
11. NUMERICAL TECHNIQUES 1

2D electrostatic problems with rounded corners
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Abstract—The second order terms of a multiscale expansion
for dealing with rounded corners in 2D electrostatic problems are
studied. The main ideas and the sequence of problems to consider
are recalled and finite element simulations are presented to assess
the accuracy of the method.

I. INTRODUCTION

High-voltage applications require a precise knowledge of

the electric field in the area where the geometry of the structure

is sharp. In a real device, the geometry is not “truly sharp” but

present rounded edges or corners. The accurate description of

this rounded shape can be cumbersome in a numerical model

and the description of the rounded shape can be only statistical

due to the tolerance in the manufacturing. A theoretical work

propose methods that could be answers to the “rounded shape”

issue [2]. We put this strategy numerically in practice on a 2D

electrostatic problem in [3]. More precisely, we considered vǫ
the solution on Ωǫ (see Fig. 1(a)) of the following problem:











△vǫ = 0, on Ωǫ,

vǫ = 0, on Γ0
ǫ , and vǫ = 1, on Γ1,

∂nvǫ = 0, on ΓN ,

(1)

where ǫ characterizes the “size” of the rounded corner and

∂n denotes n · ∇, n being the unitary outward normal on the

boundary of the domain. The expansion of vǫ studied in [3]

came from the following remarks:

• the exact solutions close to the corner, computed for

several values of the curvature radius ǫ, are quasi-similar,

up to a “scaling factor” (related to ǫ). It is also noticed

that the “shape” of the solutions close to the corner (their

“shape” but not their amplitude) weakly depend on other

elements of the studied structure, such as the distance to

the boundaries: if the corner geometry is self-similar1, it

is also said that the dominant term of the solutions close

to the corner are self-similar.

• the exact solutions far from the corner are weakly influ-

enced by the change of the curvature radius ǫ, and they

converge to the solution on the domain with the sharp

corner when ǫ goes to zero.

1Roughly, it means that a single parameter, here ǫ, and a basic geometry are
sufficient to describe the corners for any value of ǫ. For a precise definition,
refer to [2].

Nonetheless, in [3], only the first order of the approximation

is considered but it has been shown that higher orders are

required when one considers a non-symmetric structure. The

second order terms of the same expansion are proposed here

and numerical examples are given.
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(a) Domain with a
rounded corner Ωǫ.
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(b) Domain with a sharp
corner Ω.
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Fig. 1. Considered domains Ωǫ, Ω and Ω∞.

II. PROBLEMS AND NOTATIONS

The heuristics for the construction of the two first orders

are detailed in [2, subsection 4.1]. The two terms for the

approximation far from the corner are computed on the

singular domain Ω (Fig. 1(b)) and the two terms for the

approximation close to the corner are computed on the so-

called profile domain Ω∞ (Fig. 1(c)), which is an unbounded

domain with a unitary corner.

The roughest approximation v0 of vǫ, far from the corner,

is the solution on Ω of the following problem:










△v0 = 0, on Ω,

v0 = 0, on Γ0, and v0 = 1, on Γ1,

∂nv
0 = 0, on ΓN .

(2)

Note that in the neighborhood of the origin:

v0(x) ≃
ρ→0

∞
∑

p=1

apρ
pα sin(αθ) =

∞
∑

p=1

aps
pα(ρ, θ), (3)

where α = π/ω, and (ρ, θ) are the polar coordinates. As

the behaviors of v0 and vǫ are different in the corner, v0

should be truncated in the corner. A radial cut-off function

ϕ is introduced for this purpose:

ϕ(ρ) =

{

1, if ρ ≥ d1,

0, if ρ ≤ d0,
(4)
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where d0, d1 are fixed distances from the corner with d0 < d1.

It can be shown that [2]:

vǫ = ϕ
( ·

ǫ

)

v0 +OH1(ǫα), (5)

which means that:

∃ǫ̃ > 0, ∀ǫ < ǫ̃,

∫

Ωǫ

‖∇(vǫ − v0)‖2dx < Cǫα, (6)

i.e. the energy norm of the error converges as ǫα to 0.

Expansion (3) provides the coefficient a1 for a first correc-

tion in the corner. The first order expansion is then:

vǫ = ϕ
( ·

ǫ

)

v0 + ǫα(1− ϕ)a1V
α
( ·

ǫ

)

+OH1(ǫ2α). (7)

In (7) V α is a profile term that satisfies, for p = 1,














−△XV pα = [△X ;ϕ]spα, in Ω∞,

V pα|Γ∞
= 0,

lim
R→+∞

V pα = 0,

(8)

where for any couple (ν, u), [∆; ν]u = ∆(νu) − ν∆u. Note

that in the neighborhood of +∞:

V α(X) =

+∞
∑

p=1

Aps
−pα(X). (9)

For the second order, the expansion becomes:

vǫ = ϕ
( ·

ǫ

)

[

v0 + ǫ2αa1A1v
2α
]

+ ǫα(1− ϕ)
[

a1V
α
( ·

ǫ

)

+ ǫαa2V
2α

( ·

ǫ

)]

+OH1(ǫ3α),

(10)

where V 2α is a profile term that satisfies (8) for p = 2 and

v2α is a correction for the behavior far from the corner that

satisfies:














−△v2α = [△; (1− ϕ)]s−α, on Ω,

v2α = 0, on Γ0, and v = 0, on Γ1,

∂v2α

∂n
= 0, on ΓN .

(11)

In [3], we have considered a problem of the form:














−△XUpα = 0, in Ω∞,

Upα|Γ∞
= 0,

lim
R→+∞

(Upα − s
pα) = 0,

(12)

instead of (8) because for p = 1 or 2:

V pα = Upα − ϕspα. (13)

Nonetheless, the relations are more complicated for p > 2 [2].

III. NUMERICAL RESULTS

Two L-shape geometries with a rounded corner are con-

sidered; their dimensions are recalled on Fig. 2. The finite

element method has been used for solving (1), (2), (8), and

(11) as it was done in [3].

It is shown on Fig. 3 that the behaviors of the error in the

energy norm for approximate expansions (7) and (10) behave

respectively as ǫ2α and ǫ3α, independently of the geometry. It
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(a) Symmetric geometry.
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1.5

(b) Non symmetric geometry.

Fig. 2. Two considered problems and their dimensions. ǫ = 0.4.

is remarkable because a1 = 0 in the symmetric configuration

(see Fig. 2(a)) and we could think that (7) would have lead to a

better approximation than in the non symmetric configuration

(see Fig. 2(b)). Nonetheless, this intuition is obviously not

correct and the correction v2α far from the corner plays an

equivalent role than the correction close to the corner regarding

the energy norm in the whole domain.

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Radius of the rounded corner ε.

E
rr

o
r 

in
 t

h
e

 e
n

e
rg

y
 n

o
rm

 (
H

1
 s

e
m

i−
n

o
rm

).

 

 

First order.

Cε
2 α

Second order

Cε
3 α

(a) Symmetric geometry.
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(b) Non symmetric geometry.

Fig. 3. Convergence of the error in the energy norm.

It is shown on Fig. 4 the normal electric field along

the electrodes in the non symmetric configuration (from the

bottom right to the top left of the electrode, see Fig. 2(b))

for two values of ǫ. This normal field has been computed

respectively from vǫ, from first order expansion (7) and from

second order expansion (10). The behavior of the normal field

is “more closely respected” for the order 2, in particular the

location of the maximum is roughly equivalent to the correct

solution. Nonetheless, on this example, the maximum electric

field is slightly overestimated by both approximations.
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(a) Rounded corner with ǫ = 0.4.
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Fig. 4. Normal electric field along the conductors for the exact solution and
the tow first order approximations. The non symmetric geometry is considered.
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