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Quantitative Morse-Sard theorem via Algebraic

Lemma

David Burguet,

CMLA-ENS Cachan

61 avenue du président Wilson

94235 Cachan Cedex France

Abstract

We give a short proof of the so called Quantitative Morse-Sard Theorem
as an application of Gromov’s Algebraic Lemma.

1 Introduction

The classical Morse-Sard theorem states that the set of critical values of a
sufficiently smooth map f : Rn → R

m has zero Lebesgue measure. Using
polynomial approximation and tools of semi-algebraic geometry Y.Yomdin
[6] proved a quantitative version of this result which gives in particular an
upper bound on the upper box dimension of the set of critical values.

In the whole paper the Euclidean spaces R
d with d ≥ 1 are endowed

with the usual Euclidean norm. Moreover the norm of multilinear maps
on such Euclidean spaces will be the associated operator norm. When f :
]0, 1[n→ R

m is a Ck map, we will consider the map Λif induced by f on the
ith exterior power of Rn with 1 ≤ i ≤ m. The norm of Λif(x) is the the
growth under f of infinitesimal i-volume at x. In particular the n-volume
Voln (f(]0, 1[

n)) of f(]0, 1[n) is bounded from above by ‖Λnf‖∞. The norm
‖Λif(x)‖ is also the product of the ith maximal eigenvalues of the square
root of the differential map Dxf . We will denote by ‖f‖k the supremum
norm of the kth-derivative of f and by ∆(f, ν) the critical values f(x) of f
such that the rank of the differential map Dxf is less than or equal to ν

with 0 ≤ ν < min(m,n).
The ǫ-entropy M(X, ǫ) of a subset X of Rm is the minimal cardinality

of collections of balls of radius ǫ covering X. The upper box dimension
dimb(X) of X is then just defined by dimb(X) = lim supǫ→0−

logM(X,ǫ)
ǫ

.
The main goal of this paper is to provide a short proof of the following

Quantitative Morse-Sard Theorem due to Yomdin. We refer to [7] for fur-
ther developments around Morse-Sard Theorem, in particular the question
of optimality of this result.

Theorem 1 Let f :]0, 1[n→ R
m be a Ck map with k ∈ N \ {0}, then for all

0 ≤ ν < min(n,m)
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M(ǫ,∆(f, ν)) ≤ C

ν
∑

j=1

ǫ−j−n−j

k
‖Λjf‖∞

‖f‖
n−j

k

k

where C is bounded by a function depending only on n,m, k1. In partic-
ular dimb(∆(f, ν)) ≤ ν + n−ν

k
.

2 Semi-Algebraic tools

A subset A of Rd is said to be semi-algebraic if it can be written as a finite
union of polynomial equalities and inequalities. Such a presentation is not
necessarily unique. A map f : A ⊂ R

d → R
e is semi-algebraic if its graph is

semi-algebraic.
To estimate the algebraic complexity of a semi-algebraic set we define its

degree as the minimum over all its presentations of the sum of the degree of
the polynomials (counted with multiplicity) involving in the presentation.
The degree of a semi-algebraic map is the degree of its graph. We will use
the following smooth decomposition of semi-algebraic maps.

Lemma 1 (Thm 3.2 p.115 [4]) For any semi-algebraic map f : A ⊂ R
n →

R
m there exists a partition of A in semi-algebraic manifolds (Aj)j=1,...,N

such that f |Aj
is C1 for all j = 1, ..., N . Moreover N and the degree of Aj

are bounded by a function depending only on n and the degree of A.

A key tool of our proof is the following C1 reparametrization theorem
also known as Gromov’s Algebraic Lemma. The Algebraic Lemma bounds
the differential complexity of a semi-algebraic set by its algebraic complexity
:

Lemma 2 (Lemma 3.3 p.232 [2]) Let A ⊂ [0, 1]n be a semi-algebraic set
of dimension l, then there exist semi-algebraic C1 embeddings (φi :]0, 1[

li→
A)i=1,...,N with 0 ≤ li ≤ l (by convention ]0, 1[0 is the singleton {0}) such
that ‖φi‖1 ≤ 1 and

⋃

i φi(]0, 1[
li) = A. Moreover N and the degree of the

reparametrizations φi are bounded by a function depending only on n and
the degree of A.

We observe that the parametrizations φi are uniformly continuous on
open unit squares so that they can be extended continuously on the closure
of these squares.

When n = 1 the lemma is trivial as the connected components of A are
just intervals of length less than one which can be reparametrized by affine
contractions (the number of connected components is in this case obviously
bounded from above by the degree of A). Complete proofs of the above

1We do not intend to get estimates of the ”universal” constant C (in the following proofs
C will always designate some constant depending only on n,m, k when we do not precise its
meaning).
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lemma can be found in [1] and [5]. The lemma holds also true if we replace
the norm ‖‖1 by maxl=1,...,k ‖‖l for any k.

To compare the ǫ-entropy and the volume of semi-algebraic sets we
will need the following Semi-algebraic Choice. This result will be only
used to prove the Quantitative Morse-Sard Theorem for smooth functions
f : Rn → R

m with n larger than m.

Lemma 3 (See Prop 1.2 p.94 [4]) Let f : A ⊂ [0, 1]n → R
m be a semi-

algebraic map, then there exists a semi-algebraic set B ⊂ A of dimension
less than m with f(B) = f(A). Moreover the degree of B is bounded by a
function depending only on n, m and the degree of f .

3 ǫ-Entropy and Volume of Semi-algebraic

sets

We first relate the ǫ-entropy of images of smooth semi-algebraic maps with
their volume. Refinements of such results can be found in [3].

Lemma 4 Let f :]0, 1[n→ R
m be a semi-algebraic map which extends con-

tinuously on [0, 1]n then

M(ǫ, f([0, 1]n)) ≤ C
∑

0≤i≤m

∑

Ai

Voli(f(Ai))ǫ
−i

where the second sum holds over semi-algebraic sets Ai ⊂ [0, 1]n of dimen-
sion less than m with deg(Ai) ≤ C and ♯{Ai} ≤ C. Moreover C is bounded
by a function depending only on n,m and the degree of f .

Proof. We argue by induction on n. According to the Algebraic Lemma
and Lemma 1 one can assume f to be C1. By applying the Semi-algebraic
Choice we only need to consider the case n ≤ m. Let r(x) be the rank
of Dxf . Since the set {x ∈]0, 1[n, r(x) = k} with 0 ≤ k ≤ n is semi-
algebraic one can assume by applying again the Algebraic Lemma that r

is constant on ]0, 1[n. Similarly it is enough to consider the case where
‖π ◦Dxf(u)‖ ≥

√

r
m
‖Dxf(u)‖(∗) for all x ∈]0, 1[n and for all u ∈ R

n with
π the projection on the r first coordinates of Rm. In particular π ◦ f is an
open map.

Let O be the union of balls of Rm of radius 3ǫ covering f(∂[0, 1]n) with
cardinality M(3ǫ, f(∂[0, 1]n)). Then we consider a collection U , with mini-
mal cardinality, of balls of radius ǫ whose union covers f([0, 1]n)\O. Observe
that these balls do not intersect f(∂[0, 1]n). By Vitali’s Covering Lemma,
one can extract from U a finite collection V of disjoints balls such that the
balls of radius 3ǫ at the same centers are covering f([0, 1]n)\O. In particular
we get the following upper bound M(3ǫ, f([0, 1]n)) ≤ M(3ǫ, f(∂[0, 1]n)) +
♯V. Moreover by assumption (*) the projection of the intersection of any
ball B in U with f(]0, 1[n) contains a ball of R

r of radius larger than
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C−1ǫ. Therefore Volr (B ∩ f([0, 1]n)) ≥ Volr (π (B ∩ f([0, 1]n))) ≥ Cǫr. Fi-
nally we conclude that Volr f(]0, 1[

n) ≥ Cǫr♯V and then M(3ǫ, f([0, 1]n)) ≤
M(3ǫ, f(∂[0, 1]n))+Cǫ−r Volr f(]0, 1[

n). This concludes the proof by induc-
tion as the map f can be smoothly reparametrized on the boundary of [0, 1]n

from ]0, 1[n−1 according to the Algebraic Lemma and Lemma 1.

4 Proof of the Quantitative Morse-Sard

Theorem

We divide the unit cube into subcubes of size α :=
(

ǫ
‖f‖k

)
1

k
. We consider

such a subcube S and we denote by yS its left-bottom corner. We set
gS = f(α. + yS). Let PS be the Taylor polynomial of order r of gS at
(12 , ...

1
2 ). By Taylor formula we have

‖gS − PS‖∞ ≤ ‖gS‖k ≤ αk‖f‖k ≤ ǫ and similarly ‖D.gS −D.PS‖∞ ≤ ǫ(1)

By Lemma 6.2 of [7] we have for all x ∈]0, 1[n and for all i = 1, ...,m
(with the convention ‖Λ0gS‖ = 1)

‖ΛiPS(x)‖ ≤ C

i
∑

j=0

‖ΛjgS(x)‖‖DxgS −DxPS‖
i−j (2)

By combining the two last Inequalities (1) and (2) we get ‖ΛiPS(x)‖ ≤
C
∑i

j=0 ‖Λ
jgS(x)‖ǫ

i−j for all x ∈]0, 1[n and for all i = 1, ...,m. Let A

be the intersection
⋂

i=1,...,min(m,n)

{

‖ΛiPS‖∞ ≤ C
∑min(ν,i)

j=0 ‖ΛjgS‖∞ǫi−j
}

so that ∆(f |S , ν) is a subset of the ǫ-neighborhood of PS(A). We apply the
Algebraic Lemma to the semi-algebraic set A. Let (φj :]0, 1[lj→ A)j=1,...,N

be the C1 semi-algebraic embeddings with ‖φj‖1 ≤ 1 reparametrizing A. By
Lemma 4 we get

M (2ǫ,∆(f |S , ν)) ≤ M (ǫ, PS(A)) ≤

N
∑

j=1

M
(

ǫ, PS ◦ φj(]0, 1[
lj )

)

≤ C
∑

i,j

‖Λi (PS ◦ φj) ‖∞ǫ−i

As ‖φj‖1 ≤ 1 we have ‖Λi (PS ◦ φj) ‖∞ ≤ ‖ΛiPS |A‖∞ and it follows from
the definition of A that for i = 1, ...,min(m,n) :

‖ΛiPS |A‖∞ ≤ C

min(ν,i)
∑

j=0

‖ΛjgS‖∞ǫi−j

Recall now that gS = f(α.+ yS). Therefore ΛjgS = αjΛjf(α.+ yS) for
all j = 1, ...,min(m,n). We conclude

M (2ǫ,∆(f, ν)) ≤ CNα−n
ν

∑

j=1

αjǫ−j‖Λjf‖∞ ≤ C

ν
∑

j=1

ǫ−j−n−j

k
‖Λjf‖∞

‖f‖
n−j

k

k
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Remark : When m = 1 the proof is very easy. Indeed the maps PS ◦φj have
derivative less than ǫ and their image is then an interval of length less than
ǫ. Therefore in this case M(2ǫ,∆(f, ν)) is directly bounded from above by
the number of such maps. In particular we do not need to use Lemma 4.
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