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I. INTRODUCTION

The aim of this work is to introduce a method to tackle a magneto-harmonic problem in a bidimensional setting where the conducting medium is non-magnetic and has a corner singularity. More precisely, denote by Ω -the bounded domain corresponding to the conducting non-magnetic material, and by Ω + the surrounding dielectric material (see Fig. 1(a)). The domain Ω is then defined by Ω = Ω -∪ Ω + ∪ Σ, where Σ is the boundary of Ω -. The boundary of Ω is denoted by Γ. For the sake of simplicity, we assume that: (H1) Σ has only one geometric singularity, and we denote by C this corner. The angle of the corner (from the conducting material, see Fig. 1(a)) is denoted by ω. (H2) the current source term J is located in Ω + and it vanishes in a neighborhood of C.
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Model domain for the heuristics. Throughout the paper ρ denotes the distance to the corner and θ is the angular variable (see Fig. 1). Moreover the notations [u] Σ = u + |Σ -u - |Σ and ∂ n = n • ∇ are used, n being the normal to Σ inwardly directed from Ω + to Ω -. The skin depth δ = 1/(πf σµ 0 ) is supposed to be small compared to the characteristic length of the domain. In the expression of δ, f is the frequency of the source term, σ is the conductivity, and µ 0 is the vacuum magnetic permeability. The magnetic
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vector potential A δ (reduced to one scalar component in 2D) satisfies              -∆A + δ = µ 0 J in Ω + , -∆A - δ + 2i δ 2 A - δ = 0 in Ω -, [A δ ] Σ = 0 on Σ, [∂ n A δ ] Σ = 0 on Σ, A + δ = 0 on Γ. (1) 
Denote by A 0 the potential in the perfectly conducting case:

   -∆A + 0 = µ 0 J in Ω + , A + 0 = 0 on Σ, A + 0 = 0 on Γ, A - 0 = 0 in Ω -. (2) 
It is intuitive that A + 0 approximates A δ in the dielectric medium. Moreover, it can be proved for a regular interface Σ that the "power norm" [START_REF] Schmidt | Estimating the Eddy-Current modeling error[END_REF] of the error A δ -A 0 is of order δ [START_REF] Caloz | Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism[END_REF]. This accuracy is no more valid for a corner singularity. Our aim is to propose a rigorous method to recover the order δ by adding an appropriate correction in the neighborhood of the corner. Note that Yuferev et al. in [START_REF] Yuferev | Surface impedance boundary conditions near corner and edges: Rigorous consideration[END_REF] have considered a similar problem using a formal approach of transmitted singularities. Their work aimed at "correcting" the method proposed by Deeley [START_REF] Deeley | Surface impedance near edges and corners in threedimensional media[END_REF]. However we are confident that the heuristics of [START_REF] Yuferev | Surface impedance boundary conditions near corner and edges: Rigorous consideration[END_REF] lead to non relevant results. This is detailed in Section III.

In the following, we present the heuristics of the treatment of the singularity, that lead to the accurate approximation of A δ as δ goes to zero, and we conclude by numerical experiments.

II. HEURISTICS OF THE EXPANSION

Let first note the two following remarks:

• similarly to the regular case, A 0 defined by ( 2) is the solution of the limit problem of (1) as δ goes to zero. Hence the first term of the expansion should start by A 0 . • since the respective behaviors of A δ and A 0 are different in the corner for any non zero δ, it seems natural to truncate A 0 in the corner by a function ϕ which is zero close to the corner and 1 far from this corner. Suppose that we introduce such a smooth radial cut-off function:

ϕ(ρ) = 1, if ρ ≥ d 1 0, if ρ ≤ d 0 , with d 0 < d 1 , (3) 
d 0 , d 1 being fixed corner distances. If ϕA 0 is taken as the first term for approximating A δ , it will obviously not converge to A 0 as δ goes to zero. However if ϕ(•/δ)A 0 is considered instead, the correct limit is obtained. According to these remarks, consider the problem satisfied by r δ 0 = A δ -ϕ(./δ)A 0 :

-

∆r δ 0 = [∆; ϕ (./δ)] A + 0 , in Ω + , r δ 0 | Γ = 0, on Γ, (4a) -∆r δ 0 + 2i δ 2 r δ 0 = 0, in Ω -, (4b) 
r δ 0 Σ = 0, ∂ n r δ 0 Σ = -∂ n ϕ(./δ)A + 0 , on Σ, (4c) 
where for any couple (ν, u), [∆; ν]u = ∆(νu) -ν∆u. Note that assumption (H2) is necessary to obtain (4a). If we were not to use the cut-off function ϕ in the corner, therefore the jump ∂ n r δ 0 Σ would be equal to -∂ n A + 0 | Σ , which blows up in the corner. Since [∂ n A δ ] Σ identically vanishes in the corner on Σ we would have to compensate this blowing term, which would lead to numerical difficulties. The use of ϕ(./δ) in (4c) ensures that ∂ n r δ 0 Σ vanishes in the corner. Solving exactly (4) provides no benefits, but since

A + 0 ≃ ρ→0 a 1 ρ α sin(αθ) = a 1 s α where α = π/(2π -ω), ( 5 
)
we guess a correction in the corner region such that the expansion becomes

A δ = ϕ(•/δ)A 0 + (1 -ϕ)a 1 δ α V α (•/δ) + r δ α . (6) 
In ( 6), the "profile" term V α is the solution of a problem in R 2 that is independent of A 0 and δ while r δ α lives in the domain Ω. To determine the problem solved by V α , from ( 5) we first replace A + 0 by s α in ( 4). Then we use the fact that ϕ depends only on ρ and that ∂ n = ±(1/ρ)∂ θ near the corner, and we perform the rescaling X = x/δ (R = ρ/δ). Taking the limit when δ goes to zero (Γ is thus "sent" to the infinite) leads to the "profile" problem satisfied by V α in R 2 , which is divided into two infinite sectors S + and S -(remember that X = (R cos(θ), R sin(θ)) with R > 0):

-∆ X V α = [∆ X ; ϕ] s α , in S + = {X : θ ∈ (ω, 2π)}, (7a) -∆ X V α + 2iV α = 0, in S -= {X : θ ∈ (0, ω)}, (7b) V α → |X|→+∞ 0, (7c) 
with the transmission conditions on G = {X : θ = 0, ω} :

[V α ] G = 0, [∂ n V α ] G = αϕR α-1 . ( 7d 
)
Capturing the singularity of the domain in a profile term is quite natural and has to be linked up similarly to [START_REF] Ciuperca | Influence of a Rough Thin Layer on the Steady-state Potential[END_REF], [START_REF] Krähenbühl | Numerical treatment of rounded and sharp corners in the modeling of 2D electrostatic fields[END_REF]. The theoretical proof that r δ α is of order δ needs more than two pages, and will be presented in a forthcoming paper.

III. NUMERICAL RESULTS

The domain presented in Fig. 1(b) is considered for numerical purpose. The errors |r δ 0 | and |r δ α | are plotted respectively on Fig. 2(a) and 2(b). The terms A δ , a 1 , A 0 and V α are computed by using the finite element method as in [START_REF] Krähenbühl | Numerical treatment of rounded and sharp corners in the modeling of 2D electrostatic fields[END_REF] where an electrostatic problem on a geometry with a rounded corner is considered. On both figures, the same color scale is used except the white area around the corner on Fig. 2(a) where the error is higher (between 0.04 and 0.14). Fig. 2(b) shows the profile correction (7): the highest error lies now in the regular part of the interface Σ, for which correction is known [START_REF] Caloz | Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism[END_REF].

Suppose that a 1 = 0, which is the worst corner influence, and denote by Z s = (1 + i)/(σδ) the regular surface impedance. According to the expansion, the surface impedance Z δ can be approximated close to the corner by:

Z δ = Z s 1 + i δ A δ ∂ n A δ ≃ ρ→0 Z s (1 + i) V α (•/δ) (∂ n V α )(•/δ) , (8) 
therefore for any σ and f such that δ is small enough, the function Z δ (δ•)/|Z s | behaves close to zero as √ 2iV α /(∂ n V α ). These similar behaviors are shown on Fig. 3 where the "impedance" from the profile function is compared to the real impedance for two values of δ, where f and σ are different. According to [START_REF] Yuferev | Surface impedance boundary conditions near corner and edges: Rigorous consideration[END_REF], the surface impedance should blow up like ρ -1 for any non zero δ, which is shown to be false here. 
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 15 b) L-shape dielectric domain and boundary conditions for the example.
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 1 Fig. 1. Geometry of the problems considered.

  (a) |r δ 0 |. (b) |r δ α |. Fig. 2. Modulus of the errors between the solution and the two first orders of (6) for δ = 0.025. The distances of (3) are d 0 = 1 and d 1 = 1.2.

Fig. 3 .

 3 Fig. 3. Behavior of Z δ /|Zs| vs ρ/δ. The domain characteristic length L is here 0.1m, then δ/L is between 2 and 4.6% for the situations considered.