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EVOLUTION EQUATIONS IN DISCRETE AND CONTINUOUS TIME
FOR NONEXPANSIVE OPERATORS IN BANACH SPACES

Guillaume Vigeral1

Abstract. We consider some discrete and continuous dynamics in a Banach space involving a non
expansive operator J and a corresponding family of strictly contracting operators Φ(λ, x) := λJ( 1−λ

λ
x)

for λ ∈ ]0, 1]. Our motivation comes from the study of two-player zero-sum repeated games, where
the value of the n-stage game (resp. the value of the λ-discounted game) satisfies the relation vn =
Φ( 1

n
, vn−1) (resp. vλ = Φ(λ, vλ)) where J is the Shapley operator of the game. We study the evolution

equation u′(t) = J(u(t)) − u(t) as well as associated Eulerian schemes, establishing a new exponential
formula and a Kobayashi-like inequality for such trajectories. We prove that the solution of the non-
autonomous evolution equation u′(t) = Φ(λ(t), u(t)) − u(t) has the same asymptotic behavior (even
when it diverges) as the sequence vn (resp. as the family vλ) when λ(t) = 1/t (resp. when λ(t) converges
slowly enough to 0).
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1. Introduction

The topic of the asymptotic behavior of trajectories defined through nonexpansive mappings in Banach spaces
arise in numerous domains such as nonlinear semigroups theory [3,6,7,12,13,17,21], game theory [15,19,20,24–26]
as well as in discrete events systems [9–11].

Given a nonexpansive function J from a Banach space X to itself, evolution equation

U ′(t) = J(U(t)) − U(t) (1.1)

is a particular case of the widely-studied
U ′(t) ∈ −A(U(t))

for a maximal monotone operator A. Typically, the study of the asymptotics for such evolution equation and its
Eulerian and proximal discretizations has been made in Hilbert spaces [6] or at least assuming some geometric
properties in the case of Banach spaces [15,21]. Another usual assumption is the non emptiness of the set
A−1(0).
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On the other hand, in the framework of two-person zero-sum games repeated in discrete time, the values vn

and vλ of the n-stage (resp. λ-discounted) game satisfy respectively:

vn =
Jn(0)

n
= Φ

(
1
n

, vn−1

)
(1.2)

vλ = Φ(λ, vλ) (1.3)
where J is the so-called Shapley operator of the game and Φ(λ, x) := λJ

(
1−λ

λ x
)
. This operator J is nonexpansive

for the uniform norm, hence A = I − J is a maximal monotone operator in the sense of [12]. However two
unusual facts appears in the study of the asymptotics of those values: first A−1(0), the set of fixed points of J ,
is generally empty. Another difficulty lies in the lack of smoothness of the unit ball B‖·‖∞ , which might induce
oscillations of the discrete trajectories defined above [15].

The purpose of this paper is to investigate the relation between several discrete and continuous dynamics
in Banach spaces. Because our motivation comes from this game-theoretic framework, we neither make any
geometrical assumptions on the unit ball, nor suppose non emptiness of A−1(0). In continuous time, dynamics
that we will consider are (1.1) as well as non autonomous evolution equations of the form

u′(t) = Φ(λ(t), u(t)) − u(t) (1.4)

for some parameterizations λ. We establish that the quantities defined in (1.2) and (1.3) behave asymptotically
as the solutions of these various evolution equations. Surprisingly this is true not only when there is convergence;
even when they oscillate we prove that discrete and continuous trajectories remain asymptotically close.

Section 2 is devoted to definitions and basic results. In Section 3 we study the relation between the solution U

of evolution equation (1.1) and related Eulerian schemes, establishing in particular that ‖vn − U(n)
n ‖ converges

to 0. In the process we prove that some classical results (e.g. exponential formula [7], Kobayashi inequality [13])
involving the proximal trajectories for a maximal monotone operator A have an Eulerian explicit counterpart in
the case A = I−J . In Section 4 we consider the non autonomous equation (1.4). We show that for λ(t) = 1

t the
solution behave asymptotically as the sequence vn, and that when λ converges slowly enough to 0 the solution
behave asymptotically as the family vλ.

2. Discrete time model

2.1. Nonexpansive operators

Let (X, ‖ · ‖) be a Banach space, and J a nonexpansive mapping from X into itself :

‖J(x) − J(y)‖ ≤ ‖x − y‖ ∀(x, y) ∈ X2.

We define, for n ∈ N and λ ∈ ]0, 1],

Vn = J(Vn−1) = Jn(0) (2.1)
Vλ = J((1 − λ)Vλ). (2.2)

Notice that Vλ is well-defined because J((1 − λ)·) is strictly contracting, hence has a unique fixed point.

Example 2.1. For any c ∈ R, the mapping J from R to itself defined by J(x) = x+ c is nonexpansive. In that
case, Vn = nc and Vλ = c

λ .

These quantities being unbounded in general (see above), we also introduce their normalized versions

vn =
Vn

n
(2.3)

vλ = λVλ. (2.4)
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In the previous example, one gets vn = vλ = c for all n and λ. In general it is easy to prove that these normalized
quantities are bounded:

Lemma 2.2. For any n ∈ N and λ ∈ ]0, 1],

‖vn‖ ≤ ‖J(0)‖ (2.5)
‖vλ‖ ≤ ‖J(0)‖. (2.6)

Proof. Since J is non expansive,

‖Vn − Vn−1‖ = ‖J(Vn−1) − J(Vn−2)‖ ≤ ‖Vn−1 − Vn−2‖.

By induction this implies that

‖Vn‖ ≤ n‖V1‖ = n‖J(0)‖.

On the other hand, again using the fact that J is non expansive,

‖Vλ‖ − ‖J(0)‖ ≤ ‖Vλ − J(0)‖
= ‖J((1 − λ)Vλ) − J(0)‖
≤ (1 − λ)‖Vλ‖

and so

‖vλ‖ = λ‖Vλ‖ ≤ ‖J(0)‖. �

To underline the link between the families {vn}n∈N and {vλ}λ∈ ]0,1] it is also of interest to introduce the
family of strictly contracting operators Φ(λ, ·), λ ∈ ]0, 1], defined by

Φ(λ, x) = λJ

(
1 − λ

λ
x

)
. (2.7)

The function Φ(λ, ·) can be seen as a perturbed recession function of J : because of the nonexpansiveness of J ,

lim
λ→0

Φ(λ, x) = lim
λ→0

λJ
(x

λ

)
= lim

t→+∞

J (tx)
t

(2.8)

which is the definition of the recession function of J [23].
The quantities vn and vλ then satisfy the relations

vn = Φ
(

1
n

, vn−1

)
; v0 = 0 (2.9)

vλ = Φ(λ, vλ). (2.10)

Notice that since Φ(λ, ·) is strictly contracting, any sequence wn ∈ X satisfying

wn = Φ(λ, wn−1) (2.11)

converges strongly to vλ as n goes to +∞.
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2.2. Shapley operators

An important application, which is our main motivation, is obtained in the framework of zero-sum two player
repeated games [25]. For example take the simple case of a stochastic game with a finite state space Ω, compact
move sets S and T for player 1 and 2 respectively, payoff g from S×T ×Ω to R, and transition probability ρ from
S × T × Ω to Δ(Ω) (the set of probabilities on Ω). Let S = Δf (S) (resp. T = Δf (T )) the sets of probabilities
on S (resp. T ) with finite support; we still denote by g and ρ the multilinear extensions from S × T to S × T
of the corresponding functions.

The game is played as follows: an initial stage ω1 ∈ Ω is given, known by each player. At each stage m,
knowing past history and current state ωm, player 1 (resp. player 2) chooses σ ∈ S (resp. τ ∈ T ). A move am of
player 1 (resp. bm of player 2) is drawn accordingly to σ (resp. τ). The payoff gm at stage m is then g(am, bm, ωm)
and ωm+1, the state at stage m + 1, is drawn accordingly to ρ(am, bm, ωm).

There are several ways of evaluating a payoff for a given infinite history:
− 1

n

∑n
m=1 gm is the payoff of the n-stage game;

− λ
∑+∞

m=1(1 − λ)i−1gm is the payoff of the λ-discounted game.
For a given initial state ω, we denote the values of those games by vn(ω) and vλ(ω) respectively; vn and vλ are
thus functions from Ω into R.

Let F = {f : Ω −→ R}; the Shapley operator J from F to itself is then defined by f → J(f), where J(f) is
the function from Ω to R satisfying

J(f)(ω) = sup
σ∈S

inf
τ∈T

{
g(σ, τ, ω) +

∑
ω′∈Ω

f(w′)ρ(ω′|σ, τ, ω)

}
(2.12)

= inf
τ∈T

sup
σ∈S

{
g(σ, τ, ω) +

∑
ω′∈Ω

f(w′)ρ(ω′|σ, τ, ω)

}
· (2.13)

Then J is nonexpansive on F endowed with the uniform norm. The value vn of the n-stage game (resp. the
value vλ of the λ-discounted game) satisfies relation (2.9) (resp. (2.10)).

This recursive structure holds in a wide class of zero-sum repeated games and the study of the asymptotic
behavior of vn (resp. vλ) as n tends to +∞ (resp. as λ tends to 0) is a major topic in game theory (see [25]
for example). Convergence of both vn and vλ (as well as equality of the limits) has been obtained for different
class of games, for example absorbing games [14], recursive games [8], games with incomplete information [2],
finite stochastic games [4,5], and Markov Chain Games with incomplete information [22].

Even in the simple case of a finite stochastic game where the space F on which J is defined is R
n, the

Shapley operator J is only nonexpansive for the uniform norm �∞. In the case of a general Shapley operator J ,
the Banach space (which may be infinite dimensional) on which J is nonexpansive is always a set of bounded
real functions (defined on a set Ω of states) endowed with the uniform norm. As shown in [11,15], this lack
of geometrical smoothness implies that the families vn and vλ may not converge. They may also converge to
two different limits [16]. However the goal of the so called “Operator Approach” (see [24,26]) is to infer, from
specific properties in the framework of games, convergence of both vn and vλ as well as equality of their limits.

A closely related application, in the framework of discrete event systems, is the problem of existence of the
cycle-time of a topical mapping [9,10].

2.3. Associated evolution equations

In the current paper we investigate a slightly different direction: the aim is to show that the sequence vn and
the family vλ defined in equations (2.9) and (2.10) behave asymptotically as the solutions of certain continuous-
time evolution equations. This is interesting for at least three reasons: first, this implies that proving the
convergence of vn or vλ reduces to study the asymptotic of the solution of some evolution equation. Second,
even if the definitions (2.9) of vn and (2.10) of vλ may seem dissimilar since one is recursive and the other is
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a fixed point equation, we will see that the corresponding equations in continuous time are of the same kind,
hence it gives an insight on the equality lim vn = lim vλ, satisfied for a wide class of games. Third, we will prove
in the process some results of interest in their own right.

Notice that equation (2.1) can also be written as a difference equation

(Vn+1 − Vn) = J(Vn) − Vn (2.14)

which can be viewed as a discrete version of the evolution equation

U ′(t) = J(U(t)) − U(t). (2.15)

Similarly, equations (2.9) and (2.11) can be considered as discrete versions of

u′(t) = Φ
(

1
t + 1

, u(t)
)
− u(t) (2.16)

and
u′(t) = Φ(λ, u(t)) − u(t) (2.17)

respectively. Notice that while (2.17) is autonomous, (2.16) is not.
The asymptotic relation between solutions of (2.15) and (2.1) will be discussed in Section 3. In that section

we will a also prove some results about Eulerian schemes related to (2.15), which have an interpretation in
terms of games with uncertain duration [19,20] in the case of a Shapley Operator.

In Section 4, we will study the asymptotic behavior of solutions of the non-autonomous evolution equation

u′(t) = Φ(λ(t), u(t)) − u(t) (2.18)

for some time-dependent parameterizations λ(t), which in particular will cover both cases of equations (2.16)
and (2.17). We will first prove that when λ(t) = 1

t the solution of (2.18) has the same asymptotic behavior, as
t goes to +∞, as the sequence vn as n goes to +∞. We will then examine the case where the parameterization
λ(t) converges slowly enough to 0, establishing that the solution of (2.18) has then the same asymptotic behavior
as the family vλ as λ goes to 0. Finally, using our results in continuous time, we will study other dynamics
in discrete time generalizing (2.9) and (2.11). Similarly to Section 3, in the case of a Shapley operator these
dynamics have an interpretation in terms of games with uncertain duration.

3. Dynamical system related to the operator J

Let us denote A = I − J ; the operator A is m-accretive, meaning that for any λ > 0 both properties are
satisfied:

(i) ‖x − y + λA(x) − λA(y)‖ ≥ ‖x − y‖ for all (x, y) ∈ X2.
(ii) I + λA is surjective.

This implies that A is maximal monotone [12]. Recall that the analogous in continuous time of equation (2.1)
defining Vn is evolution equation (2.15), which can also be written as

U ′(t) = −A(U(t)) (3.1)

with initial condition U(0) = U0, the Cauchy-Lipschitz theorem ensuring the existence and uniqueness of such
a solution.

Example 3.1. Following Example 2.1, suppose J(x) = x + c. Then one has A(x) = −c, so U(t) = U0 + ct.
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This simple example shows that, as in discrete time where the true sequence to consider is not Vn but the
normalized vn, we are not expecting convergence of U(t) but rather of the normalized quantity U(t)

t . This is a
consequence of the fact that we do not assume non emptiness of A−1(0).

Apart from equation (2.1), there are numerous other natural discretizations of equation (3.1). For every
x0 ∈ X and any sequence {λn} in [0,1]2 the explicit Eulerian scheme is defined by

xn − xn−1 = −λnAxn−1 (3.2)

that is

xn =

(
1∏

i=n

[I − λiA]

)
(x0). (3.3)

Notice that choosing x0 = 0 and λn = 1 for all n leads to the definition (2.1) of Vn.
Other discrete trajectories are implicit proximal schemes (first introduced when A = ∂f in [18]) which satisfy:

xn − xn−1 = −λnAxn

that is

xn =

(
1∏

i=n

[I + λiA]−1

)
(x0).

In both cases we denote

σn =
n∑

i=1

λi (3.4)

τn =
n∑

i=1

λ2
i . (3.5)

Usually proximal schemes share better asymptotic properties (take the simple example where A is a rotation
in R

2 and λn /∈ �2: then the proximal scheme will converge to the fixed point of the rotation, while the Eulerian
one will diverge). However Eulerian schemes have the remarkable feature that they can be computed explicitly,
and they arise naturally in the game-theoretic framework:

Example 3.2. When J is the Shapley operator of a stochastic game Γ, xn defined by (3.2) is the non-normalized
value of the following n-stage game: states, actions, payoff and transition are as in Γ, but at stage 1 there is
a probability 1 − λn that the game goes on to stage 2 without any payoff or transition. Similarly at stage 2,
there is no payoff nor transition with probability 1− λn−1, and at stage n with probability 1− λ1. In that case
σn and τn have a nice interpretation: the expected number of stages really played is σn, and the variance is
σn − τn. It is also worthwhile to notice that such games are particular cases of stochastic games with uncertain
duration [19,20].

For this reason we will study exclusively Eulerian schemes, in the case of an operator A = I − J . Results of
this section will be of three kind: first we study the relative behavior of continuous and discrete dynamics when
time goes to infinity. Given a sequence λn /∈ �1 one investigates the asymptotic relation between U(σn) and the
n-th term xn of the Eulerian scheme defined in (3.2). This is done first in the special case of Vn (Cor. 3.8) and
then in general (Cor. 3.13).

We also consider the case of a fixed time t. In that case one cuts the interval [0, t] in a finite number m of
intervals of length λi. These steps define an explicit scheme by (3.2), hence an approximate trajectory by linear
interpolation. One expects such a trajectory to be asymptotically closer to the continuous trajectory defined

2Usually these schemes are defined for any sequence of positive steps, but here, since we need the operators I − λnA to be non
expansive, we have to assume that the λn lie in [0, 1].
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by (3.1) as the discretization of the interval becomes finer. This is proved first in the case where λi = t
m for

1 ≤ i ≤ m (Prop. 3.10), and then generalized in Proposition 3.14.
In the process we prove that two classical results, involving proximal schemes and holding for any maximal

monotone operator, have an Eulerian counterpart when A is of the form I − J : we establish a new exponential
formula in Proposition 3.10 and a Kobayashi-like inequality in Proposition 3.11.

3.1. Asymptotic study of the trajectory defined by equation (3.1)

The study of the asymptotic behavior of the solution of equation (2.15) in general Banach spaces has started
in the early 70’s, in particular the main result of this subsection, Corollary 3.8 relating vn and U(n)

n , is already
known (see [3,17]). Here we prove it in a different way, similar to the first chapter of [6], establishing during the
proof some inequalities that will be helpful in the remaining of the paper.

Let us begin by proving several useful lemmas:

Lemma 3.3. Let f be a continuous function from [a, b] ⊂ R to R such that for every t ∈ [a, b]

f(t) ≤ M +
∫ t

a

[g(s) + β(s)f(s)]ds

for some continuous function g and some non-negative measurable function β such that
∫ b

a
β(s)ds < +∞.

Then f satisfies

f(t) ≤ e
∫

t
a

β(s)ds

(
M +

∫ t

a

g(s)e−
∫

s
a

β(r)drds

)
for all t ∈ [a, b].

Proof. Define α(t) = M +
∫ t

a g(s)ds. Since f(t) ≤ α(t) +
∫ t

a β(s)f(s)ds, Gronwall’s inequality ([27], p. 15)
implies that

f(t) ≤ α(t) + e
∫

t
a

β(s)ds ·
∫ t

a

α(s)β(s)e−
∫

s
a

β(r)drds.

Integrating by part the last integral gives

f(t) ≤ α(t) + e
∫

t
a

β(s)ds ·
(

α(0) − α(t)e−
∫

t
a

β(s)ds +
∫ t

a

α′(s)e−
∫

s
a

β(r)drds

)
= e

∫
t
a

β(s)ds

(
M +

∫ t

a

g(s)e−
∫

s
a

β(r)drds

)
. �

In the remaining of the paper we will repeatedly use the following consequence of Lemma 3.3:

Proposition 3.4. If y : [a, b] ⊂ R → X is an absolutely continuous function satisfying for every t ∈ [a, b]

‖y(t) + y′(t)‖ ≤ (1 − γ(t))‖y(t)‖ + h(t)

where γ is a continuous function from [a, b] to [−∞, 1] and h is a continuous function from [a, b] to R, then y
satisfies

‖y(t)‖ ≤ e−
∫ t

a
γ(s)ds

(
‖y(a)‖ +

∫ t

a

h(s)e
∫ s

a
γ(r)drds

)
for all t ∈ [a, b].
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Proof. z(t) = y(t)et satisfies ‖z′(t)‖ ≤ (1 − γ(t))‖z(t)‖ + h(t)et, hence for every t ∈ [a, b]

‖z(t)‖ ≤ ‖z(a)‖ +
∥∥∥∥∫ t

a

z′(s)ds

∥∥∥∥
≤ ‖z(a)‖ +

∫ t

a

‖z′(s)‖ds

≤ ‖z(a)‖ +
∫ t

a

h(s)es + (1 − γ(s))‖z(s)‖.

Applying Lemma 3.3 to ‖z‖ thus gives

‖z(t)‖ ≤ e
∫

t
a

1−γ(s)ds

(
‖z(a)‖ +

∫ t

a

h(s)ese−
∫

s
a

1−γ(r)drds

)
.

Multiplying each side by e−t implies the result. �

We now use this technical result to compare two solutions of (2.15):

Proposition 3.5. If both U and V satisfy (2.15), then ‖U(t) − V (t)‖ is non-increasing.

Proof. Define f = U − V which satisfies

‖f(t) + f ′(t)‖ = ‖J(U(t)) − J(V (t))‖ ≤ ‖U(t) − V (t)‖ = ‖f(t)‖.

Apply the preceding proposition to γ ≡ 0 and f . �

Corollary 3.6. If U is a solution of (2.15), then ‖U ′(t)‖ is non-increasing.

Proof. Let h > 0 and Uh(t) = U(t + h). The function Uh satisfies equation (2.15), so applying the preceding
proposition to U and Uh we get that t → ‖U(t+h)−U(t)‖

h is non-increasing on R
+. Letting h go to 0 gives the

result. �

An interesting consequence of Corollary 3.6 is the following inequality, proved in Chapter 1 of [6]:

Lemma 3.7 (Chernoff’s estimate). Let U be the solution of (2.15) with U(0) = U0. Then

‖U(t) − Jn(U0)‖ ≤ ‖U ′(0)‖
√

t + [n − t]2.

Sketch of proof. Proceed by induction on n; the proof for the case n = 0 comes from the fact that ‖U ′‖ is
non-increasing by Corollary 3.6. �

In particular if we take U0 = 0 and t = n in Lemma 3.7, we finally get the following corollary relating
continuous and discrete trajectories:

Corollary 3.8. The solution U of (2.15) with U(0) = 0 satisfies∥∥∥∥U(n)
n

− vn

∥∥∥∥ ≤ ‖J(0)‖√
n

·

In particular vn converges iff U(t)
t converges, and then the limits are the same.
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Proof. The only point that remains to be shown is that if the sequence U(n)
n converges as n tends to +∞, then

so does U(t)
t as t tends to +∞.

Using Corollary 3.6, we obtain

‖U(t) − U([t])‖ ≤ (t − [t])‖U ′(0)‖ ≤ ‖U ′(0)‖

which implies that U(t)
t − U([t])

[t] goes to 0 as t tends to +∞. �

3.2. An exponential formula

When A is a m-accretive operator on a Banach space, a fundamental result (see [7], p. 267) is that the
solution U of (2.15) satisfies the following exponential formula for every t ≥ 0, where the convergence is strong:

lim
m→+∞

(
I +

t

m
A

)−m

(U0) = U(t). (3.6)

In the special case where J is a nonexpansive operator and A = I−J , we now establish an Eulerian analogous
of this classical “proximal exponential formula”.

Definition 3.9. For x ∈ X , l ∈ N and t ∈ R
+, let us denote

Um
t (x) =

(
I − t

m
A

)m

(x) (3.7)

the mth term of an Eulerian scheme with steps t
m .

Proposition 3.10. Let U0 ∈ X and U the solution of (2.15) with U(0) = U0. Then if m ≥ t,

‖Um
t (U0) − U(t)‖ ≤ ‖A(U0)‖

t√
m
· (3.8)

In particular, for any t ≥ 0, the following strong convergence holds:

lim
m→+∞

(
I − t

m
A

)m

(U0) = U(t). (3.9)

Proof. For any λ ∈ [0, 1], Jλ := λJ + (1 − λ)I = I − λA is nonexpansive. Denote by Uλ the solution of

Uλ(t) + U ′
λ(t) = Jλ(Uλ(t)) (3.10)

with Uλ(0) = U0. Applying Lemma 3.7 to Uλ and the nonexpansive operator Jλ:

‖Uλ(t) − Jn
λ (U0)‖ ≤ ‖U ′

λ(0)‖
√

t + [n − t]2

so in particular for n = t

‖Uλ(n) − Jn
λ (U0)‖ ≤ ‖U ′

λ(0)‖
√

n. (3.11)

Denote by U the the solution of (2.15) with U(0) = U0 and notice that the function t → U(λt) satisfies (3.10)
and has the same initial condition as Uλ. This implies that Uλ(t) = U(λt) and putting this in (3.11),

‖U(λn) − Jn
λ (U0)‖ ≤ λ‖U ′(0)‖

√
n.
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For any t′ ≤ n, choosing λ = t′
n ∈ [0, 1] thus gives∥∥∥∥U(t′) −

(
I − t′

n
A

)n

(U0)
∥∥∥∥ ≤ ‖U ′(0)‖ t′√

n

which is the desired result. �

3.3. Comparison of two Eulerian schemes

To generalize Proposition 3.10 to explicit schemes with arbitrary steps, it is useful to estimate first the
difference between two Euler schemes: let x0 and x̂0 in X , {λ}n and {λ̂n} two sequences in ]0,1]. Define xn , σn

and τn (resp. x̂n, σ̂n and τ̂n) as in (3.2), (3.4) and (3.5). The following proposition, which gives a majoration of
the distance between two Eulerian trajectories, is an analogous of the classical Kobayashi inequality (Lem. 2.1
in [13]) which gives a majoration of the distance between two proximal trajectories:

Proposition 3.11. For any z ∈ X and (k, l) ∈ N
2,

‖xk − x̂l‖ ≤ ‖x0 − z‖ + ‖x̂0 − z‖ + ‖A(z)‖
√

(σk − σ̂l)2 + τk + τ̂l.

Proof. We proceed by induction and begin by the case l = 0.
We recall that Jλ = IλA is non-expansive for λ ≤ 1, so we obtain

‖xj − z‖ ≤ ‖xj − Jλj (z)‖ + ‖Jλj (z) − z‖
= ‖Jλj (xj−1) − Jλj (z)‖ + λj‖A(z)‖
≤ ‖xj−1 − z‖ + λj‖A(z)‖

and summing these inequalities for i ∈ {1, . . . , k} we get ‖xk − z‖ ≤ ‖x0 − z‖ + σk‖A(z)‖, which implies that

‖xk − x̂0‖ ≤ ‖xk − z‖ + ‖x̂0 − z‖ ≤ ‖x0 − z‖ + ‖x̂0 − z‖ + σk‖A(z)‖

and the proposition holds when l = 0. The case k = 0 is proved in the same way.
We will now assume the formula to be true for (k − 1, l), (k, l − 1) et (k − 1, l − 1) and deduce that it also

holds for (k, l).
Define numbers αk,l = λk(1−λ̂l)

λk+λ̂l−λkλ̂l
, βk,l = λ̂l(1−λk)

λk+λ̂l−λkλ̂l
et γk,l = λkλ̂l

λk+λ̂l−λkλ̂l
and note that they are non-

negative with sum 1. Introduce also ck,l =
√

(σk − σ̂l)2 + τk + τ̂l. For any x and y in X , one check that the
following equality holds:

Jλk
(x) − Jλ̂l

(y) = αk,l(Jλk
(x) − y) + βk,l(x − Jλ̂l

(y)) + γk,l(J(x) − J(y)).

In particular, letting x = xk−1, y = x̂l−1 and using the non-expansiveness of J , we get

‖xk − x̂l‖ ≤ αk,l‖xk − x̂l−1‖ + βk,l‖xk−1 − x̂l‖ + γk,l‖xk−1 − x̂l−1‖

so by induction,

‖xk − x̂l‖ ≤ ‖x0 − z‖ + ‖x̂0 − z‖ + ‖A(z)‖(αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1)

≤ ‖x0 − z‖ + ‖x̂0 − z‖ + ‖A(z)‖
√

αk,l + βk,l + γk,l

√
dk,l

= ‖x0 − z‖ + ‖x̂0 − z‖ + ‖A(z)‖
√

dk,l

where we have denoted dk,l = αk,lc
2
k,l−1 + βk,lc

2
k−1,l + γk,lc

2
k−1,l−1.
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In addition,

c2
k,l−1 = (σk − σ̂l−1)2 + τk + τ̂l−1

= (σk − σ̂l + λ̂l)2 + τk + τ̂l−1

= (σk − σ̂l)2 + λ̂2
l + 2λ̂l(σk − σ̂l) + τk + τ̂l−1

= c2
k,l + 2λ̂l(σk − σ̂l)

and similarly,

c2
k−1,l = c2

k,l − 2λk(σk − σ̂l).

Moreover

c2
k−1,l−1 = (σk−1 − σ̂l−1)2 + τk−1 + τ̂l−1

= (σk − σ̂l + λ̂l − λk)2 + τk−1 + τ̂l−1

= (σk − σ̂l)2 + λ̂2
l + λ2

k + 2(λ̂l − λk)(σk − σ̂l) − 2λ̂lλk + τk−1 + τ̂l−1

= c2
k,l + 2(λ̂l − λk)(σk − σ̂l) − 2λ̂lλk.

So

dk,l = αk,lc
2
k,l−1 + βk,lc

2
k−1,l + γk,lc

2
k−1,l−1

= c2
k,l + 2(σk − σ̂l)(αk,lλ̂l − βk,lλk + γk,l(λ̂l − λk)) − 2λ̂lλkγk,l

= c2
k,l + 2

σk − σ̂l

λk + λ̂l − λkλ̂l

(λkλ̂l(1 − λ̂l) − λkλ̂l(1 − λk) + λkλ̂l(λ̂l − λk)) − 2λ̂lλkγk,l

= c2
k,l − 2λ̂lλkγk,l

≤ c2
k,l

and we have established that

‖xk − x̂l‖ ≤ ‖x0 − z‖ + ‖x̂0 − z‖ + ‖A(z)‖
√

(σk − σ̂l)2 + τk + τ̂l. �

3.4. Comparison of an Eulerian scheme to a continuous trajectory

We now combine the results of the two preceding subsections: Proposition 3.10 comparing the continuous
trajectory with a particular Eulerian scheme, and Proposition 3.11 relating any two Eulerian schemes.

Corollary 3.12. Let {xn}n∈N be an Eulerian scheme as defined in (3.2). Then for any t ≥ 0 and k ∈ N,

‖xk − U(t)‖ ≤ ‖x0 − U0‖ + ‖A(U0)‖
√

(σk − t)2 + τk.

Proof. Apply Proposition 3.11 to xk and Um
t (U0) to get

‖xk − Um
t (U0)‖ ≤ ‖x0 − U0‖ + ‖A(U0)‖

√
(σk − t)2 + τk +

t2

m
·

Let m go to +∞ and use Proposition 3.10. �
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This corollary has some interesting consequences in two directions, as it generalizes both Corollary 3.8 and
Proposition 3.10. First, it shows that any normalized discrete trajectory behave as the normalized continuous
one as time goes to infinity:

Corollary 3.13. For any t ≥ 0 and any Eulerian scheme {xi} such that σk = t,

‖xk − U(t)‖
t

≤ ‖x0 − U0‖ + ‖A(U0)‖
√

t

t
·

Proof. Apply Corollary 3.12 and use the fact that τk ≤ σk since all λi are in [0, 1]. �
On the other hand, take now the case of a fixed time t. Let U be the solution of (3.1) with initial condition

U(0) = U0, and let {xi}0≤i≤n defined by (3.2) be an Eulerian scheme with same initial condition x0 = U0 and
σn = t. One constructs an approximation x̃ of the continuous trajectory U on the interval [0, t] by x̃(σk) = xk

for 0 ≤ k ≤ n, and linear interpolation on intervals [σk, σk+1]. The following proposition states that such
approximation x̃ will becomes asymptotically close to U as the discretization 0 ≤ λ1 ≤ λ1 + λ2 ≤ . . . ≤ σn−1 ≤
σn = t of the interval [0, t] gets finer:

Proposition 3.14. For any t′ in the interval [0, t],

‖x̃(t′) − U(t′)‖ ≤ ‖A(U0)‖(1 + (1 +
√

2)t) ·
√

max
1≤i≤n

{λi}·

Proof. Let t′ ∈ [0, t] and k such that σk−1 ≤ t′ ≤ σk. Noticing that

‖x̃(t′) − U(t′)‖ ≤ ‖x̃(t′) − x̃(σk)‖ + ‖x̃(σk) − U(σk)‖ + ‖U(σk) − U(t′)‖

we will evaluate the three components of the right-hand side separately.
Since x̃ is affine on [σk, σk+1], applying Proposition 3.11 gives

‖x̃(t′) − x̃(σk)‖ ≤ ‖x̃(σk−1) − x̃(σk)‖
= ‖xk − xk−1‖
≤ ‖A(U0)‖

√
(σk − σk−1)2 + τk + τk−1

= ‖A(U0)‖
√

2τk. (3.12)

On another hand, Corollary 3.12 implies that

‖x̃(σk) − U(σk)‖ = ‖xk − U(σk)‖
≤ ‖A(U0)‖

√
τk. (3.13)

Thirdly, using the mean value theorem as well as Corollary 3.6,

‖U(σk) − U(t′)‖ ≤ |σk − t′| max
t′′∈[t′,σk]

‖U ′(t′′)‖

≤ |σk − σk−1| · ‖U ′(0)‖
= λk‖A(U0)‖. (3.14)

Adding inequalities (3.12) to (3.14) we thus deduce that

‖x̃(t′) − U(t′)‖ ≤ ‖A(U0)‖(λk + (1 +
√

2)
√

τk).

We use the facts that λk ≤
√

λk ≤
√

max1≤i≤n{λi}, and that τk ≤ τn ≤ t max1≤i≤n{λi} to conclude the
proof. �
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This proposition has an interpretation in the particular framework of Example 3.2: consider a game with an
expected duration of t. The previous result establishes that this game has a non normalized value close to U(t),
providing that at each stage the probability of playing is small (that is to say, if there is a high variance in the
number of stages really played).

4. Dynamical systems linked to the family Φ(λ, ·)
Let λ : R → ]0, 1] be a continuous function. In this section we study the asymptotic behavior of the solution

to evolution equation (2.18):

u(t) + u′(t) = Φ(λ(t), u(t)) with u(0) = u0

where Φ is the operator defined by equation (2.7).

Remark 4.1. Since the mapping (x, t) → Φ(λ(t), x) − x is globally 2-Lipschitz in its first variable, Cauchy-
Lipschitz-Picard theorem ensures the existence and uniqueness of the solution of (2.18), and that it is defined
on the whole set R

+.

When the recession function Φ(0, ·) exists, any accumulation point v of vn or vλ will satisfy

Φ(0, v) = v (4.1)

but equation (4.1) may have many solutions (for example in the case of games with incomplete information [24]
any convex/concave function satisfies (4.1)). The evolution equation (2.18) may thus be seen as a perturbation
of (4.1), and we will study the effect of some perturbations on the asymptotic behavior of the solution of (2.18).
See for example [1] for a similar approach in the framework of convex minimization.

The main results of this section are the following:

− When λ is the constant λ, the solution of (2.18) converges to vλ.
− When λ(t) ∼ 1

t , the solution of (2.18) behave asymptotically as the family {vn}.
− When λ(t) converges to 0 slowly enough, the solution of (2.18) behave asymptotically as the family {vλ}.

The first two results are not surprising since in those cases evolution equation (2.18) is a continuous version of
equation (2.11) or (2.9) respectively. The third result is of a different nature but is also natural: denote by uλ

the solution of (2.18) when λ is the constant λ. We establish that if the parameterization λ in (2.18) is of slow
variation, the solution u evaluated at time t is close to uλ(t)(t), hence to vλ(t) (see Fig. 1).

In the process of proving those three results, we also answer natural questions about the behavior of the
solution u of equation (2.18) as a function of the parameters, namely we will prove that:

− If λ /∈ �1 the asymptotic behaviour of u does not depend on the initial value u0.
− If two parameterizations λ and λ̃ are asymptotically close, then it is also the case for the corresponding

solutions u and ũ.

First we prove a simple fact that will be repeatedly used in the remaining of the paper. Recall, by equa-
tion (2.10), that for any t ≥ 0, vλ(t) is the only solution of

vλ(t) = Φ
(
λ(t), vλ(t)

)
. (4.2)

The following lemma relates the behavior of u′(t) to that of u(t) − vλ(t):

Lemma 4.2. Let u be the solution of evolution equation (2.18) and vλ(·) be defined by (4.2). Then for any
t ≥ 0, ‖u(t) − vλ(t)‖ ≤ ‖u′(t)‖

λ(t) .
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Figure 1. Trajectories of (2.18) for some constant parametrizations and for a slow parametrization.

Proof.

‖u′(t)‖ = ‖u(t) − Φ(λ(t), u(t))‖
≥
∥∥u(t) − vλ(t)

∥∥− ∥∥Φ(λ(t), u(t)) − Φ(λ(t), vλ(t))
∥∥

≥
∥∥u(t) − vλ(t)

∥∥− (1 − λ(t))
∥∥u(t) − vλ(t)

∥∥
= λ(t)

∥∥u(t) − vλ(t)

∥∥ . �

4.1. Constant case

We start by considering the simplest case where the function λ is a constant λ. Equation (2.18) is then a
continuous analogous of equation (2.11), so one can expect that u(t) converges to vλ, and indeed this is the
case.

Start by a technical lemma:

Lemma 4.3. If f satisfies f(t) + f ′(t) = B(f(t)), where B is an 1 − λ contracting operator, then

‖f ′(t)‖ ≤ ‖f ′(0)‖ · e−λt.

Proof. Let h > 0 and fh(t) =
f(t + h) − f(t)

h
. Since B is (1 − λ) contracting:

‖fh(t) + f ′
h(t)‖ =

1
h
‖f(t + h) + f ′(t + h) − [f(t) + f ′(t)]‖ (4.3)

=
1
h
‖B(f(t + h)) − B(f(t))‖ (4.4)

≤ (1 − λ)‖fh(t)‖. (4.5)

Proposition 3.4 applied to fh thus implies that

‖fh(t)‖ ≤ ‖fh(0)‖ · e−λt

and letting h go to 0 gives the result. �
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An immediate consequence is:

Corollary 4.4. If u is the solution of (2.18) with λ(t) := λ, then

lim
t→+∞

u(t) = vλ.

Proof. Lemmas 4.2 and 4.3 imply that

‖u(t) − vλ‖ = ‖u(t) − vλ(t)‖ ≤ ‖u′(t)‖
λ(t)

≤ ‖u′(0)‖ · e−λt

λ

and the right member goes to 0 as t tends to +∞. �

4.2. Some generalities on the non-autonomous case

The case when the parameterization λ is not constant is more difficult to handle: the same method as in the
proof of Corollary 4.4 leads to

u(t + h) − u(t) + u′(t + h) − u′(t) = Φ(λ(t + h), u(t + h)) − Φ(λ(t), u(t))

but Proposition 3.4 does not apply.
However, we can prove if the perturbation is strong enough:

Proposition 4.5. If
∫ +∞
0 λ(t)dt = +∞, the asymptotic behavior of u solution of (2.18) does not depend of the

choice of u(0).

Proof. Let u and v be two solutions of (2.18), define the function g by g(x) = ‖u(x) − v(x)‖. According to
Proposition 3.4,

g(x) ≤ g(0) · e−
∫

x
0 λ(t)dt

from which the proposition follows. �

4.3. Case of λ(t) � 1
t

When λ(t) = 1
t , equation (2.18) is the continuous counterpart of equation (2.9), so we expect u(t) to have

the same asymptotic behavior as vn. This will be proved with an additional hypothesis on Φ in the next section.
Here we show a slightly weaker result without any assumption.

Proposition 4.6. There exists a function λ : [0, +∞] → ]0, 1] such that λ(t) ∼ 1
t and for which the solution w

of (2.18) satisfies
‖w(n) − vn‖ −→

n→+∞
0.

Proof. Let U be the solution of (2.15) and v(t) = U(t)
t+1 , which thus satisfies

(t + 2)v(t) + (t + 1)v′(t) = J((t + 1)v(t)).

Define ζ(t) = t + ln(1 + t). By making the change of time s = ζ(t) and w(s) = v(t), we get

w(s) + w′(s) = Φ
(

1
2 + ζ−1(s)

, w(s)
)

and w is thus solution of (2.18) with

λ(t) =
1

2 + ζ−1(t)
=

1
t

+
ln(t)
t2

+ o

(
ln(t)
t2

)
·
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Moreover,

‖w(n) − vn‖ ≤ ‖v(n) − vn‖ +
∥∥v (ζ−1(n)

)
− v(n)

∥∥ .

We already know by Corollary 3.8 that ‖v(n) − vn‖ goes to 0 as n tends to +∞. On the other hand, by the
mean value theorem,

∥∥v (ζ−1(n)
)
− v(n)

∥∥ ≤
(
n − ζ−1(n)

)
· max

x∈[ζ−1(n),n]
‖v′(x)‖. (4.6)

By definition of v, v′(x) =
(x + 1)U ′(x) − U(x)

(x + 1)2
hence Corollary 3.6 implies that

‖v′(x)‖ ≤ (x + 1)‖U ′(x)‖ + ‖U(x)‖
(x + 1)2

(4.7)

≤ (x + 1)‖U ′(0)‖ + ‖U(0)‖ + x‖U ′(0)‖
(x + 1)2

(4.8)

≤ C

x + 1
(4.9)

for C = 2 max(‖U(0)‖, ‖U ′(0)‖).
Replacing in equation (4.6) gives

∥∥v (ζ−1(n)
)
− v(n)

∥∥ ≤ C
n − ζ−1(n)
1 + ζ−1(n)

which goes to 0 since ζ(n) ∼ n, and we have thus proved that

‖w(n) − vn‖ −→
n→+∞

0. �

An interesting corollary of this proposition, which gives a sufficient condition for convergence of both vn

and vλ to the same limit, is:

Corollary 4.7. Let U be the solution of (2.15). If U ′(t) converges to l when t goes to +∞, then vn and vλ

converge to l as well as n goes to +∞ and λ goes to 0, respectively.

Proof. Suppose that U ′(t) converges to l when t goes to +∞. Then v(t) = U(t)
t converges to l as well, and so

does vn according to Corollary 3.8.
On the other hand,

tv′(t) = U ′(t) − U(t)
t

→ l − l = 0

so v′(t) = o
(

1
t

)
. Define ζ, λ and w as in the proof of the preceding proposition; then w(t) = v(ζ−1(t)) converges

also to l and by definition

w′(ζ(t)) =
t + 1
t + 2

v′(t) = o

(
1
t

)
·

Since ζ(t) ∼ t and λ(t) ∼ 1
t this implies that ‖w′(t)‖

λ(t) = o(1). According to Lemma 4.2, this implies that
‖w(t) − vλ(t)‖ = o(1), and so vλ tends to l as λ goes to 0. �
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4.4. Case of a slow parameterization

From now on the following assumption (H) will be made: there is a constant C such that

‖Φ(λ, x) − Φ(μ, x)‖ ≤ |λ − μ|(C + ‖x‖) ∀x ∈ X ∀(λ, μ) ∈ ]0, 1]2. (H)

Remark 4.8. (H) is satisfied as soon as J is the Shapley operator (2.12) of a game with bounded payoff since
in that case

‖Φ(λ, x) − Φ(μ, x)‖∞ ≤ |λ − μ| (‖g‖∞ + ‖x‖∞).

Remark 4.9. Hypothesis (H) implies that for every λ and μ

‖vλ − vμ‖
|λ − μ| ≤ C′

λ

for some constant C′: in some sense (H) is thus a statement about the speed of variation of the family {vλ}.

The principal result of this subsection is Corollary 4.12 which states that under this hypothesis, if the
parameterization λ converges slowly enough to 0, then the corresponding solution of (2.18) has the same
asymptotic behavior as the family {vλ}. We start by a technical result:

Proposition 4.10. Let λ be a C1 function from [0, +∞[ to ]0, 1] and let L : R
+ → R be defined by

L(t) = e
∫ t
0

[ |λ′(s)|
λ(s) −λ(s)

]
ds. Then the corresponding solution u of (2.18) satisfies:

‖u(t) − vλ(t)‖ ≤ L(t)
λ(t)

[
‖u′(0)‖ + (C + C′)

∫ t

0

|λ′(s)|
L(s)

ds

]
where C is the constant in condition (H) and C′ = sup

λ∈]0,1]

‖vλ‖.

Proof. For any h > 0, define uh(t) =
u(t + h) − u(t)

h
and λh(t) =

λ(t + h) − λ(t)
h

. Since u is C1,

uh(t) = u′(t) +
1
h

∫ t+h

t

u′(s) − u′(t)ds

which implies, by uniform continuity of u on any compact set, that the restriction of uh to any closed interval
converges uniformly to u′ as h goes to 0. Similarly, the restriction of λh to any closed interval converges
uniformly to λ′ as h goes to 0.

Since u satisfies equation (2.18), for any h and t,

‖uh(t) + u′
h(t)‖ =

1
h
‖Φ(λ(t + h), u(t + h)) − Φ(λ(t), u(t))‖ (4.10)

≤ 1
h

‖Φ(λ(t + h), u(t + h)) − Φ(λ(t + h), u(t))‖ +
1
h
‖Φ(λ(t + h), u(t)) − Φ(λ(t)(t), u(t))‖

≤ (1 − λ(t + h))‖uh(t)‖ + |λh(t)|(C + ‖u(t)‖), (4.11)

by hypothesis (H). According to Lemma 4.2, this implies that

‖uh(t) + u′
h(t)‖ ≤ (1 − λ(t + h))‖uh(t)‖ + |λh(t)|

(
C + C′ +

‖u′(t)‖
λ(t)

)
(4.12)

where C′ is a majorant of the family ‖vλ‖.
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Fix t0 > 0, and let ε > 0. Since λ(t) is bounded from below on [0, t0] and using the uniform convergence
of uh to u′ on [0, t0], one obtains that for h small enough, and for every t ≤ t0,

‖uh(t) + u′
h(t)‖ ≤

(
1 − λ(t + h) +

|λh(t)|
λ(t)

)
‖uh(t)‖ + (C + C′ + ε)|λh(t)|. (4.13)

Then applying Proposition 3.4 to uh implies that for any h small enough and t ≤ t0,

‖uh(t)‖ ≤ e
∫

t
0

[ |λh(s)|
λ(s) −λ(s+h)

]
ds
(
‖uh(0)‖ + (C + C′ + ε)

∫ t

0

|λh(s)|e
∫

s
0

[
λ(r+h)− |λh(r)|

λ(r)

]
drds

)
.

Using the uniform convergence of λh and λ(· + h) on [0, t0], letting h go to 0 implies that for any t ≤ t0,

‖u′(t)‖ ≤ L(t)
(
‖u′(0)‖ + (C + C′ + ε)

∫ t

0

|λ′(s)|
L(s)

ds

)
.

Since this is true for every t0 and ε, using Lemma 4.2 again gives

‖u(t) − vλ(t)‖ ≤ L(t)
λ(t)

[
‖u′(0)‖ + (C + C′)

∫ t

0

|λ′(s)|
L(s)

ds

]
. �

Remark 4.11. If in Proposition 4.10 we suppose in addition that λ is nonincreasing, we get the simpler
inequality

‖u(t) − vλ(t)‖ ≤ e−
∫ t
0 λ(s)ds

λ2(t)

[
‖u′(0)‖ − (C + C′)

∫ t

0

λ(s)λ′(s)e
∫ s
0 λ(r)drds

]
.

As a corollary to Proposition 4.10 we can now prove:

Corollary 4.12. Let λ be a C1 function from [0, +∞[ to ]0, 1], such that λ′(t)
λ2(t) converges to 0 as t goes to +∞,

and let u be the corresponding solution of equation (2.18). Then ‖u(t) − vλ(t)‖ goes to 0 as t goes to +∞.

Proof. First notice that
(

1
λ(t)

)′
= o(1), so 1

λ(t) = o(t) which implies that λ(t) /∈ �1.
Next we prove that

L(t)
λ(t)

= o(1).

Since the left-hand side is equal to
e
∫ t
0

[ |λ′(s)|
λ(s) −λ′(s)

λ(s) −λ(s)
]
ds

λ(0)
, the result is deduced from the fact that λ′(s)

λ(s) =

o(λ(s)) and that λ(t) /∈ �1.
Finally we prove that ∫ t

0

|λ′(s)|
L(s)

ds = o

(
λ(t)
L(t)

)
·

Since the right-hand side diverges to +∞, it is enough to prove that the derivative satisfies

|λ′(t)|
L(t)

= o

(
λ′(t) + λ2(t) − |λ′(t)|

L(t)

)
which is true since λ′(t) = o(λ2(t)). �
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Remark 4.13. Note the similarity of this proposition with some approximation results for dynamical systems
in the framework of Hilbert spaces, for example the slow parameterization in [1]:

− First there is a parallel between the strong monotonicity condition in [1], p. 523, and our assumption
that the Φ(λ, ·) are contracting.

− Second between a condition about the derivative of the trajectory in the same paper, p. 528, and our
hypothesis (H) (see Rem. 4.9).

− Third the slow-convergence condition is the same (see condition (ii) in [1], p. 528).
− Lastly, results of both papers are of the same nature: convergence of a certain family ({vλ} in this

paper) implies that the solution of any slowly-perturbed evolution equation tends to this limit as time
goes to infinity.

A difference however is the fact that in this paper we also have a reciprocal: if for any slow parameterization λ
the solution u(t) of (2.18) converges as t goes to infinity, then the family vλ converges to the same limit as λ
goes to 0.

Remark 4.14. In the proof of Proposition 4.10 only the three following hypotheses on the family Φ were used:
(i) Φ(·, x) satisfies condition H for all x.
(ii) Φ(λ, ·) is 1 − λ contracting for every λ ∈ ]0, 1].
(iii) The fixed points vλ are uniformly bounded.

The two last ones are satisfied as soon as Φ(λ, x) = λJ
(

1−λ
λ x

)
for a nonexpansive operator J , but this is not a

necessary condition for Proposition 4.10 to hold.

Remark 4.15. In fact, the more general result holds: suppose that the family Φ satisfies the three hypotheses:
(i) There exists a constant C and a continuous function M from ]0, 1] to R

+ such that for any (x, λ, μ) in
X× ]0, 1]2

‖Φ(λ, x) − Φ(μ, x)‖ ≤
∣∣∣∣∫ μ

λ

M(γ)dγ

∣∣∣∣ (C + ‖x‖).

(ii) There exists a continuous function β : ]0, 1] → ]0, 1] such that Φ(λ, ·) is 1 − β(λ) contracting.
(iii) The fixed points vλ of Φ(λ, ·) are uniformly bounded by C′.

Let λ be a C1 function from [0, +∞[ to ]0, 1]. Then the corresponding solution u of (2.18) satisfies

‖u(t) − vλ(t)‖ ≤ e
∫

t
0

|λ′(s)|M(λ(s))
β(λ(s)) −β(λ(s))ds

β(λ(t))

×
[
‖u′(0)‖ + (C + C′)

∫ t

0

|λ′(s)|M(λ(s))e
∫

s
0

[
β(λ(i))− |λ′(i)|M(λ(i))

β(λ(i))

]
dids

]
.

This implies that ‖u(t)−vλ(t)‖ tends to 0 as soon as β is C1 and the parameterization λ satisfies both properties :

(iv) λ′(t)M(λ(t))
β2(λ(t)) = o(1);

(v) λ′(t)β′(λ(t))
β2(λ(t)) = o(1).

Notice again the similarity with [1].

Another interesting consequence of hypothesis (H) is Corollary 4.17 which states that if two parameterizations
are close to one other, then this is also the case for the trajectories. We first prove a technical result using the
same approach as in the proof of Proposition 4.10:

Proposition 4.16. Let u and v be the two solutions of (2.18) for some functions λ and μ respectively. Then
for any t ≥ 0,

‖u(t) − v(t)‖ ≤ e−
∫

t
0 μ(s)ds

(
‖u0 − v0‖ +

∫ t

0

(C + ‖u(s)‖) |λ(s) − μ(s)| · e
∫

s
0 μ(i)dids

)
.
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Proof. Let f = u − v, then

‖f(t) + f ′(t)‖ = ‖Φ(λ(t), u(t)) − Φ(μ(t), v(t))‖
≤ ‖Φ(λ(t), u(t)) − Φ(μ(t), u(t))‖ + ‖Φ(μ(t), u(t)) − Φ(μ(t), v(t))‖
≤ |λ(t) − μ(t)| · (C + ‖u(t)‖) + (1 − μ(t)) · ‖f(t)‖

because of hypothesis (H) and contraction of Φ(λ, ·). Applying Proposition 3.4 gives the result. �

In particular one has:

Corollary 4.17. Let u and v the two solutions of (2.18) for some functions λ and μ respectively. Assume that
u is bounded and μ /∈ �1, then ‖u(t) − v(t)‖ → 0 in the two following cases:

(a) μ(t) ∼ λ(t) as t goes to +∞;
(b) |λ − μ| ∈ �1.

Proof. Let L be a bound for u. By the preceding proposition we know that

‖u(t) − v(t)‖ ≤ e−
∫ t
0 μ(s)ds

(
‖u0 − v0‖ + (C + L)

∫ t

0

|λ(s) − μ(s)| · e
∫ s
0 μ(i)dids

)
so it suffices to show that ∫ t

0

|λ(s) − μ(s)| · e
∫ s
0 μ(i)dids = o

(
e
∫ t
0 μ(s)ds

)
.

(a) Assume that μ(t) ∼ λ(t), that is |λ(t)−μ(t)|
μ(t) = o(1). This implies that

|λ(t) − μ(t)| · e
∫

t
0 μ(s)ds = o

(
μ(t)e

∫
t
0 μ(s)ds

)
which gives the result by integrating.

(b) Assume that |λ − μ| ∈ �1, let ε > 0 and T such that
∫ +∞

T
|λ(s) − μ(s)|ds < ε. Then for t > T ,

I :=
∫ t

0

|λ(s) − μ(s)| · e
∫ s
0 μ(i)dids

=
∫ T

0

|λ(s) − μ(s)| · e
∫ s
0 μ(i)dids +

∫ t

T

|λ(s) − μ(s)| · e
∫ s
0 μ(i)dids

≤ e
∫ T
0 μ(s)ds

∫ T

0

|λ(s) − μ(s)|ds + e
∫ t
0 μ(s)ds

∫ t

T

|λ(s) − μ(s)|ds

≤ e
∫ T
0 μ(s)ds

∫ T

0

|λ(s) − μ(s)|ds + εe
∫ t
0 μ(s)ds

≤ 2εe
∫ t
0 μ(s)ds

for all t large enough since e
∫ t
0 μ(s)ds diverges to +∞ as t goes to +∞. �

Some interesting corollaries follows immediately: first because of Corollary 4.4, we get:

Corollary 4.18. If λ(t) → λ > 0, then u(t) → vλ.
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Then, combining the results of Section 4.3 and Corollaries 4.12 and 4.17 we deduce the following corollary
bringing to light the tight difference between dynamics related to lim vn and lim vλ:

Corollary 4.19. For α ∈ [0, 1[, let uα be the solution of

u(t) + u′(t) = Φ
(
(1 + t)α−1, u(t)

)
with u(0) = u0. (4.14)

Then u0(t) converges to some l ∈ X when t goes to +∞ iff vn converges to l as n goes to +∞; and for α ∈ ]0, 1[
uα(t) converges to some l ∈ X as t goes to +∞ iff vλ converges to l as λ goes to 0.

4.5. Back to discrete time

We proved in the last section that under hypothesis (H), the solution of (2.18) has the same asymptotic
behavior as the family {vλ} as soon as λ converges slowly enough to 0. One may wonder if it is true as well in
discrete time. For any sequence (λn)n∈N in ]0, 1], define the discrete counterpart of equation (2.18) :

wn = Φ(λn, wn−1) with w(0) = w0. (4.15)

Then one obtains the discrete version of Corollary 4.12 :

Proposition 4.20. Let λn be a sequence in ]0, 1]. Assume that both λn and 1
λn

− 1
λn+1

tend to 0 as n goes
to +∞. Then the solution (wn)n∈N of (4.15) satisfies

‖vλn − wn‖ → 0

as n goes to +∞.

Proof. The sequence γn = 1
λn

tends to +∞ and satisfies γn − γn−1 → 0 as n goes to +∞. This implies
the existence of an interpolation function γ : R → R which is C2 and such that for all n in N, γ(n) = γn,
lim+∞ γ(t) = +∞ and lim+∞ γ′(t) = 0. The function λ := 1

γ thus satisfies λ(n) = λn and all the hypotheses
of Corollary 4.12. Let us denote by u the corresponding solution of equation (2.18). By Corollary 4.12 it is
enough to show that ‖wn − u(n)‖ → 0 as n goes to +∞.

Define an := ‖wn − u(n)‖ and let ε > 0. Then

an = ‖Φ(λn, wn−1) − Φ(λn, u(n)) + u′(n)‖
≤ (1 − λn)‖wn−1 − u(n)‖ + ‖u′(n)‖
≤ (1 − λn)‖wn−1 − u(n − 1)‖ + ‖u(n) − u(n − 1)‖ + ‖u′(n)‖
≤ (1 − λn)an−1 + 2 sup

t∈[n−1,n]

‖u′(t)‖

≤ (1 − λn)an−1 + 2 sup
t∈[n−1,n]

∥∥∥∥u′(t)
λ(t)

∥∥∥∥ · sup
t∈[n−1,n]

λ(t)

≤ (1 − λn)an−1 + 2ε sup
t∈[n−1,n]

λ(t) (4.16)

for every n large enough because of Corollary 4.12.
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Denote sn = max
t∈[n−1,n]

λ(t) = o(1), and choose tn ∈ [n − 1, n] such that sn = λ(tn). Let T > 0 such that

|λ′(t)| ≤ λ2(t) for every t ≥ T , then by the mean value theorem, for any n ≥ T + 1,

|sn − λn| = |λ(tn) − λ(n)|
≤ |tn − n| · sup

t∈[n−1,n]

|λ′(t)|

≤ sup
t∈[n−1,n]

λ2(t)

= s2
n

= o(sn)

so that sn ∼ λn as n goes to +∞. Together with (4.16) this implies that there exists N such that for all n ≥ N ,

an ≤ (1 − λn)an−1 + 3ελn

and so by induction one prove that for all k ∈ N,

aN+k − 3ε ≤ (aN − 3ε)
k∏

i=1

(1 − λN+i).

Now 1
λn

− 1
λn−1

→ 0 implies that 1
n = o(λn), so the product goes to 0 and we deduce that aN+k ≤ 4ε for k large

enough. �

Corollary 4.21. vλ converges as λ goes to 0 if and only if there exists a sequence λn satisfying the hypothesis
of Proposition 4.20 such that the corresponding sequence wn defined by (4.15) converges.

Proof. Let λn such that wn converges. Because of Proposition 4.20, vλn converges. Moreover, for all λ and μ,
hypothesis (H) implies that, denoting C′ = sup

λ∈ ]0,1]

‖vλ‖

‖vλ − vμ‖ = ‖Φ(λ, vλ) − Φ(μ, vμ)‖
≤ ‖Φ(μ, vλ) − Φ(μ, vμ)‖ + ‖Φ(λ, vλ) − Φ(μ, vλ)‖
≤ (1 − μ)‖vλ − vμ‖ + |λ − μ|(C + C′)

and thus that

‖vλ − vμ‖ ≤
∣∣∣∣1 − λ

μ

∣∣∣∣ (C + C′). (4.17)

Since λn → 0 and 1
λn

− 1
λn+1

→ 0, |1 − λn+1
λn

| also converges to 0. Together with inequality (4.17) and the fact
that vλn converges it implies the convergence of vλ as λ goes to 0.

Conversely, if vλ converges, then Proposition 4.20 implies that the sequence wn defined by equation (4.15)
converges as soon as λn and 1

λn
− 1

λn+1
tend to 0. �

As in the Section 3 (Ex. 3.2), there is an interpretation in terms of games with uncertain duration:

Example 4.22. Consider the case of a game with Shapley operator J . Let {λn} be a sequence in ]0, 1] and
wn defined by equation (4.15). Then wn is the value of the following game with uncertain duration: with
probability λn the game stops after stage 1, and the payoff is the payoff during stage 1. With probability 1−λn

there is no payoff during stage 1 but a transition, and game goes to stage 2. Then, conditionally to the game
going to stage 2, with probability λn−1 the game stops after stage 2, and the payoff is the payoff during stage 2;
and with probability 1 − λn−1 there is no payoff during stage 2 but a transition, and game goes to stage 3.
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If the game goes to stage n, with probability λ1 the payoff is the payoff during stage n and with probability
1 − λ1 the payoff is 0.

Proposition 4.20 then states that if {λn} is of slow variation, the value of this game with uncertain duration
is close to the value of the λn-discounted game.

As a final remark to this section, notice the way in which we proved Proposition 4.20, with a back and
forth process to continuous dynamics; it should be interesting to search another proof using only discrete time
methods.

5. Concluding remarks

− In this paper we proved that the asymptotic behavior of vn and vλ can be derived from the asymptotic
behavior of solutions of some evolutions equations, namely (2.15) and (2.17). It should thus be interest-
ing to determine which additional conditions on the nonexpansive operator J may imply convergence
of the solutions of these equations, and so convergence of vn and vλ.

− Notice that Corollary 4.19 hints that vλ and vn should have the same asymptotic behavior for a wide
class of nonexpansive operators, since the study of lim vn seems to be a limit case of the study of lim vλ.
Of interest is also Corollary 4.7 which gives a sufficient condition for existence of both lim vn and lim vλ

as well as their equality.
− In Examples 3.2 and 4.22 we saw that some results that arose naturally during this paper have a nice

interpretation in the framework of games with uncertain duration. In particular we showed that for
specific types of uncertain duration, the value of those games behave asymptotically either as vn or vλ

as the expected time played tends to infinity. Following [19,20] it thus should be interesting to study
uncertain duration more generally, hoping that some conditions on the Shapley Operator will provide
convergence of values for more than just finitely repeated and discounted games.
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