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Abstract

We report on the theoretical investigation of the plasmonic wave propagation in the coaxial

cylindrical cables fabricated of both right-handed medium (RHM) [with ǫ > 0, µ > 0] and left-

handed medium (LHM) [with ǫ(ω) < 0, µ(ω) < 0], using a Green-function (or response function)

theory in the absence of an applied magnetic field. The Green-function theory generalized to

be applicable to such quasi-one dimensional systems enables us to derive explicit expressions for

the corresponding response functions (associated with the EM fields), which can in turn be used

to derive various physical properties of the system. The confined plasmonic wave excitations in

such multi-interface structures are characterized by the electromagnetic fields that are localized at

and decay exponentially away from the interfaces. A rigorous analytical diagnosis of the general

results in diverse situations leads us to reproduce exactly the previously well-known results in

other geometries, obtained within the different theoretical frameworks. As an application, we

present several illustrative examples on the dispersion characteristics of the confined (and extended)

plasmonic waves in single- and double-interface structures made up of dispersive metamaterials

interlaced with conventional dielectrics. These dispersive modes are also substantiated through

the computation of local as well as total density of states. It is observed that the dispersive

components enable the system to support the simultaneous existence of s- and p-polarization modes

in the system. Such effects as this one are solely attributed to the negative-index metamaterials and

are otherwise impossible. The readers will also notice the explicit µ-dependence of the dispersion

relations for the s-polarization modes, obtained under special limits in some cases, for the single-

and double-interface systems. The elegance of the theory lies in the fact that it does not require

the matching of the boundary conditions and in its simplicity and the compact form of the desired

(analytical) results.

PACS numbers: 42.66.Si, 52.35.Hr, 68.65.La, 78.67.Ch
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I. INTRODUCTION

The discovery of quantum Hall effects spurred a tremendous research interest in the

quantum phenomena associated with the systems of lower dimensions such as quantum

wells, quantum wires, and quantum dots. While this momentum still seems to be growing

[1], the classical phenomena emerged with the proposal of the photonic (and phononic) crys-

tals and, more recently, the negative-index metamaterials have been drawing considerable

attention of many research groups world-wide. Proposed some four decades ago by Veselago

[2], advocated by Sir John Pendry in 2000 [3], and first practically realized by Smith and

coworkers in 2001 [4], an artificially designed negative-index metamaterial, exhibiting simul-

taneously negative values of electrical permittivity ǫ(ω) and magnetic permeability µ(ω) and

hence negative refractive index n, seems to have changed many basic notions related with

the electromagnetism. It forms a left-handed medium, with the energy flow E×H being

opposite to the direction of propagation, for which it has been argued that such phenomena

as Snell’s law, Doppler effect, Cherenkov radiation are inverted.

The subject of composite systems made up of metamaterials has gained un unexpected

momentum and the research interest seems to have focused not only on the photonic crystals

with metamaterial components [5-12] but also on the single- and multi-layered planar struc-

tures [13-22] as well as on the (usually) single cylindrical geometries [23-34]. The interesting

phenomena emerging from the geometries involving metamaterials include the slowing, trap-

ping, and releasing of the light signals [35], the proposal of the cloaking devices [36], and the

extraordinary refraction of light [37]. The early development of the subject can be found

in interesting review articles by Pendry [38] and by Boardman [39]. Cloaking is an illusion

like a mirage: you steer light around an object and therefore you never see the object. The

tailored response of the metamaterials has had a dramatic impact on engineering, optics,

and physics communities alike, because they can offer electromagnetic properties that are

difficult or impossible to achieve with naturally occurring materials.

The recent research interest in surface plasmonic wave optics has been invigorated by the

experiment performed on the transmission of light through subwavelength holes in metal

films [40]. This experiment has spurred numerous theoretical [41-44] as well experimental

[45-49] works on similar structured surfaces: either perforated with holes, slits, dimples, or

decorated with grooves. It has been argued that resonant excitation of surface plasmonic
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waves creates huge electric fields at the surface that force the light through the holes, yield-

ing very high transmission coefficients. The idea of tailoring the topography of a perfect

conductor to support the surface waves resembling the behavior of the surface plasmonic

waves at optical frequencies was discussed in the context of a surface with an array of two-

dimensional holes [44]. The experimental verification of this proposal has recently been

reported [50-52] on the structured metamaterial surfaces which support surface plasmonic

waves at microwave frequencies.

The purpose of this paper is to investigate the plasmonic wave propagation in the coaxial

cables fabricated of metamaterials interlaced with conventional dielectrics using the Green-

function (or response function) theory in the absence of an applied magnetic field. The

roots of our theoretical approach lie virtually in the interface-response theory (IRT) [53]

generalized to be applicable to such quasi-one dimensional (Q1D) systems. Ever since its

inception, the IRT has been extensively applied to study various quasi-particle excitations

(such as phonons, plasmons, magnons, etc.) in heterostructures and superlattices [54-56].

The use of IRT has numerous advantages over the traditional Maxwell equations with

boundary conditions. It is very well known that the Maxwell equations with proper boundary

conditions only provide us with the dispersion relations for the given electromagnetic waves

in an inhomogeneous medium. The IRT, which is essentially a matrix formulation, on the

other hand, enables us to obtain not only the dispersion relations of the desired excitations

but also provides us with a wide platform to study various static and dynamic properties in

terms of the response functions of the resultant systems at hand. These include, for instance,

the local and total density of states, reflection and transmission coefficients, inelastic light

and electron scattering, tunneling phenomena, and selective transmission, to name a few.

The rest of the paper is organized as follows. In Sec. II we discuss some relevant basic

notions of the cylindrical geometry and calculate the bulk response function. In Sec. III we

present theoretical formalism to derive the final expressions for the plasmonic wave dispersion

relations in the compact form, discuss some analytical diagnoses of the general expressions

under special limits, and give some explicit relationship between the response functions and

the density of states. In Sec. IV we report several interesting illustrative examples on

the plasmonic wave dispersion and density of states in a variety of experimentally feasible

situations. Finally, we conclude our findings and list some interesting dimensions worth

adding to the problem in the future in Sec. V.
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II. BASIC NOTIONS AND BULK RESPONSE FUNCTIONS

We consider the electromagnetic waves propagating with an angular frequency ω and

wave vector k ‖ ẑ in a medium defined by the cylindrical coordinates (ρ, θ, z). The plasmonic

waves, here as well as in the later part of this work, will be assumed to observe the spatial

localization along the direction perpendicular to the axis of the cylinder. Note that the

situation is totally unlike that in the Cartesian co-ordinate system where one can safely and

readily define the sagittal plane (i.e., the plane defined by the wave vector and the normal

to the surface/interface) and hence isolate the transverse magnetic (TM) and the transverse

electric (TE) modes, at least in the absence of an applied magnetic field. The only exception

to this notion is the Voigt geometry (with a magnetic field parallel to the surface/interface

and perpendicular to the propagation vector) that can still (i.e., even in the presence of

an applied magnetic field) allow the separation of the TM and TE modes (see, for details,

Ref. 1). In the literature on optics the TM and TE modes are also known by the name of

p-polarization and s-polarization, respectively.

It should be pointed out that since we are interested in the artificially designed meta-

materials whose response is measured both in terms of the effective ǫ and µ, ~B 6= ~H in the

Maxwell curl-field equations. After eliminating the magnetic field variable ~B from these

curl-field equations, we obtain

~∇× (~∇× ~E)− q2
0
ǫ µ ~E = 0 (2.1)

Here both ǫ and µ are scalar quantities, since the system we are concerned with is not

subjected to any external magnetic field and the physical system is assumed to be isotropic.

In Eq. (2.1) q
0
= ω/c is the vacuum wave vector, where c is the speed of light in vacuum.

We will take the spatial and temporal dependence of the electromagnetic fields to be of the

form of ~A(ρ, θ, z) ∼ ~A(ρ, θ) e(ikz−iωt), where ~A ≡ ~E or ~B. Recalling the standard definitions

of ~∇. ~A, ∇2φ (with φ as any scalar), and ~∇ × ~A in the cylindrical coordinates, one should

be able to split Eq. (2.1) in the three equations:

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
− k2

]

Eρ −
1

ρ2

(

Eρ + 2
∂

∂θ
Eθ

)

+ q2
0
ǫ µEρ = 0 (2.2)

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
− k2

]

Eθ −
1

ρ2

(

Eθ − 2
∂

∂θ
Eρ

)

+ q2
0
ǫ µEθ = 0 (2.3)
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[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
− k2

]

Ez + q2
0
ǫ µEz = 0 (2.4)

Equations (2.2) − (2.4) demonstrate it clearly that the cylindrical geometry prevents the

separation of the TM and TE modes. We choose to work in terms of Ez and Hz components.

Then we first need to evaluate Eρ, Eθ, Hρ, and Hθ in terms of Ez and Hz from the Maxwell

curl-field equations. The result is

Eρ =
1

α2

[

−iq
0
µ
1

ρ

∂

∂θ
Hz − ik

∂

∂ρ
Ez

]

(2.5)

Eθ =
1

α2

[

iq
0
µ
∂

∂ρ
Hz − ik

1

ρ

∂

∂θ
Ez

]

(2.6)

and similarly

Hρ =
1

α2

[

iq
0
ǫ
1

ρ

∂

∂θ
Ez − ik

∂

∂ρ
Hz

]

(2.7)

Hθ =
1

α2

[

−iq
0
ǫ
∂

∂ρ
Ez − ik

1

ρ

∂

∂θ
Hz

]

(2.8)

With the aid of these equations, we simplify the z-components of the Maxwell curl-field

equations:

− iq
0
ǫEz =

1

ρ

∂

∂ρ
(ρHθ)−

1

ρ

∂

∂θ
Hρ (2.9)

and

iq
0
µHz =

1

ρ

∂

∂ρ
(ρEθ)−

1

ρ

∂

∂θ
Eρ (2.10)

to write

∂2

∂ρ2
Az +

1

ρ

∂

∂ρ
Az +

(

1

ρ2
∂2

∂θ2
− α2

)

Az = 0 (2.11)

where Az stands for Ez or Hz and α = (k2 − q2
0
ǫ µ)1/2 is a measure of the decay constant in

a medium concerned.

Before proceeding further, it is important to define a characteristic terminology of the

interface response theory: the black-box surface (BBS). By BBS we mean an entirely opaque

surface through which electromagnetic fields cannot propagate. The idea of introducing the

BBS in the IRT [53] was conceived with two prominent advantages over the contemporary
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semiclassical approaches in mind. Firstly, it allows one to disconnect completely from the

extra mathematical world and hence to confine stringently within the truly building block

of the system concerned. Secondly, it implicitly provides a great opportunity to get rid

of using the boundary conditions one is so routinely accustomed to in dealing with the

inhomogeneous systems. What results is a number of simplified and compact forms of the

response functions which one only needs to sum up in order to proceed further for studying

the desired physical property of the resultant system at hand. Conceptually, this is achieved

by imposing that c (the speed of light), ǫ (the electric permittivity), and µ (the magnetic

permeability) vanish inside the specific region. This region represents a medium that could,

in principle, be semi-infinite or finite. In order to create a medium bounded by a black-box

surface, we assume that the Eqs. (2.5)− (2.8) are only valid for either ρ > R or ρ < R, with

R as the radius of the only cylinder in question by now. Then we multiply the right-hand

sides of Eqs. (2.5)− (2.8) by the step function θ(ρ−R) or θ(R−ρ), as the case may be. We

first calculate the two derivatives needed to evaluate Eqs. (2.9) and (2.10). The result is

∂

∂ρ
(ρEθ) =

1

α2

{[

iq
0
µ
∂

∂ρ
Hz + iq

0
µρ

∂2

∂ρ2
Hz − ik

∂

∂θ

∂

∂ρ
Ez

]

− δ(R− ρ)

[

iq
0
µρ

∂

∂ρ
Hz − ik

∂

∂θ
Ez

]}

(2.12)

and

∂

∂ρ
(ρHθ) =

1

α2

{[

−iq
0
ǫ
∂

∂ρ
Ez + iq

0
ǫ ρ

∂2

∂ρ2
Ez − ik

∂

∂θ

∂

∂ρ
Hz

]

− δ(R− ρ)

[

−iq
0
ǫ ρ

∂

∂ρ
Ez − ik

∂

∂θ
Hz

]}

(2.13)

Evidently, the step function (and hence the delta function) dictates the kind of physical

situation we will consider in what follows. Then the differential equations (2.9) and (2.10)

satisfied by Ez(ρ, θ) and Hz(ρ, θ) assume the following forms:

(−iq
0
ǫ

β2

)[(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
+ β2

)

Ez − δ(R− ρ)

(

∂

∂ρ
Ez +

k

q
0
ǫ ρ

∂

∂θ
Hz

)]

= 0

(2.14)

and
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(

iq
0
µ

β2

)[(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
+ β2

)

Hz − δ(R− ρ)

(

∂

∂ρ
Hz −

k

q
0
µ ρ

∂

∂θ
Ez

)]

= 0

(2.15)

where β2 = −α2 = q2
0
ǫ µ− k2. The formal equations (2.14) and (2.15) will be the standard

format for all the calculations of the Green functions of the system of interest in what follows.

Next, let ~r ≡ (ρ, θ), ~r′ ≡ (ρ′, θ′), and define the Green function

G (~r, ~r′) ≡ G (| ~r − ~r′ |) ≡ G (ρ, θ; ρ′, θ′) (2.16)

for the homogeneous (bulk) medium [see Eq. (2.11)]

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
+ β2

)

G(~r, ~r′) = −4πδ(~r − ~r′)

= −4π

ρ
δ(ρ− ρ′)δ(θ − θ′) (2.17)

The solution of this equation is given by (see, for example, Ref. [57]):

G(~r, ~r′) =
∞
∑

m=−∞

eim(θ−θ′)G(m; ρ, ρ′) (2.18)

with

G(m; ρ, ρ′) = iπ







Jm(βρ)Hm(βρ
′) , if ρ ≤ ρ′

Hm(βρ)Jm(βρ
′) , if ρ ≥ ρ′

(2.19)

where Jm(z) [Hm(z)] refers to the Bessel function of the first (third) kind of (integer) order

m. We write

G(m; ρ, ρ′) = iπ {[1− θ(ρ− ρ′)]Jm(βρ)Hm(βρ
′)

+ θ(ρ− ρ′)Hm(βρ)Jm(βρ
′)} (2.20)

where θ(x) = 1(0) for x > 0(x < 0) is the Heaviside step function. It is not difficult to verify

that the Green function in Eq. (2.19) represents the exact solution of Eq. (2.18).

We close this section by writing the bulk Green-function tensor for the field components

Ez and Hz as a 2× 2 matrix:
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



(

−q2
0
ǫ

β2

) [

∂2

∂ρ2
+ 1

ρ
∂
∂ρ

− m2

ρ2
+ β2

]

0

0
(

−q2
0
µ

β2

) [

∂2

∂ρ2
+ 1

ρ
∂
∂ρ

− m2

ρ2
+ β2

]





×





G
E
(m; ρ, ρ′) 0

0 G
H
(m; ρ, ρ′)



 = − 2

ρ
δ(ρ− ρ′)





1 0

0 1



 (2.21)

where we use ∂/∂θ = im and [see Eq. (2.19)]

−
(

q2
0
ǫ

β2

)

G
E
(m; ρ, ρ′) = −

(

q2
0
µ

β2

)

G
H
(m; ρ, ρ′)

= iπ







Jm(βρ)Hm(βρ
′) , ρ ≤ ρ′

Hm(βρ)Jm(βρ
′) , ρ ≥ ρ′

(2.22)

In what follows, we will consider three types of perturbative operations to have the desired

results for the resultant structure at hand. In doing so, we will abide by the conceptual

scheme of the IRT (see Ref. [53]).

III. FORMALISM FOR INVERSE RESPONSE FUNCTIONS

In this section, we will consider three perturbative operations represented geometrically by

Fig. 1. Specifically, Fig. 1(A), 1(B), and 1(C) correspond, respectively, to the metamaterial

cylinder of radius R1 surrounded by a black box surface, a black box cylinder of radius R2

surrounded by a metamaterial, and a metamaterial shell sandwiched between the black box

cylinder of radius R1 and a semi-infinite black box surface outside a cylinder of radius R2.

The metamaterial media in the perturbations A, B, and C are, in general, characterized

by the local permittivity and permeability functions ǫ1(ω), µ1(ω); ǫ2(ω), µ2(ω); and ǫ3(ω),

µ3(ω) respectively. We will consider the effect of retardation but neglect the absorption

throughout. Any subscript i ≡ 1, 2, or 3 on the physical quantities should be understood

referring to the respective perturbation until and unless stated otherwise.

A. First Perturbation

The first perturbation [represented by Fig. 1(A)] is specified by a step function θ(R1−ρ) in

front of Eqs. (2.5)−(2.8). That means that the black-box cleavage operator Ṽ1(R1, ρ
′)δ(R1−

9
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FIG. 1: Schematics of the concept of three perturbations: [A], [B], and [C]. The blank (shaded)

region refers to the material medium (black box) in the system. The sum of the first two per-

turbations defines a plasma (dielectric) cylinder embedded in a dielectric (plasma) and the sum

of all three perturbations specifies, say, a plasma (dielectric) shell surrounded by two unidentical

dielectrics (plasmas). Here Rj is the radius and X ≡ ǫ(ω) and/or µ(ω) for a specified medium.

ρ′) is defined such that (see Eqs. (2.14)-(2.15))

Ṽ1(R1, ρ
′) =

R1

2

q2
0

β2
1





−ǫ1
∂
∂ρ′

− imk
q
0
ρ′

imk
q
0
ρ′

−µ1
∂
∂ρ′



 (3.1)

and the corresponding bulk Green function is written as [see Eqs. (2.22)]

G̃1(ρ, ρ
′) = iπ

β2
1

q2
0





− 1
ǫ1
Hm(β1ρ)Jm(β1ρ

′) 0

0 − 1
µ1

Hm(β1ρ)Jm(β1ρ
′)



 (3.2)

It is noteworthy that although the operators Ṽ1 and Ã1 as well as the functions G̃1 and g̃1

are all functions of the variables such as m, k, and ω, we have suppressed them throughout

for the sake of brevity and convenience. With this, we define the response operator
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Ã1 (R1, R1) = Ṽ1(R1, ρ) G̃1(ρ, ρ
′) |ρ=R1=ρ′

=





iπ
2
β1R1H

′

m(β1R1)Jm(β1R1) −π
2

mk
q
0
µ1

Hm(β1R1)Jm(β1R1)

π
2

mk
q
0
ǫ1
Hm(β1R1)Jm(β1R1)

iπ
2
β1R1H

′

m(β1R1)Jm(β1R1)



 (3.3)

The prime on the Bessel functions stands for the derivative of the respective quantity with

respect to the full argument. Next we define an operator

∆̃1(R1, R1) = Ĩ + Ã1(R1, R1)

=





iπ
2
β1R1Hm(β1R1)J

′

m(β1R1) −π
2

mk
q
0
µ1

Hm(β1R1)Jm(β1R1)

π
2

mk
q
0
ǫ1
Hm(β1R1)Jm(β1R1)

iπ
2
β1R1Hm(β1R1)J

′

m(β1R1)



 (3.4)

It should be pointed out that in writing the second equality in Eq. (3.4), we have made use

of the identity [58]

1

Jν(z)Hν(z)
=

πz

2i

[

H ′

ν(z)

Hν(z)
− J ′

ν(z)

Jν(z)

]

(3.5)

Next, we calculate the inverse of G̃1 to write

G̃−1
1 (R1, R1) =

q2
0

iπβ2
1

1

Hm(β1R1)Jm(β1R1)





−ǫ1 0

0 −µ1



 (3.6)

As such, we have all what we need to calculate the inverse response function in the interface

space M defined by

g̃−1
1 (R1, R1) = ∆̃1(R1, R1) G̃

−1
1 (R1, R1) (3.7)

The result is that

g̃−1
1 (R1, R1) =

q2
0

2β2
1





−β1R1ǫ1
J ′

m(β1R1)
Jm(β1R1)

− imk
q
0

imk
q
0

−β1R1µ1
J ′

m(β1R1)
Jm(β1R1)



 (3.8)

represents the response function of a material medium cylinder surrounded by a black box.

By material medium we mean a medium possessing a realistic substance such as a metal,

dielectric, semiconductor, or metamaterial.
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B. Second Perturbation

The second perturbation [represented by Fig. 1(B)] is specified by a step function θ(ρ−R2)

in front of Eqs. (2.5)− (2.8). Then the black-box cleavage operator Ṽ2(R2, ρ
′)δ(ρ′ − R2) is

defined such that

Ṽ2(R2, ρ
′) = −R2

2

q2
0

β2
2





−ǫ2
∂
∂ρ′

− imk
q
0
ρ′

imk
q
0
ρ′

−µ2
∂
∂ρ′



 (3.9)

and the corresponding bulk Green function is written as

G̃2(ρ, ρ
′) = iπ

β2
2

q2
0





− 1
ǫ2
Jm(β2ρ)Hm(β2ρ

′) 0

0 − 1
µ2

Jm(β2ρ)Hm(β2ρ
′)



 (3.10)

With this, we define the response operator

Ã2 (R2, R2) = Ṽ2(R2, ρ) G̃2(ρ, ρ
′) |ρ=R2=ρ′

=





− iπ
2
β2R2J

′

m(β2R2)Hm(β2R2) +π
2

mk
q
0
µ2

Jm(β2R2)Hm(β2R2)

−π
2

mk
q
0
ǫ2
Jm(β2R2)Hm(β2R2) − iπ

2
β2R2J

′

m(β2R2)Hm(β2R2)



 (3.11)

Next, we define an operator

∆̃2(R2, R2) = Ĩ + Ã2(R2, R2)

=





− iπ
2
β2R2Jm(β2R2)H

′

m(β2R2) +π
2

mk
q
0
µ2

Jm(β2R2)Hm(β2R2)

−π
2

mk
q
0
ǫ2
Jm(β2R2)Hm(β2R2) − iπ

2
β2R2Jm(β2R2)H

′

m(β2R2)



 (3.12)

Again, in writing the second equality in Eq. (3.12), we have made use of the identity in Eq.

(3.5). Next, we calculate the inverse of G̃2 to write

G̃−1
2 (R2, R2) =

q2
0

iπβ2
2

1

Jm(β2R2)Hm(β2R2)





−ǫ2 0

0 −µ2



 (3.13)

Now we need to calculate the inverse response function in the interface space M defined by

12



g̃−1
2 (R2, R2) = ∆̃2(R2, R2) G̃

−1
2 (R2, R2) (3.14)

The result is that

g̃−1
2 (R2, R2) =

q2
0

2β2
2





β2R2ǫ2
H′

m(β2R2)
Hm(β2R2)

imk
q
0

− imk
q
0

β2R2µ2
H′

m(β2R2)
Hm(β2R2)



 (3.15)

represents the response function of a black box surrounded by a material medium.

C. Third Perturbation

The third perturbation [represented by Fig. 1(C)] is specified by a step function [θ(ρ −
R1) − θ(ρ − R2)] in front of Eqs. (2.5) − (2.8). Then the black-box cleavage operator

Ṽ3(Ri, ρ
′)δ(ρ′ − Ri)Pnn′ [with Pnn′ = 1(0) for n, n′ ≤ 2 and ≥ 3 (otherwise); i = 1 (2) for

n, n′ ≤ 2 (≥ 3)] is defined such that

Ṽ3(Ri, ρ
′) =

1

2

q2
0

β2
3

















ǫ3R1
∂
∂ρ′

imk
q
0
ρ′
R1 0 0

− imk
q
0
ρ′
R1 µ3R1

∂
∂ρ′

0 0

0 0 −ǫ3R2
∂
∂ρ′

− imk
q
0
ρ′
R2

0 0 imk
q
0
ρ′
R2 −µ3R2

∂
∂ρ′

















(3.16)

The corresponding bulk Green function is written as

G̃3(ρ, ρ
′) = iπ

β2
3

q2
0















− 1
ǫ3
Jm(β3ρ)Hm(β3ρ

′) 0

0 − 1
µ3

Jm(β3ρ)Hm(β3ρ
′)

− 1
ǫ3
Hm(β3ρ)Jm(β3ρ

′) 0

0 − 1
µ3

Hm(β3ρ)Jm(β3ρ
′)

− 1
ǫ3
Jm(β3ρ)Hm(β3ρ

′) 0

0 − 1
µ3

Jm(β3ρ)Hm(β3ρ
′)

− 1
ǫ3
Hm(β3ρ)Jm(β3ρ

′) 0

0 − 1
µ3

Hm(β3ρ)Jm(β3ρ
′)















(3.17)

where the interface space M will be referred to (ρ = R1, ρ
′ = R1), (ρ = R1, ρ

′ = R2),

(ρ = R2, ρ
′ = R1) and (ρ = R2, ρ

′ = R2), respectively, in the first, second, third, and fourth

13



quadrants made up of 2× 2 submatrices starting clockwise from the top-left. With this, we

define the response operator

Ã3(M,M) = Ṽ3(M) G̃3(M,M)

=
iπ

2

















−β3R1J
′

m(β3R1)Hm(β3R1) − imk
q
0
µ3

Jm(β3R1)Hm(β3R1)

imk
q
0
ǫ3
Jm(β3R1)Hm(β3R1) −β3R1J

′

m(β3R1)Hm(β3R1)

β3R2H
′

m(β3R2)Jm(β3R1)
imk
q
0
µ3

Hm(β3R2)Jm(β3R1)

− imk
q
0
ǫ3
Hm(β3R2)Jm(β3R1) β3R2H

′

m(β3R2)Jm(β3R1)

−β3R1J
′

m(β3R1)Hm(β3R2) − imk
q
0
µ3

Jm(β3R1)Hm(β3R2)

imk
q
0
ǫ3
Jm(β3R1)Hm(β3R2) −β3R1J

′

m(β3R1)Hm(β3R2)

β3R2H
′

m(β3R2)Jm(β3R2)
imk
q
0
µ3

Hm(β3R2)Jm(β3R2)

− imk
q
0
ǫ3
Hm(β3R2)Jm(β3R2) β3R2H

′

m(β3R2)Jm(β3R2)

















(3.18)

Now we define an operator

∆̃3(M,M) = Ĩ + Ã3(M,M)

=
iπ

2

















−β3R1H
′

m(β3R1)Jm(β3R1) − imk
q
0
µ3

Jm(β3R1)Hm(β3R1)

imk
q
0
ǫ3
Jm(β3R1)Hm(β3R1) −β3R1H

′

m(β3R1)Jm(β3R1)

β3R2H
′

m(β3R2)Jm(β3R1)
imk
q
0
µ3

Hm(β3R2)Jm(β3R1)

− imk
q
0
ǫ3
Hm(β3R2)Jm(β3R1) β3R2H

′

m(β3R2)Jm(β3R1)

−β3R1J
′

m(β3R1)Hm(β3R2) − imk
q
0
µ3

Jm(β3R1)Hm(β3R2)

imk
q
0
ǫ3
Jm(β3R1)Hm(β3R2) −β3R1J

′

m(β3R1)Hm(β3R2)

β3R2J
′

m(β3R2)Hm(β3R2)
imk
q
0
µ3

Hm(β3R2)Jm(β3R2)

− imk
q
0
ǫ3
Hm(β3R2)Jm(β3R2) β3R2J

′

m(β3R2)Hm(β3R2)

















(3.19)

Again, in writing the second equality in Eq. (3.19), we have made use of the identity in Eq.

(3.5). Next, we calculate the inverse of the bulk Green function G̃3 to write

14



G̃−1
3 (M,M) =

q2
0

iπβ2
3

1

D















−ǫ3
Jm(β3R2)
Jm(β3R1)

0 ǫ3 0

0 −µ3
Jm(β3R2)
Jm(β3R1)

0 µ3

ǫ3 0 −ǫ3
Hm(β3R1)
Hm(β3R2)

0

0 µ3 0 −µ3
Hm(β3R1)
Hm(β3R2)















(3.20)

where the symbol D is defined as

D = Hm(β3R1)Jm(β3R2)− Jm(β3R1)Hm(β3R2) (3.21)

Finally, we calculate the inverse response function of a cylindrical shell bounded by two

black boxes

g̃−1
3 (M,M) = ∆̃3(M,M) G̃−1

3 (M,M) (3.22)

to write

g̃−1
3 (M,M) =

q2
0

2β2
3

















β3R1ǫ3
Z1

D
imk
q
0

−2iǫ3
πD

0

− imk
q
0

β3R1µ3
Z1

D
0 −2iµ3

πD

−2iǫ3
πD

0 β3R2ǫ3
Z2

D
− imk

q
0

0 −2iµ3

πD
imk
q
0

β3R2µ3
Z2

D

















(3.23)

where

Z1 = H ′

m(β3R1)Jm(β3R2)− J ′

m(β3R1)Hm(β3R2)

Z2 = H ′

m(β3R2)Jm(β3R1)− J ′

m(β3R2)Hm(β3R1)
(3.24)

Having calculated the inverse response functions for the three perturbations, it becomes an

easy task to deduce the dispersion relations for the plasmonic wave propagation in the real

physical systems. These are (i) a metamaterial (dielectric) cylinder embedded in a dielectric

(metamaterial) and (ii) a metamaterial (dielectric) shell surrounded by two unidentical di-

electrics (metamaterials), for example. It is noteworthy that even though we specify the two

geometries as we do, the dielectric there can be a different metamaterial. It should also be

made clear once and for all that by dielectric we mean a conventional, nondispersive, within

which the ǫ and µ are constant parameters.
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D. Metamaterial (Dielectric) Cylinder Embedded in Dielectric (Metamaterial)

Merger of perturbations A and B results into a geometry of a metamaterial (dielectric)

cylinder embedded in a dielectric (metamaterial). As such, one can write g̃−1 = g̃−1
1 + g̃−1

2 ,

where g̃−1 is the inverse response function of a single cylinder in a semi-infinite medium.

That means that formally the determinant of the sum of inverse response functions in Eqs.

(3.8) and (3.15), with R1 = R = R2, equated to zero, i.e.,

∣

∣g̃−1(M,M)
∣

∣ =
∣

∣g̃−1
1 (M,M) + g̃−1

2 (M,M)
∣

∣ = 0 (3.25)

should yield the dispersion relation for plasmonic waves with a mixed (TM and TE) character

in a single cylindrical geometry. The result is

∣

∣

∣

∣

∣

∣

−
[

ǫ1
β1

J ′

m(β1R)
Jm(β1R)

− ǫ2
β2

H′

m(β2R)
Hm(β2R)

]

− imk
Rq

0

(

1
β2

1

− 1
β2

2

)

imk
Rq

0

(

1
β2

1

− 1
β2

2

)

−
[

µ1

β1

J ′

m(β1R)
Jm(β1R)

− µ2

β2

H′

m(β2R)
Hm(β2R)

]

∣

∣

∣

∣

∣

∣

= 0 (3.26)

or

[

ǫ1
β1

J ′

m(β1R)

Jm(β1R)
− ǫ2

β2

H ′

m(β2R)

Hm(β2R)

] [

µ1

β1

J ′

m(β1R)

Jm(β1R)
− µ2

β2

H ′

m(β2R)

Hm(β2R)

]

=
(m

R

)2 k2

q2
0

(

1

β2
1

− 1

β2
2

)2

(3.27)

This expression is exactly identical to Eq. (107) in Ref. [59], which was obtained through

the use of traditional boundary conditions decades ago by Stratton. It is very important

to understand that the only physical situation where TM and TE modes can be decoupled

in the cylindrical geometry is when (the Bessel index) m = 0 and/or (the propagation

constant) k = 0. Then the TM modes are characterized by the nonzero Ez, Er, and Hθ

and TE modes by the nonzero Hz, Hr, and Eθ. As such, Eq. (27) allows the decoupling

of the TM (represented by the first square bracket equated to zero) and TE (specified by

the second square bracket equated to zero) modes. Next, we concentrate on the TM modes

for studying, for example, plasmons in a slender wire made up of the cylinder in the limit

R → 0.
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1. Quantum Wire in the Electric Quantum Limit

For m = 0, the TM modes are characterized by the following dispersion law:

ǫ1
β1

J1(β1R)

J0(β1R)
− ǫ2

β2

H1(β2R)

H0(β2R)
= 0 , (3.28)

since ζ ′0 = −ζ1, with ζm ≡ Jm, Hm. It is not difficult to prove that Eq. (3.28) is exactly

identical to Eq. (18) in Ref. [60], which was also derived through the use of boundary

conditions, and represents the plasmon dispersion for the classical dielectric waveguide. It is

a simple matter to understand that in order to be able to deduce some expected results for

the planar interface we need to employ the large-argument limit (i.e., R → ∞). Imposing

asymptotic expansions of the Bessel functions for large arguments (i.e., when H1/H0 = i

and J1/J0 = −i), we obtain ǫ1β2 + ǫ2β1 = 0, which is a well-known general dispersion law

for the TM modes propagating on an interface between two unidentical media characterized

by dielectric functions ǫ1 and ǫ2 (see, for example, Ref. 1); here β1 and β2 serve as the

decay constants for the respective media and have to be purely imaginary for the plasmon-

polaritons.

Intuitively, a macroscopic metamaterial cylinder with a vanishingly small radius should

mimic a fashionable quantum wire and hence one would expect such a semiclassical method-

ology as treated here to reproduce the corresponding intrasubband plasmon dispersion. Using

the lowest-order expansions of the involved Bessel functions for the small arguments one can

cast Eq. (3.28) in the form:

ǫ1 +
2ǫ2
α2R

K1(α2R)

K0(α2R)
= 0 (3.29)

where α2 = (k2 − q2
0
ǫ2µ2)

1/2 refers to the decay constant in the outer background medium.

For outer medium as a dielectric, small radius (R → 0), and long wavelength limit, the

modified Bessel functions K0 and K1 are both positive. Therefore in order to obtain a

bonafide solution of this equation, the dielectric function ǫ1 must be negative. This means

that in the local approximation only the frequencies below the screened plasma frequency

should make sense. In the limit of small radius, Eq. (3.28) can also be written as

ω = ω0 · β2R · |ln(β2R)|1/2 (3.30)
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where ω0 = (2πn
B
e2/m∗ǫ2L)

1/2, ǫ2L the background dielectric constant in the outer semi-

infinite medium, and nB the effective 3D carrier density. In its present form, Eq. (3.30)

is an exact analogue of Eq. (2.13) in Ref. [61], but generalized to include the retardation

effect.

E. Metamaterial (Dielectric) Shell Bounded by Two Unidentical Dielectrics

(Metamaterials)

In this section, we are motivated to study a physical system made up of two coaxial

cylinders where we can have the metamaterial shell bounded by two unidentical dielectrics

or a dielectric shell bounded by two unidentical metamaterials, in general. We will study

diverse situations of practical interest. Methodologically, such a geometry becomes realizable

by summing up the inverse response functions calculated in Eqs. (3.8), (3.15), and (3.23)

in the interface space M . One can write g̃−1 = g̃−1
1 + g̃−1

2 + g̃−1
3 , where g̃−1 is the response

function of the finite cylindrical shell surrounded by two, in general, unidentical media. The

dispersion relation for plasmonic waves in such a resultant structure is derived by equating

the determinant of the total inverse response function to zero, i.e.,

∣

∣g̃−1(M,M)
∣

∣ =
∣

∣g̃−1
1 (M,M) + g̃−1

2 (M,M) + g̃−1
3 (M,M)

∣

∣ = 0 (3.31)

After some straightforward mathematical steps, we simplify Eq. (3.31) to write it explicitly

in the compact form as follows.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−R1

(

ǫ1
β1

A1 − ǫ3
β3

C1

)

− imk
q
0

(

1
β2

1

− 1
β2

3

)

− 2iǫ3
πβ2

3
D

0

imk
q
0

(

1
β2

1

− 1
β2

3

)

−R1

(

µ1

β1

A1 − µ3

β3

C1

)

0 − 2iµ3

πβ2

3
D

− 2iǫ3
πβ2

3
D

0 R2

(

ǫ2
β2

A2 +
ǫ3
β3

C2

)

imk
q
0

(

1
β2

2

− 1
β2

3

)

0 − 2iµ3

πβ2

3
D

− imk
q
0

(

1
β2

2

− 1
β2

3

)

R2

(

µ2

β2

A2 +
µ3

β3

C2

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(3.32)

where the additional substitutions are defined as
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A1 = J ′

m(β1R1)/Jm(β1R1)

A2 = H ′

m(β2R2)/Hm(β2R2)

C1 = Z1/D

C2 = Z2/D

(3.33)

We are now interested to check how Eq. (3.32) can reproduce some well established results.

For this purpose, we consider the limit R1 ∼ R2 ∼ R → ∞ but take R2 −R1 = d as a finite

quantity and fix m = 0. Naturally then, we need to make use of the asymptotic limits of

the Bessel functions Jν(z) and Hν(z). As such, we first simplify the substitutions involved

to obtain: A1 = −i, A2 = i, D = −(2i/πα3R) sinh(α3d), Z1 = Z2 = (2/πα3R) cosh(α3d),

and C1 = C2 = i coth(α3d); here β3 = iα3 just as before. As a consequence, we simplify the

general dispersion relation in Eq. (3.32) to write

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R
(

ǫ1
α1

+ ǫ3
α3

C
)

imk
q
0

(

1
α2

1

− 1
α2

3

)

−R ǫ3
α3

S 0

− imk
q
0

(

1
α2

1

− 1
α2

3

)

R
(

µ1

α1

+ µ3

α3

C
)

0 −Rµ3

α3

S

−R ǫ3
α3

S 0 R
(

ǫ2
α2

+ ǫ3
α3

C
)

− imk
q
0

(

1
α2

2

− 1
α2

3

)

0 −Rµ3

α3

S imk
q
0

(

1
α2

2

− 1
α2

3

)

R
(

µ2

α2

+ µ3

α3

C
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (3.34)

where C = coth θ and S−1 = sinh θ; with θ = α3d. Now let us carefully impose the limit

R → ∞. Then it is a simple matter to prove that Eq. (3.34) reduces to the form

[

ǫ1ǫ2
α1α2

+

(

ǫ1
α1

+
ǫ2
α2

)

ǫ3
α3

coth θ +

(

ǫ3
α3

)2
] [

µ1µ2

α1α2
+

(

µ1

α1
+

µ2

α2

)

µ3

α3
coth θ +

(

µ3

α3

)2
]

= 0

(3.35)

Either the first or the second factor is zero. It is not quite difficult to prove that the first

(second) factor equated to zero yields the TM (TE) modes propagating in the planar film

geometry. Again, this form of the dispersion relation for the TE modes (as represented by

the second factor equated to zero) is not, to the best of our knowledge, yet known in the

literature. We focus on the first factor to study the 2D plasmons in a quantum well in the

limit d → 0.
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1. Quantum Well in the Electric Quantum Limit

The trigonometrical factor coth θ in the limit of θ → 0 can be expanded in the following

approximate form:

coth θ ≃ 1

θ
+

θ

3
− θ3

45
+

2θ5

945
− · · · · · (3.36)

where θ = α3d. We consider the situation where ǫ1 and ǫ2 refer to the dielectric media and ǫ3

to the metamaterial. A simple mathematical analysis (in the limit d → 0 and hence ǫ3 → ∞)

also leads us to deduce that α2
3d

2 → 0 and ǫ3d ≃ 4πχ, with χ = −nse
2/m∗ω2 referring to

the zero-temperature polarizability function in the long wavelength limit, remains a finite

quantity. As such, retaining only the first term in the approximation and equating the first

factor, in Eq. (3.35), to zero yields

4πχ+
ǫ1
α1

+
ǫ2
α2

= 0 (3.37)

This is now a well-known result that represents the plasma modes of a single 2DEG layer

sandwiched between two dielectrics (see, for example, Ref. [1]). Furthermore, considering

the bounding media to be identical (i.e., ǫ1 = ǫ2 = ǫ and hence α1 = α2 = α) and imposing

the non-retardation limit (i.e., q
0
= 0 and hence α = k) leaves us with

ω2 =
(

2πnse
2/m∗ǫ

)

k (3.38)

where ns stands for the areal carrier density. This is a standard result for the intrasubband

plasmon dispersion in a quantum well, with the plasma frequency ωp ∝
√
k.

F. Local and Total Density of States

The density of states (DOS) is of fundamental importance to the understanding of many

physical phenomena in condensed matter physics. Interpretation of quite a number of ex-

perimental excitation spectra in a wide variety of systems subjected to different physical

conditions requires a detailed knowledge of the DOS. The classic textbooks and mono-

graphs reveal that the standard algorithm of determining the density of states is founded on

the Green-function approach. Our purpose here is to calculate the local and total DOS in

order to substantiate the computed plasmonic waves in the cylindrical geometries at hand.

Unless some numeric hurdle comes in the way, this is logical to expect that the peaks in the
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DOS should coincide with the zeros of the inverse response function, which determine the

plasmonic modes for a given propagation vector, of a system.

1. Local Density of States

The formal expression for the local density of states (LDOS) in the framework of interface

response theory [53] is generally quite fussy and as the name suggests requires some subtle

details of the local physical conditions. These are, for example, the basic definitions of the

bulk Green functions, the spatial positions around the interface, the nature of the associated

EM fields involved, ... etc. In the present context, the simplest definition of the LDOS at

the expense of a few negligible concerns but that which still contains the important physics

involved is given by

N
L
(ω) = −2

ω

π
Im {trace [g̃(M,M)]} (3.39)

where g̃ refers to the response function whose inverse was determined in the preceding

subsections for diverse situations. The important thing is to understand which system this

response function g̃ refers to in different physical situations. We consider two such cases of

our interest: a single-interface system (see Sec. III.D) and a double-interface system (see

Sec. III.E). For a single-interface system, g̃ is simply the inverse of the sum of g̃−1
1 and g̃−1

2

(see Sec. III.D). In the case of a two-interface system, we need to study the LDOS at the

two interfaces R1 and R2 independently. For the interface R1 (R2) the g̃ in Eq. (3.39) is

the 2× 2 submatrix in the first (fourth) quadrant of the inverse of the sum of three inverse

response functions (see Sec. III.E).

2. Total Density of States

For the z-components of the electromagnetic fields considered here, the analytical expres-

sion for the variation of the total density of states (TDOS) within the interface response

theory [53] is given by

N
T
(ω) = − 1

π

d

dω

(

Arg det

[

g̃
i
(M,M)

g̃
f
(M,M)

])

(3.40)

By the variation of TDOS we mean the difference between the TDOS of the final (physical)

system and an initial system. Here g̃
i
(g̃

f
) stands for the response function of the initial
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(final) system in question. For the single-interface system, g̃i is a product of g̃1 and g̃2;

and g̃f is the inverse of the sum of g̃−1
1 and g̃−1

2 . In the case of a two-interface system,

g̃i = g̃1f · g̃2f , where g̃1f is the inverse of the sum of a 4× 4 matrix comprised of the g̃−1
1 and

g̃−2
2 , and g̃2f is the inverse of g̃−1

3 that corresponds to perturbation 3 for the shell alone; and

g̃f is the inverse of the sum of g̃−1
1 , g̃−1

2 , and g̃−1
3 . It should be pointed out that both local

and total DOS are computed for every value of integer m.

It is also worth mentioning that in the course of studying the total DOS we have the finite

(or bounded) parts of the system automatically incorporated. Therefore, we are bound to

find some discrete modes in the TDOS, which usually appear as the negative peaks in the

DOS−ω space and do not bear any physical significance if one is only interested in studying

the confined or extended plasmon-polaritons. Moreover, if we are interested to understand

all the existing peaks in the TDOS, we need to explore, for example, each of the three

perturbations involved individually. We have found that while the negative peaks in the

individual perturbations survive in the TDOS, all the positive peaks are seen to disappear.

This remains unfailingly true for all the cases we have investigated both for single- and

double-interface systems. In a conventional system (made up of RHM), all the peaks in the

LDOS are always positive. But in the present case where we have a system fabricated by

interlacing the LHM with the RHM, the situation may take a different turn. More specific

comments will be made later (see Sec. IV). It seems worthwhile to define the LHM as a

special class of metamaterials where Re[ǫ]< 0 as well as Re[µ]< 0.

G. Simple diagnoses of interface modes

Here we make some simple analytical diagnoses of the confined modes propagating on an

interface between a metamaterial and a dielectric. We intend to do so in order, for example,

to understand the asymptotic limits, the slopes, the valid regions of their existence, and

the physical conditions that allow or disallow the simultaneous existence of the TM and TE

confined modes. In doing so we will distinguish between the non-dispersive and dispersive

metamaterial components of the resultant structure.
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1. Non-dispersive metamaterial components

On the simultaneous existence of TM and TE modes

By non-dispersive metamaterial we mean the LHM where ǫ and µ are both (negative)

constants. Here we wish to address the following question: Can the TM and TE confined

modes exist simultaneously? In order to answer this question, we recall Eq. (3.27) which in

the limit of R → ∞ splits into TM and TE modes. Let us first write explicitly the result

for the TM modes:
ǫ1
β1

+
ǫ2
β2

= 0 (3.41)

This equation can be easily cast in the following form.

k2 = q2
0

µ1

ǫ1
− µ2

ǫ2
1
ǫ2
1

− 1
ǫ2
2

(3.42)

Remember for the true interface modes to exist [see, for instance, Ref. 1] (the propagation

vector) k has to be a real and positive quantity. Let us now analyze the case for the existence

of TM modes. That means that both numerator and denominator have to have the same

sign. This implies that either

µ1

ǫ1
>

µ2

ǫ2
and

1

ǫ21
>

1

ǫ22
(3.43)

or
µ1

ǫ1
<

µ2

ǫ2
and

1

ǫ21
<

1

ǫ22
(3.44)

Similarly, let us write the result for the TE modes:

µ1

β1
+

µ2

β2
= 0 (3.45)

This equation can be written in the form

k2 = q2
0

ǫ1
µ1

− ǫ2
µ2

1
µ2

1

− 1
µ2

2

(3.46)

Again, for the true modes to exist the numerator and denominator have to have the same

sign. This means that either

ǫ1
µ1

>
ǫ2
µ2

and
1

µ2
1

>
1

µ2
2

(3.47)
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or
ǫ1
µ1

<
ǫ2
µ2

and
1

µ2
1

<
1

µ2
2

(3.48)

It is a simple matter to verify that each of Eqs. (3.43) and (3.44) remains always

inconsistent with each of Eqs. (3.47) and (3.48). That is to say that they cannot be

satisfied simultaneously. This leads us to infer that the TM and TE confined modes cannot

exist simultaneously in the case that a non-dispersive metamaterial forms a component of

a composite structure. While talking of the non-dispersive metamaterials sounds to be a

fiction, it’s a fact that many authors have explored some interesting physical aspects by

treating them as nondispersive media describable by the (negative) constant ǫ and µ [see,

e.g., refs.5 − 12].

Understanding the slopes

There are different ways to make sure that the numerical results one has obtained are

in reasonably good correspondence with the analytical results. One of them is to examine,

for example, the slopes of the coupled and/or decoupled modes. As we now know, even the

coupled modes (with m 6= 0) in the asymptotic limit (k → ∞ and/or R → ∞) become

asymptotic to the decoupled modes. Then it becomes interesting to sometimes examine

their slopes. In this situation, one can rewrite Eqs. (3.42) and (3.46) as

ω2

c2k2
=

1
ǫ2
1

− 1
ǫ2
2

µ1

ǫ1
− µ2

ǫ2

(3.49)

for the TM modes and
ω2

c2k2
=

1
µ2

1

− 1
µ2

2

ǫ1
µ1

− ǫ2
µ2

(3.50)

for the TE modes. Equations (3.49) and (3.50) define the slopes of the TM and TE modes

in the asymptotic limit. These equations prove to be cautionary particularly in the situation

where one may choose some special set of parameters such as ǫ2 = ± ǫ1 and/or µ2 = ±µ1.

In this case one may be surprised to notice that not only these equations dictate the slopes

to be zero, but also that one may miss the confined modes altogether.
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2. Dispersive metamaterial components

Asymptotic limits

By dispersive metamaterial we mean the LHM where both ǫ and µ are the functions of

frequency. We choose them such as follows:

ǫ(ω) = 1− ω2
p

ω2
(3.51)

where ωp is the plasma frequency (usually in the GHz range) and

µ(ω) = 1− Fω2

ω2 − ω2
0

(3.52)

where F is a constant factor and ω0 is the resonance frequency. The simplest check on the

numerical results is to examine the asymptotic limits (i.e., k → ∞) the confined modes are

approaching to. In the case that medium 1 is a nondispersive RHM and medium 2 is a

dispersive LHM, Eq. (3.41) yields

W =
ω

ωp

=
1√

ǫ1 + 1
(3.53)

and Eq. (45) yields

W =
ω

ωp
=

W0
√

1− F
µ1+1

(3.54)

where W0 = ω0/ωp. For a specific set of parameters, Eqs. (3.53) and (3.54), respectively,

determine the asymptotic limits of the TM and TE modes.

Valid regions for the confined modes

It is a simple matter to analyze that ǫ(ω) < 0 forW < 1 and µ(ω) < 0 for W < Wc, where

Wc = W0/
√
1− F . Region W < W0: ǫ(ω) < 0 and µ(ω) > 0 ⇒ βLHM is pure imaginary

⇒ αLHM = −iβLHM is pure real and positive and hence a valid region for confined modes.

Region W0 ≤ W ≤ Wc: ǫ(ω) < 0 and µ(ω) < 0 ⇒ βLHM is real ⇒ αLHM is pure imaginary

and hence no confined modes are allowed. Region WC ≤ W ≤ 1: ǫ(ω) < 0 and µ(ω) > 0 ⇒
βLHM is pure imaginary ⇒ αLHM = −iβLHM is real and positive and hence a valid region

for confined modes.
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It is worth mentioning that the resonance frequency ω0 generally allows a large number

of unphysical solutions piled up in the immediate vicinity of ω0 in the ω − k space, which

usually need to be eliminated in order to avoid any confusion. Something similar is seen to

happen in the computation of the density of states.

IV. ILLUSTRATIVE EXAMPLES

As we have seen in the preceding section, our final results for the dispersion character-

istics are Eqs. (3.26) and (3.32), respectively, for the single cylindrical cable embedded in

some different material background and the coaxial cylindrical system made up of a finite

shell bounded by the closed (innermost) cable and the semi-infinite medium. Note that

both of these equations are, in general, the complex transcendental functions. Therefore, in

principle, we need to search the zeros of such complex functions. We had to strike a com-

promise among a few choices. We decided to ask the machine to produce those zeros where

the imaginary (real) part of the function changes the sign, irrespective of whether or not

the real (imaginary) part is zero in the radiative (nonradiative) region. We believe this has

resulted into a reliable scheme for studying the dispersion characteristics of plasmonic waves

in the present systems. This is because all the plasmonic waves (confined or extended) are

found to have excellent correspondence with the peaks in the local and/or total density of

states. We purposely consider only the cases with dispersive metamaterials interlaced with

conventional dielectrics (usually vacuum with ǫ = 1 = µ). The detailed studies of nondis-

persive metamaterials is deferred to a future publication. So the only parameters involved in

the treatment are F and ω0 and we choose them such that F = 0.56, ωp/2π = 10 GHz and

ω0/2π = 4 GHz; the latter yields ω0/ωp = 0.4 [see Ref. 7]. We will later assign an additional

numeral as a suffix to the background dielectric constants corresponding to the region in the

geometry concerned. Other parameters such as the ratio of the radii of the cylinders R2/R1,

the normalized plasma frequency ωpR/c, and the azimuthal index of the Bessel functions m

will be given at the appropriate places during the discussion. We will present our results in

terms of the dimensionless propagation vector ζ = ck/ωp and frequency ξ = ω/ωp, where

ωp stands for the screened plasma frequency. Both local and total DOS will be shown in

arbitrary units throughout.
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A. Single-interface systems
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FIG. 2: (Color online) Plasmon dispersion for a dielectric (vacuum) cable embedded in a metama-

terial background for different values of index m = 0, 1, 3, 5. The dimensionless plasma frequency

used in the computation is specified by ωpR1/c =
√
3.5. Dashed line and curve marked as LL1

and LL2 refer, respectively, to the light lines in the vacuum and the metamaterial. The horizontal

dotted line stands for the characteristic resonance frequency (ω0) in he metamaterial. The shaded

area represents the region within which both ǫ(ω) and µ(ω) are negative and prohibits the existence

of the confined modes.

Figure 2 illustrates the plasmonic wave dispersion for the dielectric (vacuum) cable em-

bedded in a metamaterial background form = 0, 1, 3, and 5. The plots are rendered in terms

of the dimensionless frequency ξ and the dimensionless propagation vector ζ . The important

parameter involved is the dimensionless plasma frequency specified by ωpR1/c =
√
3.5. The

dashed line and the curve marked as LL1 and LL2 refer, respectively, to the light lines in

the vacuum and the metamaterial. The horizontal dotted line stands for the characteristic

resonance frequency (ω0 = 0.4ωp) in the metamaterial. The shaded area represents the

region where ǫ(ω) < 0 and µ(ω) < 0 and disallows the existence of the confined modes (see
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Sec. III.G). It is important to notice that the confined modes can be distinguished as TM

or TE only when the Bessel function index m = 0. However, we designate one group of

modes as TM and another as TE, even for m 6= 0, simply on the basis of the asymptotic

limits attained by them. Notice that both asymptotic limits are correctly dictated by Eqs.

(3.53) and (3.54). What is noteworthy here is that the system supports the simultaneous

existence of TM and TE modes. It is also interesting to notice that the resonance frequency

ω0 is not seen to play any of its characteristic role in the spectrum (see in what follows).
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FIG. 3: Local density of states for the system discussed in Fig. 2 and for m = 0 and ζ = 1.0. The

rest of the parameters used are the same as in Fig. 2. The arrows in the panel indicate the peaks

at ξ = 0.5119 and ξ = 0.7718.

Figure 3 shows the local density of states for the system discussed in Fig. 2 for m = 0

and ζ = 1.0. This value of the propagation vector lies in the non-radiative region which

allows the pure confined modes. The rest of the parameters are the same as in Fig. 2. Both

sharp peaks occurring at ξ = 0.5119 and ξ = 0.7718 reproduce exactly the respective TE

and TM modes existing at ζ = 1.0 in Fig. 2. The short peak and the related noisy part in

the immediate vicinity of the resonance frequency ω0 has no physical significance and will
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show its signature almost everywhere in the computation of local as well as total density of

states. It has been found that similar calculation of LDOS at any value of the propagation

vector correctly reproduces both modes in spectrum discussed in Fig. 2.
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FIG. 4: Total density of states for the system discussed in Fig. 2 and for m = 0 and ζ = 1.0. The

rest of the parameters used are the same as in Fig. 2. Both negative peaks are characteristic of the

resonance frequency ω0 and other characteristic frequency ωc in the system and bear no physical

significance.

Figure 4 depicts the total density of states for the dielectric (vacuum) cable embedded

in a dispersive metamaterial background discussed in Fig. 2 for m = 0 and ζ = 1.0. For

m0, the otherwise coupled modes are decoupled as TM and TE. The ζ = 1.0 indicates the

positions of the TE and TM modes lying at ξ = 0.5119 and ξ = 0.7718 (see Fig. 2). Both

of these positions of the respective modes are exactly reproduced by the peaks marked by

arrows in the total density of states here. A kind of resonant behavior at ξ ≃ 0.4 and the

negative peak at ξ ≃ 0.6 are characteristic of the critical frequencies ω0 and ωc involved in

the problem and we do not consider them of any importance and/or physical significance.

Similar behavior at these frequencies will be seen in the later examples as well.
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FIG. 5: (Color online) Plasmon dispersion for a metamaterial cable in a dielectric (vacuum) back-

ground for different values of index m = 0, 1, 3, 5. The dimensionless plasma frequency used in

the computation is specified by ωpR1/c =
√
3.5. Dashed line and curve marked as LL1 and LL2

refer, respectively, to the light lines in the vacuum and the metamaterial. The horizontal dotted

line stands for the characteristic resonance frequency (ω0) in the metamaterial. The shaded area

represents the region within which both ǫ(ω) and µ(ω) are negative and disallows the existence of

the confined modes.

Figure 5 illustrates the plasmonic wave dispersion for a metamaterial cable in a dielectric

(vacuum) background for different values of index m = 0, 1, 3, 5. The results are plotted

in terms of the dimensionless frequency ξ and the dimensionless propagation vector ζ . The

dimensionless plasma frequency used in the computation is specified by ωpR1/c =
√
3.5.

The dashed line and curve marked as LL1 and LL2 refer, respectively, to the light lines in

the vacuum and the metamaterial. The horizontal dotted line stands for the characteristic

resonance frequency (ω0) in the metamaterial. The shaded area represents the region where

both ǫ(ω) and µ(ω) are negative and disallows the existence of confined modes. We designate

the two groups of modes as TM and TE with the same notion as discussed in Fig. 2. One
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can see it clearly that the resonance frequency ω0 does play a crucial role in this case. For

instance, the big hollow circle encloses the m = 0 and the m = 1 TM modes split due to

the resonance frequency in the problem. We call this splitting occurring between respective

TM modes since we can see it happening just by plotting the m = 0 modes. If it were

not for the resonance frequency the split m = 0 mode would start from zero (just as here)

and propagate smoothly to approach the asymptotic limit without any splitting and m = 1

mode would emerge from a nonzero frequency somewhere in the radiative region. This is to

stress that such resonance splitting takes place only for the TM modes and not for the TE

modes. The latter always start from above the resonance frequency. It is noticeable that

the split modes below ω0 later become asymptotic to ω0. The TM modes’ splitting behavior

will become more transparent in the later examples on double-interface systems (see, for

example, Figs. 8 and 11).
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FIG. 6: Local density of states for the system discussed in Fig. 5 and for m = 0 and ζ = 1.0. The

arrows in the panel indicate the peaks at ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577. The rest of the

parameters used are the same as in Fig. 5.

Figure 6 shows the local density of states for the system discussed in Fig. 5 for m = 0 and
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ζ = 1.0. This value of the propagation vector lies in the non-radiative region which allows

the pure confined modes. The rest of the parameters are the same as in Fig. 5. All the three

sharp peaks lying at ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577 reproduce exactly the respective

TE and TM modes existing at ζ = 1.0 in Fig. 5. The short peak and the related noise in the

immediate vicinity of the resonance frequency ω0 has no physical significance in the problem.

It has been found that similar calculation of LDOS at any value of the propagation vector

and for any given m correctly reproduces all the modes in spectrum discussed in Fig. 5. It

should be pointed out that while the LDOS (and/or TDOS, for that matter) can and do

reproduce lowest (TM) split mode at the higher propagation vector where this mode has

already become asymptotic to and merged with ω0, sometimes it becomes extremely difficult

to discern such a peak inside the band of noise existing in the immediate vicinity of ω0.
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FIG. 7: Total density of states for the system discussed in Fig. 5 and for m = 0 and ζ = 1.0. The

arrows in the panel indicate the peaks at ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577. The rest of the

parameters used are the same as in Fig. 5.

Figure 7 depicts the total density of states for the metamaterial cable embedded in a

dispersive dielectric (vacuum) background discussed in Fig. 5 for m = 0 and ζ = 1.0. For
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m0, the otherwise coupled modes are decoupled as TM and TE. The ζ = 1.0 specifies the

positions of the decoupled modes lying at ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577. All

of these positions of the respective modes are correctly reproduced by the peaks marked

by the arrows in the total density of states here. The noisy band of states at ω0 and the

negative peak at ωc are a consequence of these critical frequencies involved in the problem

but they carry no interesting information and bear no physical significance. Scanning the

whole range of propagation vector reveals that the TDOS reproduces all the modes in Fig.

5 very accurately. The only exception to this is the radiative modes (towards the left of the

light line) in Fig. 5, which do not show a good correspondence with the resonance peaks in

the (local or total) DOS. This is not surprising, however, given the distinct ways of searching

the zeros of the complex transcendental function in the radiative and non-radiative regions.

We did not intend to pay much attention to the small radiative region simply because, as

we all know, this region is of almost no practical interest.

B. Double-interface systems

Figure 8 illustrates the plasmonic wave dispersion for a metamaterial shell sandwiched

between two identical dielectrics (vacuum) for different values of index m = 0, 1, 2, and

3. The plots are rendered in terms of the dimensionless frequency ξ and the propagation

vector ζ . The other important parameters used in the computation are the normalized

plasma frequency ωpR1/c =
√
3.5 and the ratio R2/R1 = 1.2. The dashed line and the curve

marked as LL1 and LL2 refer, respectively, to the light lines in the bounding media (vacuum)

and the metamaterial shell. The horizontal dotted line refers to the characteristic resonance

frequency (ω0) in the problem. The shaded area refers to the region where ǫ(ω) < 0 and

µ(ω) < 0 and prohibits the existence of the truly confined modes. Since there are two

interfaces involved in the resultant structure we have a pair of modes for each of the TM

and TE modes in the system. The lower and upper group of modes together attain the

same asymptotic limit characteristic of the TM or the TE modes at large wave vectors.

The resonance frequency allows the splitting of the m = 0, m = 1, and m = 2 TM modes

at ω0. The full circle encloses and shows such a resonance splitting occurring between the

respective modes in a very clear way at ζ ≃ 1.0. The scheme of assigning the modes a TM

or a TE character is the same as discussed before (see discussion of Fig. 2). Eqs. (3.53)
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FIG. 8: (Color online) Plasmon dispersion for a metamaterial shell sandwiched between two iden-

tical dielectrics (vacuum) for different values of index m = 0, 1, 2, 3. The dimensionless plasma

frequency used here is specified by ωpR1/c =
√
3.5 and the radii ratio R2/R1 = 1.2. Dashed line

and curve marked as LL1 and LL2 refer, respectively, to the light lines in the vacuum and the

metamaterial. The horizontal dotted line stands for the characteristic resonance frequency (ω0)

in the metamaterial. The shaded area represents the region within which both ǫ(ω) and µ(ω) are

negative and forbids the existence of the confined modes. The parameters used in the computation

are as listed in the picture.

and (3.54) are seen to dictate the correct asymptotic limits attained both by TM and TE

modes. Some abruptness (sharp or blunt) observed by a given mode at the light line is a

general tendency usually seen when a mode crosses the junction between the two media.

Figure 9 shows the local density of states for the two-interface system discussed in Fig.

8 for m = 0 and ζ = 1.0 for the interface 1 (2) in the lower (upper) panel. This value of

ζ specifies five propagating modes in total in Fig. 8: the lowest split (TM) mode below

ω0, lower (split) TM mode and lower TE mode within the shaded region, upper TE mode,

and the uppermost TM mode lying, respectively, at ξ = 0.3774, ξ = 0.4109, ξ = 0.4202,
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FIG. 9: Local density of states at the interface R1 (R2) in the lower (upper) panel for m = 0 and

ζ = 1.0 for the system discussed in Fig. 8. We call attention to the DOS resonance peaks, indicated

by the arrows, corresponding to the five modes in total at ζ = 1.0 in Fig. 8. The interface 1 (2)

refers to the one specified by R1 (R2). The rest of the parameters used are the same as in Fig. 8.

ξ = 0.5588, and ξ = 0.8951. In the lower panel, the five resonance peaks (indicated by

arrows) observed in the local density of states stand exactly at these frequencies. This

implies reasonably a very good correspondence between the (dispersion) spectrum and the

LDOS at interface R1. The (unmarked) second lowest peak (counting from the lowest

frequency) stands at the resonance frequency ω0 and is not considered to be a bonafide peak

in the LDOS. Coming to the upper panel, we again observe five well-defined resonance peaks

lying exactly at the aforementioned frequencies. That means that both interfaces share all

the five resonances in the LDOS, albeit with a difference of magnitude. This also implies

that the two interfaces pose different preferences, and that makes sense here because of the

asymmetric nature of the configuration. In other words, the two interfaces seem to be more

sensitive to the geometry and less to the materials in the supporting media. That is to say

that the situation is altogether different from a planar geometry with, for example, a thin
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metallic or semiconducting film symmetrically bounded by two identical dielectrics.
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FIG. 10: Total density of states for m = 0 and ζ = 1.0 for the system discussed in Fig. 8. We call

attention to the DOS resonance peaks, indicated by the arrows, corresponding to the five modes

in total at ζ = 1.0 in Fig. 8. The parameters used are the same as in Fig. 8.

Figure 10 depicts the total density of states for the two-interface system discussed in Fig.

8 for m = 0 and ζ = 1.0. These values of m and ζ define five propagating modes in total in

Fig. 8, covering both TM and TE modes, and lying at ξ = 0.3774, ξ = 0.4109, ξ = 0.4202,

ξ = 0.5588, and ξ = 0.8951. The five resonance peaks (indicated by arrows) observed in

the total density of states are seen to substantiate these frequencies very accurately. We

have seen that the similar computation of TDOS at any other value of ζ reproduces all

the corresponding modes in the spectrum very correctly. The only exception to this is the

radiative region (toward the left of the light line) where the correspondence between the

DOS (local or total) and the spectrum is no so good. This is again understandable in the

view of the facts stated above (see the discussion of Fig. 7). A pile up of the states at and

in the vicinity of ω0 and a negative peak at ωc are clearly a consequence of the presence of

such critical (resonance) frequencies in the problem and we do not consider them to be of
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any physical significance.
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FIG. 11: (Color online) Plasmon dispersion for a dielectric (vacuum) shell sandwiched between

two identical metamaterials for different values of index m = 0, 1, 2, 3. The dimensionless plasma

frequency used here is specified by ωpR1/c =
√
3.5 and the radii ratio R2/R1 = 1.2. Dashed line

and curve marked as LL1 and LL2 refer, respectively, to the light lines in the vacuum and the

metamaterial. The horizontal dotted line stands for the characteristic resonance frequency (ω0)

in the metamaterial. The shaded area represents the region within which both ǫ(ω) and µ(ω)

are negative and proscribes the existence of the confined modes. The parameters used in the

computation are as listed in the picture.

Figure 11 illustrates the plasmonic wave dispersion for a dielectric (vacuum) shell sand-

wiched between two identical metamaterials for different values of index m = 0, 1, 2, and

3. The plots are rendered in terms of the dimensionless frequency ξ and the propagation

vector ζ . The other important parameters used in the problem are the normalized plasma

frequency ωpR1/c =
√
3.5 and the ratio of the radii R2/R1 = 1.2. The dashed line and the

curve marked as LL1 and LL2 stand, respectively, for the light lines in the dielectric (vac-

uum) and the bounding metamaterials. The horizontal dotted line refers to the characteristic
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resonance frequency (ω0) in the problem. The shaded area refers to the region within which

ǫ(ω) < 0 and µ(ω) < 0 and proscribes the existence of the truly confined modes. Again,

since there are two interfaces in the system we obtain two pairs of modes: one for the TM

and the other for the TE modes. Their asymptotic limits are governed by Eqs. (3.53) and

(3.54). The presence of the resonance frequency ω0 gives rise to the resonance splitting of all

the lower group of the pair of TM modes for different values of m. Although the lower group

of the pair of TE modes cross in between the split TM modes (inside the shaded region),

the resonance splitting is clearly pronounced between the corresponding TM modes. This is

shown by the big hollow circle encompassing all the respective split TM modes in the region.

Again, the scheme of assigning the modes a TM or a TE character is the same as discussed

before. Notice that the abruptness observed by the modes while crossing the light line is

relatively smoother than that seen in the other cases (cf. Figs. 2, 5, and 8). It is interesting

to remark that all the illustrative examples on the plasmonic wave spectrum presented here

reaffirm that the dispersive metamaterial components in the composite enable the structure

to support the simultaneous existence of the TM and the TE modes. This effect is solely

attributed to the negative-index metamaterials and is otherwise impossible.

Figure 12 shows the local density of states for the two-interface system discussed in Fig.

11 for m = 0 and ζ = 1.5 for the interface 1 (2) in the lower (upper) panel. This value

of ζ characterizes five propagating modes in total in Fig. 11: the lowest split (TM) mode

below ω0, lower TE mode, lower (split) TM mode, upper TE mode, and the uppermost

TM mode lying, respectively, at ξ = 0.3673, ξ = 0.4396, ξ = 0.4665, ξ = 0.5373, and

ξ = 0.8825. In the lower panel, the five resonance peaks (indicated by arrows) observed

in the local density of states stand exactly at these frequencies. This implies considerably

a very good correspondence between the (dispersion) spectrum and the LDOS at interface

R1. The small (unmarked) noisy peaks occurring in the vicinity of the resonance frequency

ω0 are not considered to be a bonafide peaks in the LDOS. In the upper panel, we plot the

LDOS for the interface 2 for the same parameters as considered for interface 1 in the lower

panel. We observe five well-defined resonance peaks lying exactly at the aforementioned

frequencies. That means that both interfaces share all the five resonances in the LDOS, of

course with a difference of magnitude. As to the second small resonance peak in this panel,

we think that interface 2 only slightly feels this resonance. Other resonance peaks in this

panel are almost comparable to those in the lower panel. The rest of the remarks made with
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FIG. 12: Local density of states at the interface R1 (R2) in the lower (upper) panel for m = 0
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indicated by the arrows, corresponding to the five modes in total at ζ = 1.5 in Fig. 11. The

interface 1 (2) refers to the one specified by R1 (R2). The rest of the parameters used are the same

as in Fig. 11.

respect to Fig. 9 are also valid here.

Figure 13 depicts the total density of states for the same two-interface system as inves-

tigated in Figs. 11 and 12 for m = 0 and ζ = 1.5. Such values of m and ζ characterize

five propagating modes in total in Fig. 11, covering both TM and TE modes, and lying at

ξ = 0.3673, ξ = 0.4396, ξ = 0.4665, ξ = 0.5373, and ξ = 0.8825. We observe that there

are five well-defined resonance peaks in the total density of states standing exactly at the

aforementioned frequencies. This leads us to infer that there is a very good correspondence

between the (dispersion) spectrum and the TDOS. It has been observed that scanning other

values of the propagation vector ζ for computing the total density of states yields same de-

gree of correspondence with the spectrum. What is more interesting in this case is the fact

that the computation of TDOS (as well as LDOS) provides a much better correspondence
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FIG. 13: Total density of states for m = 0 and ζ = 1.5 for the system discussed in Fig. 11. We call

attention to the DOS resonance peaks, indicated by the arrows, corresponding to the five modes in

total at ζ = 1.5 in Fig. 11. The parameters used are the same as in Fig. 11. The DOS are shown

in arbitrary units throughout.

with the modes in the spectrum even in the radiative region (toward the left of the light

line) than in the previous cases. This is attributed to a relatively smoother propagation

of the modes in the radiative region in the present case of a dielectric shell bounded by

(identical) metamaterials. Just as before, we do not give much importance to the pile up of

the states near the resonance frequency ω0 and the negative peak at ωc. While we consider

their occurrence as natural, they do not bear any physical significance to the problem.

V. CONCLUDING REMARKS

In summary, we have investigated the plasmonic wave dispersion and the density of states

in the coaxial cables in the absence of an applied magnetic field. We derived the general

dispersion relations using a Green-function (or response function) theory in the framework

of IRT, which has now found widespread use to study numerous excitations in various

40



composite systems. In doing so, we not only clarify some basic notions in the use of the

cylindrical geometries but also diagnose our general analytical results under special limits to

reproduce some well-known results on the 2D and 1D plasmon dispersion in quantum wells

and quantum wires. We have also successfully attempted to substantiate our results on

plasmonic wave dispersion through the computation of the local and total density of states.

While we considered the effect of retardation, the absorption was neglected throughout,

except for a small imaginary part needed to be added to the frequency for the purpose of

giving a width to the peaks in the DOS. We believe that the present methodology for coaxial

cables will also prove to be a powerful theoretical framework for studying, for example, the

intrasubband plasmons in the multi-walled carbon nanotubes.

An experimental observation of the radiative as well as non-radiative plasmonic waves in

such coaxial cables would be of great interest. Such experiments could possibly involve the

well known attenuated total reflection, scattering of high energy electrons, or even Raman

spectroscopy. The electron energy loss spectroscopy (EELS) is already becoming known as a

powerful technique for studying the electronic structure, dielectric properties, and plasmon

excitations in carbon nanotubes and carbon onions, for example. Our preference for plotting

the illustrative numerical results in terms of the dimensionless frequency and propagation

vector leaves free an option of choosing the plasma frequency lower or higher, just as the

radii of the cables.

Future dimensions worth adding to the problem remain open in this context. The issues,

which need to be considered and which could give better insight into the problem, include the

role of absorption, the effects of the spatial dispersion, the coupling to the optical phonons,

effect of an applied electric field, and most importantly the effect of an applied magnetic

field in order to study, for example, the edge magnetoplasmons in the concentric cylindrical

cables, to name a few. Choosing the unidentical dielectrics and or unidentical metamaterials

will only alter the asymptotic limits in the short wavelength limit.

Currently, we have been generalizing this theory to be applicable to the multicoaxial

cables (where there should be no limit on the number of interfaces) and investigating the

effects of an applied magnetic field in the Faraday geometry on the plasmonic wave dispersion

in such concentric cable structures and the results will be reported shortly.
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