! U1 ; :::; ! Up ; ! Y1 ; :::; ! Yq , the map : ! ! ! U1 ; :::; ! Up is an isomorphism from f ; ~ g onto f !!U ; !!U g where !!U is the restriction of to the subalphabet U = fU1; :::; Upg and !!U is the associated information ow of initial segments.

Proof: statement 1 is just a rewriting of (33), and statement 2 is an immediate consequence of 1. Notice that it is not assumed here that the Ui's are free intputs: they may be constrained, hence the use of the restriction !!U which is in general di erent from the set of all possible histories on the alphabet fU1; :::; Upg.

Su cient conditions to guarantee for a Signal program to be deterministic are checked by the Signal compiler as shown in 6] 5].

Bisimulations

Consider a process f ; g where is a MCRS and the associated information ow of initial segments. Then assume we are given another process f 0 ; 0 g in the generalized sense of De nition 1 revisited.

De nition 9 A bisimulation from f ; g onto f 0 ; 0 g is a pair (H; ) where 1. H is a clock on f ; g satisfying the condition (35) 2. is an isomorphism from f ; ~ g onto f 0 ; 0 g where ~ n = Hn .

We write f ; g H; ! f 0 ; 0 g to refer to the above property and we de ne the bisimulation equivalence as its transitive and re exive closure.

Comment: Hence, observing two processes that are bisimulation equivalent provides the same information, however at rates that may be di erent (cf. the theorem 6 below for a precise statement of this). The communication of a given process with two processes that are bisimulation equivalent also yields two processes that are bisimulation equivalent. These remarks justify the use of the name \bisimulation" which is classical in process calculi. Finally, note that theorem 5 relates bisimulation with determinism. Theorem 6 We are given a bisimulation f ; g H; ! f 0 ; 0 g and we set C n (!) = H n+1 (!) H n (!). We de ne the map (H; ) : K ! K 0

where K is a clock on the process f ; g which we decompose according to theorem 2 11 K = :::(Id # B 1 )::: " C L # B L 11 we use in fact the \minimal" decomposition labelled with : 's in theorem 2 and K 0 is then given by12 K 0 = h :::( Id " C] # B 1 )::: " C L # B L i 1 Then the map (H; ) is an isomorphism between the clock algebras of f ; g and f 0 ; 0 g.

Proof:

1. C 1 is a signal of clock Id on f 0 ; 0 g. Since H is a clock, we have

H n+1 (! 1 ) > k ! 2 k ! 1 ) ) H n+1 (! 2 ) > k
From this and condition (35) we derive

C n (! 1 ) > k H n (! 1 ) ! 2 Hn ! 1 ) ) C n (! 2 ) > k H n (! 2 ) so that ! 2 Hn ! 1 ) C n (! 2 ) C n (! 1 )
whence equality follows by symmetry: this proves step 1. Consequently Id " (C 1 ) is a clock on f 0 ; 0 g.

2. K 0 is a clock on f 0 ; 0 g and the image by of the partition Kn is the partition 0 K 0 n . We prove this by induction on the length L of the decomposition of K. The result for L = 1 was proved in step 1. Hence we assume the result to hold for K as in the theorem, and prove it for the clock (K " C L+1 ) # B L+1 . By de nition of the multiplexing ! 2 Kn ! 1 ) C L+1 n (! 2 ) = C L+1 n (! 1 ) But by assumption ! 2 Kn ! 1 , (! 2 ) K 0 n (! 1 ) so that C L+1 n 1 is constant on the elements of the partition 0 K 0 n , whence (K " C L+1 ) 1 is a clock. Similarly we prove that B L+1 1 is constant on the elements of the partition 0 K 00 n where K 00 = (K " C L+1 ) 1 . This proves step 2. where B l = B 0 l ; C l = C 0 l . This is easy although tedious to verify. 4. That (H; ) is an isomorphism of clock algebras follows immediately from the preceding steps. For instance K 2 = K 1 # B yields K 0 2 = K 0 1 # B 0 where B 0 = B 1 . Similarly K = K 1 _ K 2 rewrites to K 1 = K # B 1 and K 2 = K # B 2 where B 1 orB 2 = true which carries out through the map (H; ) . This nishes the proof of the theorem.

The {semantics of a Signal program

Consider the table 1 where H : y = x is a short-hand to mean H k (!) = H(y) n (!) = H(x) m (!)] ) y n (!) = x m (!)];

H(v) H(u) denotes the unique clock K such that H(v) = K_(H(u)^H(v)). This table shows how to derive the system of clock equations H(P) and signal equations sig(P) associated with the program P.

De nition 10 We are given a Signal program P with involved signals fu1,...,up; y1,...,yqg and we assume P to be deterministic w.r.t. u1,...,up.

Then we term a {semantics of P a triple f U ; U ; u 1 ; :::; u p ; y 1 ; :::; y q ]g where U is the Trace{semantics of the program P!!u1,...,up 13 and U is the associated information ow of initial segments for i = 1; :::; p; u i is the i{th signal of the history ! U 2 U and H(u i ) its clock for j = 1; :::; q; y j is a signal of clock H(y j ) on the process f U ; U g and the family of signals u 1 ; :::; u p ; y 1 ; :::; y q ] satisfy the constraints speci ed by the program P according to the table 1.

Summary. The {semantics of a program is generally not unique as

shown by the examples of the MUX and of the when. Theorems 5 and 6 provide a way to build di erent {semantics of a program by starting from its Trace{semantics and selecting any t-uple making this program deterministic. The so obtained {semantics are bisimulation equivalent.

Conclusion

Starting from elementary discussions related to systems of dynamical equations we motivated the introduction of Signal as a language to specify and program reactive systems. As a rst attempt to provide a denotational semantics of Signal we introduced the Trace model which is purely relational and exhibits built-in parallelism: objects within this model are de ned as restrictions on the set of all possible joint behaviours of \signals". To further investigate fundamental issues related to synchronous languages and reactive systems we introduced a drastically new model which encompasses both relational and functional styles of speci cation, and allowed us to introduce the notions of clock and signal via axioms. Then two basic constructions where proved able to build any new clock from a master one, namely the ltering (or event based undersampling) and multiplexing (or event based oversampling). Finally we proved that Signal possesses the rst construction as a built-in primitive while the second one may be \simulated" in some precise sense. This shows in particular that Signal possesses maximum descriptive power for synchronisation mechanisms. Finally, we have shown how the model may be used as an alternative semantic domain of Signal to obtain di erent semantics (from relational to purely functional ones) that are bisimulation equivalent.

We believe that, although probably unfamiliar to the computer science community, our model is a signi cant contribution to fundamental studies on synchronous reactive systems. In particular a variation of this model provided us recently with a multiple clocked generalisation of Leiserson and Saxe's theory of retiming that may be applied to various proofs of equivalence of synchronous reactive systems. This will be presented in a forthcoming paper.

ACKNOWLEDGEMENT: the authors wish to thank two reviewers who helped in improving a previous version of this paper, and Paul Caspi and Thierry Gautier for fruitful discussions.

Appendix: notations 

  (i) R(x1,...,xp) (ii) y := x $ x0 (iii) y := x when b (iv) y := u default v (v) P | Q (vi) P !! x1,...,xp Their intuitive meaning is as follows (for a formal de nition, see the section 3): (i) direct extension of instantaneous relations into relations acting on signals: R(x1; :::; xp) () 8n : R(x1 n ; :::; xp n ) holds where R(:::) denotes a relation and the index n enumerates the instants at which the signals xi are present. Examples are functions such as z := x+y (8n : z n = x n + y n ) or statements such as (a and b ) or c = true (8n : (a n and b n ) or c n = true). A byproduct of this instruction is that all referred signals must be present simultaneously, i.e. they must have the same clock. This is a generic instruction, i.e. we assume a family of relations is available. If one chooses an instantaneous relation accepting any p-uple, the resulting Signal instruction only constrains the involved signals to have the same clock: this is the way we derive the instruction written synchro x,y,.. which only forces the listed signals to have the same clock. (ii) shift register. y := x $ x0 () 8n > 1 : y n = x n 1 ; y 1 = x0 Here the index n refers to the values of the signals when they are present. Again this instruction forces the input and output signals to have the same clock.

(

  | y := zy + a | zy := y $ x0 |) denotes the system of recurrent equations: y n = zy n + a n zy n = y n 1 ; zy 1 = x0 On the other hand, the program (| y := x when x>0 | z := y+u |) yields if x n > 0 then ( y n = x n z n = y n + u n else y n = u n = z n = ?

(

  vi) restriction to the listed set of signals: other signals are local to the considered program and therefore play no role in program communication.

  Instruction (i): R(x1,...xp) 8n 2 N + ; 8i : xi n 6 = ? 8n 2 N + : R(x1 n ; :::; xp n ) holds Here, the notation xi n denotes the value carried by the port with name xi at the n-th instant of the considered trace. This notation will be further used in the sequel of this subsection. Instruction (ii): y := x $ x0 8n 2 N + : x n 6 = ? 8n > 1 : y n = x n 1 y 1 = x0 Instruction (iii): y := x when b 8n 2 N + ; y n = ( if x n 6 = ? and b n = true then x n else ? Instruction (iv): y := u default v 8n 2 N + ; y n = 8 > < > : if u n 6 = ? then u n else if u n = ? and v n 6 = ? then v n else ? Instruction (v): P | Q We already de ned the operator j on MCRS. Instruction (vi): P !! x1,...,xp

  t(l); k] 2 H l+1 (!; :) o Then apply Lemma 1 to the clocks H l+1 H l " C l to get B l .

  Theorem 3 The Trace{semantics of any Signal program may be stated without the use of multiplexing.

8

  these formulae are an immediate writing of the gure 1 (| CURRENT_C := C default LAST_C | LAST_C := CURRENT_C $ 0 | synchro CURRENT_C, M, N |) The last instruction speci es that the three mentioned signals must have the same clock. Then, CURRENT C carries the most recent value of C, and C n k is represented by the signal CURRENT C. The boolean signal (m k 1 = C n k 1 ) is also needed. The input signal C is received the instant following a true occurrence of this boolean (this is expressed by the last synchro instruction). The corresponding program is (| DOWN_NEXT_TIME := (M = CURRENT_C) | DOWN := DOWN_NEXT_TIME $ true | synchro C, true when DOWN |)

  (|(| N := (ZN+1 when DOWN) default ZN | ZN := N $ 0 |) |(| M := (0 when DOWN) default ZM+1 | ZM := M $ 0 |) |) This gives nally the program 9 MUX { ? C ! N,M } % ? list of inputs, ! list of outputs % = (|(| CURRENT_C := C default LAST_C | LAST_C := CURRENT_C $ 0 | synchro CURRENT_C, M, N |) |(| DOWN_NEXT_TIME := (M = CURRENT_C) | DOWN := DOWN_NEXT_TIME $ true | synchro C, true when DOWN |) |(|(| N := (ZN+1 when DOWN) default ZN |

  (30) is the Trace{semantics of program MUX, cf Section 3.3 and is the associated information ow. According to (5), each ! 2 is of the form ! = (! C ; ! N ; ! M ) and we denote by the rst projection: : ! 2 ! ! C 2 C On the other hand, denote by H the clock of C in MUX, and consider the time{changed information ow (cf. De nition 4) ~ k = H k on MUX. Then we have the following theorem where the abstract notion of process as in De nition 1 revisited is used: 10 cf. Section 3.1 and 4.2 for unde ned notations Theorem 4 1. We have ! Hn ! 0 H n (!) k < H n+1 (!) ) ) ! k ! 0 2. The map is an isomorphism from the process n ; ~ n o onto the process f C ; ( C ) n g, and the image by of the N 2 {valued signal N; M] is the clock Id " C: Comment: the rst statement expresses that no fresh information is received by MUX between two successive occurrences of C, so that no loss occurs by replacing the original information ow ( n ) by the time changed one ( ~ n ). And the second statement gives a precise meaning to what we mean by \simulating the multiplexing". Proof: For H n (!) k < H n+1 (!) (31) it is easily checked on the Trace{semantics of MUX that this process evolves as follows: N k+1 (!) = N k (!); M k+1 (!) = M k (!) + 1 which proves statement 1 since the condition (31) only depends on the initial segment of length H n .

  ,...,xp) H = H(x 1 ) = ::: = H(x p ) H : R(x 1 ; :::; x p ) y := x $ xo H = H(y) = H(x) H : y n = x n 1 y := x when b H = H(y) = H(x) ^(H(b) # b) H : y = x Y := u default v H(y) = H(u) _ H(v) H(u) : y = u H(v) H(u) : y = v P|Q H(P) H(Q) sig(P) sig(Q)

K 0 =

 0 :::(Id # B 0 1 )::: " C 0 L # B 0 L and K = :::(H # B 1 )::: " C L # B L

  4.1 Criticizing the Trace modelIn the preceding section, we have introduced the Trace model for MCRS. Although simple, this model is not powerful enough to analyse the fundamentals of timing. To illustrate this claim, let us consider the following MCRS, that are speci ed using Signal:

  Obviously (as it has been pointed out in 27]), these two constructions may be combined into a single one provided that in De nition 6, C n be interpreted as the amount of instants inside the semi{closed interval H n ; H n+1 ) instead of the open one (H n ; H n+1 ) as we have done. But we preferred to keep this distinction since only the multiplexing may create problems.

  It turns out that the reasoning of Section 5.2 may be borrowed here. Set H = H(U 1 ) _ ::: _ H(U p ) and write ~ n = Hn . Then the following theorem holds: Theorem 5 If P is deterministic w.r.t. U1,...,Up then 1. no fresh information is received between H n and H n+1 :

		m
	8i = 1; :::; p; n n i :	( H(U i ) n (! 0 ) = H(U i ) n (!) (U i ) n (! 0 ) = (U i ) n (!)
	This formula expresses that U is entirely known when the Ui's are observed.
	De nition 8 The program P is said to be deterministic w.r.t. U1,...,Up if U n = n (34)
	holds (no information is lost by observing only the Ui's).

Table 1 :

 1 3. The map (H; ) is invertible and its inverse is K 0 ! K where

in the common sense, no mathematical de nition is referred to here

= denotes here the quotient space by the relation

with respect to the order by inclusion 0 de ned on MCRS

denotes the inverse map of (wich acts on subsets of 0 ), and is the ordering on partitions we introduced just before the de nition 1. But we shall not discuss the notion of morphism any further.

or maximal in the sense of the ordering on the clock algebra

a much more concise program exhibiting a multiplexing mechanism has been presented in 7], it is based on a decreasing counter; the present form is useful for our theoretical purpose

(| CURRENT_C := C default LAST_C | LAST_C := CURRENT_C $ 0 |)

f g denotes the composition of the maps f and g

the restriction of P to the listed signals

Proof that K is a clock: easy, left to the reader.

The meaning of the ltering is the following: H # B extracts from H the instants where the boolean B is true. Conversely, we have the following result:

Lemma 2 If K H, then we have K = H # B where B is given by B n (!) = ( true if H n (!) 2 K(!; :) false otherwise

The proof is elementary, and is left to the reader. The ltering is a primitive instruction of the languages Lustre and Signal (the when), and may be built in Esterel.

The multiplexing

No tool is usually provided in real time oriented languages to allow oversampling at data dependent rates. Our purpose is now to investigate theoretically the di culties behind this notion within our model.

We are given a clock H taking values in a time index set T . Let C be an integer valued (nonnegative) signal with clock H, such that 0 C n < 1 for n nite, and C 1 = 0. Set T 0 = T N endowed with the lexicographic order de ned by s; k] < s 0 ; k 0 ] , s < s 0 or fs = s 0 and k < k 0 g Note that T is naturally identi ed with the subset T f0g of T 0 , we shall often use this embedding in the sequel.

De nition 6 The multiplexing of the clock H by the signal C is denoted by K = H " C and is the T 0 {valued clock K de ned as follows: (!; s; k]) 2 K , f9m : H m (!) = s and 0 k C m (!)g [START_REF] Harel | proc. NATO Advanced Study Institute on Logics and Models for Veri cation and Speci cation of Concurrent Systems[END_REF] where C 0 (!) = 0 by convention.