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Abstract—The first terms of a multiscale expansion are intro-
duced to tackle a magneto-harmonic problem in a bidimensional
setting where the conducting medium is non-magnetic and has
a corner singularity. The heuristics of the method are given and
numerical computations illustrate the obtained accuracy.

I. INTRODUCTION

The aim of this work is to introduce a method to tackle a

magneto-harmonic problem in a bidimensional setting where

the conducting medium is non-magnetic and has a corner

singularity. More precisely, denote by Ω− the bounded domain

corresponding to the conducting non-magnetic material, and

by Ω+ the surrounding dielectric material (see Fig. 1(a)). The

domain Ω is then defined by Ω = Ω− ∪ Ω+ ∪ Σ, where Σ is

the boundary of Ω−. The boundary of Ω is denoted by Γ. For

the sake of simplicity, we assume that:

(H1) Σ has only one geometric singularity, and we denote

by C this corner. The angle of the corner (from the

conducting material, see Fig. 1(a)) is denoted by ω.

(H2) the current source term J is located in Ω+ and it

vanishes in a neighborhood of C.
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(b) L-shape dielectric domain and
boundary conditions for the example.

Fig. 1. Geometry of the problems considered.

Throughout the paper ρ denotes the distance to the corner

and θ is the angular variable (see Fig. 1). Moreover the

notations [u]
Σ
= u+

|Σ
− u−

|Σ
and ∂n = n · ∇ are used, n being

the normal to Σ inwardly directed from Ω+ to Ω−. The skin

depth δ =
√

1/(πfσµ0) is supposed to be small compared to

the characteristic length of the domain. In the expression of δ,

f is the frequency of the source term, σ is the conductivity,

and µ0 is the vacuum magnetic permeability. The magnetic

vector potential Aδ (reduced to one scalar component in 2D)

satisfies


























−∆A+

δ = µ0J in Ω+,

−∆A−
δ +

2i

δ2
A−

δ = 0 in Ω−,

[Aδ]Σ = 0 on Σ,
[∂nAδ]Σ = 0 on Σ,

A+

δ = 0 on Γ.

(1)

Denote by A0 the potential in the perfectly conducting case:






−∆A+
0 = µ0J in Ω+,

A+
0 = 0 on Σ,

A+
0 = 0 on Γ,

A−
0 = 0 in Ω−. (2)

It is intuitive that A+
0 approximates Aδ in the dielectric

medium. Moreover, it can be proved for a regular interface

Σ that the “power norm” [1] of the error Aδ −A0 is of order

δ [2]. This accuracy is no more valid for a corner singularity.

Our aim is to propose a rigorous method to recover the order δ
by adding an appropriate correction in the neighborhood of the

corner. Note that Yuferev et al. in [3] have considered a similar

problem using a formal approach of transmitted singularities.

Their work aimed at “correcting” the method proposed by

Deeley [4]. However we are confident that the heuristics of

[3] lead to non relevant results. This is detailed in Section III.

In the following, we present the heuristics of the treatment

of the singularity, that lead to the accurate approximation of Aδ

as δ goes to zero, and we conclude by numerical experiments.

II. HEURISTICS OF THE EXPANSION

Let first note the two following remarks:

• similarly to the regular case, A0 defined by (2) is the

solution of the limit problem of (1) as δ goes to zero.

Hence the first term of the expansion should start by A0.

• since the respective behaviors of Aδ and A0 are different

in the corner for any non zero δ, it seems natural to

truncate A0 in the corner by a function ϕ which is zero

close to the corner and 1 far from this corner. Suppose

that we introduce such a smooth radial cut-off function:

ϕ(ρ) =

{

1, if ρ ≥ d1

0, if ρ ≤ d0
, with d0 < d1, (3)

d0, d1 being fixed corner distances. If ϕA0 is taken as

the first term for approximating Aδ , it will obviously not
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converge to A0 as δ goes to zero. However if ϕ(·/δ)A0

is considered instead, the correct limit is obtained.

According to these remarks, consider the problem satisfied by

rδ0 = Aδ − ϕ(./δ)A0:

−∆rδ0 = [∆;ϕ (./δ)]A+
0 , in Ω+, rδ0|Γ = 0, on Γ, (4a)

−∆rδ0 +
2i

δ2
rδ0 = 0, in Ω−, (4b)

[

rδ0
]

Σ
= 0,

[

∂nr
δ
0

]

Σ
= −∂n

(

ϕ(./δ)A+
0

)

, on Σ, (4c)

where for any couple (ν, u), [∆; ν]u = ∆(νu) − ν∆u. Note

that assumption (H2) is necessary to obtain (4a).

If we were not to use the cut-off function ϕ in the corner,

therefore the jump
[

∂nr
δ
0

]

Σ
would be equal to −∂nA

+
0 |Σ,

which blows up in the corner. Since [∂nAδ]Σ identically

vanishes in the corner on Σ we would have to compensate

this blowing term, which would lead to numerical difficulties.

The use of ϕ(./δ) in (4c) ensures that
[

∂nr
δ
0

]

Σ
vanishes in

the corner. Solving exactly (4) provides no benefits, but since

A+
0 ≃

ρ→0
a1ρ

α sin(αθ) = a1s
α where α = π/(2π − ω), (5)

we guess a correction in the corner region such that the

expansion becomes

Aδ = ϕ(·/δ)A0 + (1− ϕ)a1δ
αVα(·/δ) + rδα. (6)

In (6), the “profile” term Vα is the solution of a problem in

R
2 that is independent of A0 and δ while rδα lives in the

domain Ω. To determine the problem solved by Vα, from (5)

we first replace A+
0 by s

α in (4). Then we use the fact that ϕ
depends only on ρ and that ∂n = ±(1/ρ)∂θ near the corner,

and we perform the rescaling X = x/δ (R = ρ/δ). Taking

the limit when δ goes to zero (Γ is thus “sent” to the infinite)

leads to the “profile” problem satisfied by Vα in R
2, which is

divided into two infinite sectors S+ and S− (remember that

X = (R cos(θ), R sin(θ)) with R > 0):

−∆XVα = [∆X ;ϕ] sα, in S+ = {X : θ ∈ (ω, 2π)}, (7a)

−∆XVα + 2iVα = 0, in S− = {X : θ ∈ (0, ω)}, (7b)

Vα →|X|→+∞ 0, (7c)

with the transmission conditions on G = {X : θ = 0, ω} :

[Vα]G = 0, [∂nVα]G = αϕRα−1. (7d)

Capturing the singularity of the domain in a profile term is

quite natural and has to be linked up similarly to [5], [6]. The

theoretical proof that rδα is of order δ needs more than two

pages, and will be presented in a forthcoming paper.

III. NUMERICAL RESULTS

The domain presented in Fig. 1(b) is considered for nume-

rical purpose. The errors |rδ0| and |rδα| are plotted respectively

on Fig. 2(a) and 2(b). The terms Aδ , a1, A0 and Vα are

computed by using the finite element method as in [6] where

an electrostatic problem on a geometry with a rounded corner

is considered. On both figures, the same color scale is used

except the white area around the corner on Fig. 2(a) where the

error is higher (between 0.04 and 0.14). Fig. 2(b) shows the

(a) |rδ
0
|. (b) |rδα|.

Fig. 2. Modulus of the errors between the solution and the two first orders
of (6) for δ = 0.025. The distances of (3) are d0 = 1 and d1 = 1.2.

profile correction (7): the highest error lies now in the regular

part of the interface Σ, for which correction is known [2].

Suppose that a1 6= 0, which is the worst corner influ-

ence, and denote by Zs = (1 + i)/(σδ) the regular surface

impedance. According to the expansion, the surface impedance

Zδ can be approximated close to the corner by:

Zδ = Zs

1 + i

δ

Aδ

∂nAδ

≃
ρ→0

Zs(1 + i)
Vα(·/δ)

(∂nVα)(·/δ)
, (8)

therefore for any σ and f such that δ is small enough, the

function Zδ(δ·)/|Zs| behaves close to zero as
√
2iVα/(∂nVα).

These similar behaviors are shown on Fig. 3 where the

“impedance” from the profile function is compared to the real

impedance for two values of δ, where f and σ are different.

According to [3], the surface impedance should blow up like

ρ−1 for any non zero δ, which is shown to be false here.

Fig. 3. Behavior of Zδ/|Zs| vs ρ/δ. The domain characteristic length L is
here 0.1m, then δ/L is between 2 and 4.6% for the situations considered.
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