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Asymptotic models for the generation of internal waves by a

moving ship, and the dead-water phenomenon

Vincent Duchêne∗

December 21, 2010

Abstract

This paper deals with the dead-water phenomenon, which occurs when a ship sails in a

stratified fluid, and experiences an important drag due to waves below the surface. More gen-

erally, we study the generation of internal waves by a disturbance moving at constant speed

on top of two layers of fluids of different densities. Starting from the full Euler equations,

we present several nonlinear asymptotic models, in the long wave regime. These models are

rigorously justified by consistency or convergence results. A careful theoretical and numerical

analysis is then provided, in order to predict the behavior of the flow and in which situations

the dead-water effect appears.

1 Introduction

The so-called“dead-water”phenomenon has been first reported by Fridtjof Nansen [42], describing
a severe (and then inexplicable) decrease of velocity encountered by a ship, sailing on calm seas.
Bjerknes, and then Ekman [22] soon explained that this phenomenon occurs as the ship, on top of
density-stratified fluids (due to variations in temperature or salinity), concedes a large amount of
energy by generating internal waves. Our work is motivated by the recent work of Vasseur, Mercier
and Dauxois [53], who performed experiments and produced videos that precisely demonstrate
the phenomenon. Our aim is to produce simple models that are able to predict the apparition
and the magnitude of the dead-water effect.

Relatively little consideration has been given to this problem, after the early works of Lamb [29]
and Sretenskii [50]. Miloh, Tulin and Zilman in [40] produce a model and numerical simulations
for the case of a semi-submersible moving steadily on the free surface. The authors assume that
the density difference between the two layers is small, an assumption that is removed by Nguyen
and Yeung [45]. Motygin and Kuznetsov [41] offer a rigorous mathematical treatment of the
issue when the body is totally submerged in one of the two layers, and Ten and Kashiwagi [51]
present a comparison between the theory and experiments, in the case of a body intersecting the
interface as well as the surface. Finally, we would like to cite Lu and Chen [36] for a more general
treatment of the problem. All of these works use linearized boundary conditions, that rely on
the assumption that the generated waves amplitudes are small. The linear theory is convenient
as it allows to obtain the flow field by a simple superposition of Green functions, replacing the
moving body by a sum of singularities. The integral representation of the flow, as well as the
wave resistance experienced by the body, are therefore found explicitly. However, the smallness
assumption on the wave amplitudes, that is necessary to the linear theory, is quite restrictive.

∗Département de Mathématiques et Applications, UMR 8553, École normale supérieure, 45 rue d’Ulm, F 75230
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We show in this paper that nonlinear effects have an important role to play on the dead-water
effect, and that simple nonlinear models duly predict the phenomenon.

In this paper, we introduce several different nonlinear asymptotic models, corresponding to
several regimes (size of the parameters of the system), and several orders of approximation. Two
different regimes are considered. Each time, we assume that the depth of the fluid layers are
small when compared with the wave lengths (shallow water). In the one-layer case, the equations
obtained with this only assumption are the shallow-water or Saint Venant equations (at first
order), or the Green-Naghdi extension (one order further, therefore involving nonlinear dispersion
terms). See Wu, Chen [54] and references therein for a numerical treatment of the waves generated
by a moving ship in the one layer case, using the Green–Naghdi equations. The two regimes we
study carry additional smallness assumptions, that allow to substantially simplify the models.
The first regime considers the case of small surface deformations, and small differences between
the densities of the two layers. Such additional assumptions are very natural in the oceanographic
framework, and have been frequently used in the literature (see [26, 35, 39] for example). In the
second regime, we assume that the magnitude of the produced internal waves, when compared
with the depth of the two layers, are small and of the same order of magnitude as the shallowness
parameter. This regime, known as the Boussinesq regime, is particularly interesting as it allows
models with competing dispersion and lonlinearity. Along with the coupled Boussinesq-type
model, we introduce the KdV approximation, which consists in a decomposition of the flow
into two waves, each one being a solution of an independant forced Korteweg-de Vries equation
(fKdV). The fKdV equation has been extensively studied in the framework of the one-layer water
wave problem (where a moving topography, or pressure, is the forcing term that generates waves);
see [55, 38, 34], for example.

The system we study consists in two layers of immiscible, homogeneous, ideal, incompressible
fluids under the only influence of gravity. The bottom is assumed to be flat, and we use the
rigid-lid approximation at the surface. However, the surface is not flat, but a given function,
moving at constant speed, that reflects the presence of the ship. Moreover, as we are interested
in unidirectional equations (the fKdV equations), we focus on the two-dimensional case, i.e. the
horizontal dimension d = 1. However, the three-dimensional case could be easily treated with
the method presented here. Starting from the governing equations of our problem, the so-called
full Euler system, and armed with the analysis of [20, 19] in the free surface case, we are able to
deduce asymptotic models for each of the regimes presented above. Each of the models presented
here are justified by a consistency result, or a convergence theorem (in a sense precisely given in
Section 1.3 page 9). We compute numerically the fully nonlinear system of the first regime, as
well as the KdV approximation, which allows us to investigate the effect of different parameters
of the system, such as the velocity of the boat, or the depth ratio of the two layers. The wave
resistance encountered by the ship is also computed, so that we are able to predict in which
situations the dead-water effect shows up. Consequences of our analysis include the following:

i. a ship suffers from a positive drag when an internal elevation wave is generated at its stern;

ii. this effect can be strong near critical Froude numbers, and is always small away from the
critical value;

iii. the maximum peak of the drag is reached at slightly subcritical values;

iv. the depth ratio of the two layers plays a critical role in the phenomenon;

In particular, our analysis allows to study the behavior of the system depending on two
parameters : the depth ratio of the two layers of fluid, and the velocity of the fluid. Our results
are summarized in Table 1, below.



3
1

IN
T
R
O
D
U
C
T
IO

N
3

Velocity of
the ship

subcritical case critical case supercritical case

Depth ratio
between
the layers

thicker lower layer thicker upper layer

Regime 1
The generated waves are
small, and conclusions of
Regime 2 apply.

Generation of dull
elevation-depression wave
below the body.

Moderate wave resistance.

See Figure 3, page 15

Generation of a sharp
elevation wave below the
body.

Strong wave resistance.

See Figure 4, page 16

The generated waves are
small, and conclusions of
Regime 2 apply.

Regime 2

Continuous generation of
small up-streaming and
down-streaming waves.

Very weak wave
resistance.

See Figure 6, page 26

Periodic generation of
up-streaming depression
waves with very large
time-period.

Oscillating wave
resistance, with positive
mean.

See Figure 9, page 28

Periodic generation of
up-streaming elevation
waves with very large
time-period.

Oscillating wave
resistance, with mean
zero.

See Figure 9, page 28

Generation of small
down-streaming waves.
Convergence towards a
steady state.

No lasting wave
resistance.

See Figure 7, page 27

Table 1: Behavior of the flow in the two studied regimes, depending on the velocity of the body and the depth ratio of the fluids
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One peculiar phenomenon that can be seen in the experiments described in [53] is not recovered
by our models. Indeed, the dead-water effects exhibits a somewhat periodic behavior, where
during each period, a wave is generated, slows down the ship, and then breaks. This discrepancy
between our simulations and the experiments is due to the fact that our models are based on
the assumption of a constant velocity for the traveling body, as their experiments are conducted
with a constant force brought to the body [52]. We perform a numeric experiment to match this
setting (the velocity is then adjusted at each time step as a function of the drag suffered by the
ship), and recover this periodic behavior. This point is discussed in more details in page 16.

Outline of the paper : In Section 1.1, we introduce the governing equations of our problem:
the so-called full Euler system. A specific care is given to an adapted rescaling, that leads to the
dimensionless version of the full Euler system. In Section 1.3, we present precisely the shape of
the results displayed in the paper, as well as the regimes at stake. Strongly nonlinear models
are introduced in Section 2, and justified with consistency results. Numerical simulations are
then displayed in Section 2.2. The weakly nonlinear models, i.e. the Boussinesq-type system and
the KdV approximation are presented in Sections 3.1 and 3.2, respectively. The convergence of
their solutions towards the solutions of the full Euler system are given in Propositions 3.1 and 3.2,
respectively. An in-depth analysis of the forced Korteweg-de Vries equation, and its consequences
to the dead-water effect, is displayed in Section 3.3. Calculations that lead to the intermediate
fully nonlinear model, that we use as a support for the other simplified models, are postponed
until Appendix A, and Appendix B contains the proof of Proposition 3.2. Finally, Appendix C
is devoted to the analysis of the wave resistance encountered by the ship, from its definition to
simple approximations in the different regimes used throughout the paper, and the numerical
schemes used in the simulations are presented and justified in Appendix D.

Notations : We denote by C(λ1, λ2, . . .) any positive constant, depending on the parameters
λ1, λ2, . . ., and whose dependence on λj is always assumed to be nondecreasing.

Let f(x1, . . . , xd) be a function defined on R
d. We denote by ∂xi

f the derivative with respect
to the variable xi. If f depends only on xi, then we use the notation

d

dxi
f ≡ ∂xi

f.

We denote by L2 = L2(R) the Hilbert space of Lebesgue measurable functions F : R → R
n

with the standard norm
∣

∣F
∣

∣

2
=
( ∫

R
|F (x)|2 dx

)1/2
< ∞. Its inner product is denoted by

(

F1 , F2

)

=
∫

R
F1 · F2.

Then, we denote by Hs = Hs(R) the L2-based Sobolev spaces. Their norm is written
∣

∣ ·
∣

∣

Hs =
∣

∣Λs ·
∣

∣

2
, with the pseudo-differential operator Λ ≡ (1 − ∂2x)

1/2. It is also convenient

to introduce the following norm on the Sobolev space Hs+1 (for ε > 0 a small parameter):

∣

∣U
∣

∣

2

Hs+1
ε

=
∣

∣U
∣

∣

2

Hs + ε
∣

∣U
∣

∣

2

Hs+1 .

Let 0 < T ≤ ∞ and f(t, x) be a function defined on [0, T ]×R. Then one has f ∈ L∞([0, T ];Hs)
if f is bounded in Hs, uniformly with respect to t ∈ [0, T ]. Moreover, f ∈ W 1,∞([0, T ];Hs) if
f, ∂tf ∈ L∞([0, T ];Hs). Their respective norm is written

∣

∣ ·
∣

∣

L∞Hs and
∣

∣ ·
∣

∣

W 1,∞Hs .

1.1 The basic equations

We present here as briefly as possible the governing equations of our problem, and refer to [20]
for more details. The system we study consists in two layers of immiscible, homogeneous, ideal,
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Figure 1: Sketch of the domain

incompressible fluids under the only influence of gravity (see Figure 1). Since we are interested in
unidirectional models (the KdV approximation), we focus on the two-dimensional case, i.e. the
horizontal dimension d = 1. However, most of this study could easily be extended to the case
d = 2, using the techniques presented here.

We denote by ρ1 and ρ2 the density of, respectively, the upper and the lower fluid. Since we
assume that each fluid is incompressible, ρ1 and ρ2 are constant and the velocity potentials φi
(i = 1, 2), respectively associated to the upper and lower fluid layers, satisfy the Laplace equation

∂2xφi + ∂2zφi = 0.

Moreover, it is presumed that the surface and the interface are given as the graph of functions
(respectively, ζ1(t, x) and ζ2(t, x)) which express the deviation from their rest position (respec-
tively, (x, d1) and (x, 0)) at the spatial coordinate x and at time t. The bottom is assumed to be
flat, and the surface is flat away from the location of the ship moving at constant speed cs, so
that ζ1 match the submerged part of the ship and is given by

ζ1(t, x) = ζ1(x− cst).

Therefore, at each time t ≥ 0, the domains of the upper and lower fluid (denoted, respectively,
Ωt

1 and Ωt
2), are given by

Ωt
1 = { (x, z) ∈ R

d × R, ζ2(t, x) ≤ z ≤ d1 + ζ1(x− cst) },
Ωt

2 = { (x, z) ∈ R
d × R, −d2 ≤ z ≤ ζ2(t, x) }.

The fluids being ideal, they satisfy the Euler equation (or Bernoulli equation when written in
terms of the velocity potentials), and kinematic boundary conditions are given through the as-
sumption that no fluid particle crosses the surface, the bottom or the interface. Finally, the set of
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equations is closed by the continuity of the stress tensor at the interface, which takes into account
the effects of surface tension.

Altogether, the governing equations of our problem are given by the following
(1.1)










































∂2xφi + ∂2zφi = 0 in Ωt
i, i = 1, 2,

∂tφi +
1
2 |∇x,zφi|2 = − P

ρi
− gz in Ωt

i, i = 1, 2,

∂tζ1 =
√

1 + |∂xζ1|2∂n1
φ1 on Γ1 ≡ {(x, z), z = d1 + ζ1(t, x)},

∂tζ2 =
√

1 + |∂xζ2|2∂n2
φ1 =

√

1 + |∂xζ2|2∂n2
φ2 on Γ2 ≡ {(x, z), z = ζ2(t, x)},

∂zφ2 = 0 on Γb ≡ {(x, z), z = −d2},

JP K = σ ∂x

(

∂xζ2
√

1 + |∂xζ2|2

)

on Γ2,

where ∂ni
is the upward normal derivative at Γi:

∂ni
≡ ni · ∇x,z, with ni ≡ 1

√

1 + |∂xζi|2
(−∂xζi, 1)T ;

we denote σ > 0 the surface tension coefficient and JP K the jump of the pressure at the interface:

JP (t, x)K ≡ lim
ε→0

(

P (t, x, ζ2(t, x) + ε) − P (t, x, ζ2(t, x)− ε)
)

.

This system can be reduced into evolution equations located at the surface and at the interface.
Indeed, when we define the trace of the potentials at the surface and at the interface

ψ1(t, x) ≡ φ1(t, x, d1 + ζ1(t, x)), and ψ2(t, x) ≡ φ2(t, x, ζ2(t, x)),

then φ1 and φ2 are uniquely given by the Laplace equation, and the (Dirichlet or Neumann)
boundary conditions (see Figure 2):

(1.2)







( ∂2x + ∂2z ) φ2 = 0 in Ω2,
φ2 = ψ2 on Γ2,
∂zφ2 = 0 on Γb,

and







( ∂2x + ∂2z ) φ1 = 0 in Ω1,
φ1 = ψ1 on Γ1,
∂n2

φ1 = ∂n2
φ2 on Γ2.

∂zφ2 = 0

φ2 = ψ2

( ∂2x + ∂2z ) φ2 = 0

φ1 = ψ1

∂n2φ1 = ∂n2φ2

( ∂2x + ∂2z ) φ1 = 0

Figure 2: Laplace problems in the two domains.

Therefore, the following operators are well-defined:

G1[ζ1, ζ2](ψ1, ψ2) ≡
√

1 + |∂xζ1|2(∂n1
φ1)

∣

∣

z=1+ζ1
,

G2[ζ2]ψ2 ≡
√

1 + |∂xζ2|2(∂n2
φ2)

∣

∣

z=ζ2
,

H [ζ1, ζ2](ψ1, ψ2) ≡ ∂x
(

φ1
∣

∣

z=ζ2

)

.
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Then, the chain rule and straightforward combinations of the equations of (1.1) lead to the
following equivalent system:
(1.3)











































∂tζ1 − G1[ζ1, ζ2](ψ1, ψ2) = 0,

∂tζ2 − G2[ζ2]ψ2 = 0,

∂t

(

ρ2∂xψ2 − ρ1H [ζ1, ζ2](ψ1, ψ2)
)

+ g(ρ2 − ρ1)∂xζ2

+
1

2
∂x

(

ρ2|∂xψ2|2 − ρ1|H [ζ1, ζ2](ψ1, ψ2)|2
)

= ∂xN + σ ∂2x

(

∂xζ2
√

1 + |∂xζ2|2

)

,

with

N =
ρ2
(

G2[ζ2]ψ2 + (∂xζ2)(∂xψ2)
)2 − ρ1

(

G2[ζ2]ψ2 + (∂xζ2)H [ζ1, ζ2](ψ1, ψ2)
)2

2(1 + |∂xζ2|2)
.

1.2 Nondimensionalization of the system

The next step consists in nondimensionalizing the system. The study of the linearized system
(see [31], for example), which can be solved explicitly, leads to a well-adapted rescaling. Moreover,
it is convenient to write the equations in the frame of reference of the ship.

Let a1 and a2 be the maximum amplitude of the deformation of, respectively, the surface
and the interface. We denote by λ a characteristic horizontal length, say the wavelength of the
interface. Then the typical velocity of small propagating internal waves (or wave celerity) is given
by

c0 =

√

g
(ρ2 − ρ1)d1d2
ρ2d1 + ρ1d2

.

Consequently, we introduce the dimensionless variables

z̃ ≡ z

d1
, x̃ ≡ x+ cst

λ
, t̃ ≡ c0

λ
t,

the dimensionless unknowns

ζ̃i(x̃) ≡ ζi(x)

ai
, ψ̃i(x̃) ≡ d1

a2λc0
ψi(x),

and the seven independant dimensionless parameters

γ =
ρ1
ρ2
, ǫ1 ≡ a1

d1
, ǫ2 ≡ a2

d1
, µ ≡ d21

λ2
, δ ≡ d1

d2
, Fr ≡ cs

c0
, Bo ≡ c20λ

2ρ2
d1σ

.

With this rescaling, the full Euler system (1.1) becomes (we have withdrawn the tildes for the
sake of readability)

(1.4)























































−ǫ1 Fr ∂xζ1 − ǫ2
µ
G1(ψ1, ψ2) = 0,

(∂t − Fr ∂x)ζ2 − 1

µ
G2ψ2 = 0,

(∂t − Fr ∂x)
(

∂xψ2 − γH(ψ1, ψ2)
)

+ (γ + δ)∂xζ2

+
ǫ2
2
∂x

(

|∂xψ2|2 − γ|H(ψ1, ψ2)|2
)

= µǫ2∂xN +
1

Bo
∂2x

(

∂xζ2
√

1 + µǫ22|∂xζ2|2

)

,
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with

N ≡
(

1
µG2ψ2 + ǫ2(∂xζ2)(∂xψ2)

)2 − γ
(

1
µG2ψ2 + ǫ2(∂xζ2)H(ψ1, ψ2)

)2

2(1 + µ|ǫ2∂xζ2|2)
,

and the dimensionless Dirichlet-to-Neumann operators defined by

G1(ψ1, ψ2) ≡ Gµ,δ
1 [ǫ1ζ1, ǫ2ζ2](ψ1, ψ2) ≡ −µǫ1

( d

dx
ζ1
)

(∂xφ1)
∣

∣

z=1+ǫ1ζ1
+ (∂zφ1)

∣

∣

z=1+ǫ1ζ1
,

G2ψ2 ≡ Gµ,δ
2 [ǫ2ζ2]ψ2 ≡ −µǫ2∂xζ2(∂xφ2)

∣

∣

z=ǫ2ζ2
+ (∂zφ2)

∣

∣

z=ǫ2ζ2
,

H(ψ1, ψ2) ≡ Hµ,δ[ǫ1ζ1, ǫ2ζ2](ψ1, ψ2) ≡ (∂xφ1)
∣

∣

z=ǫ2ζ2
+ ǫ2∂xζ2(∂zφ1)

∣

∣

z=ǫ2ζ2
,

where φ1 and φ2 are the solutions of the Laplace problems







(

µ∂2x + ∂2z
)

φ2 = 0 in Ω2 ≡ {(x, z) ∈ R
2,− 1

δ < z < ǫ2ζ2(x)},
φ2 = ψ2 on Γ2 ≡ {z = ǫ2ζ2},
∂zφ2 = 0 on Γb ≡ {z = − 1

δ },






(

µ∂2x + ∂2z
)

φ1 = 0 in Ω1 ≡ {(x, z) ∈ R
2, ǫ2ζ2(x) < z < 1 + ǫ1ζ1(x)},

φ1 = ψ1 on Γ1 ≡ {z = 1 + ǫ1ζ1},
∂n2

φ1 = G2ψ2 on Γ2.

Remark 1.1. Let us keep in mind that in our case, the function ζ1 is not an unknown, but a
fixed data of the problem:

ζ1(t, x) = ζ1(x),

where ζ1 is the submerged part of the ship (independant of time thanks to the change in the frame
of reference). In that way, the first line of (1.4) is a relation connecting ψ1 with ψ2, and (1.4)
can be reduced into a system of two equations with two unknowns. This reduction is computed
explicitly in the following asymptotic models.

Remark 1.2. The Cauchy problem associated to the full Euler system at the interface of two
fluids is known to be ill-posed in Sobolev spaces in the absence of surface tension, as Kelvin-
Helmholtz instabilities appear. However, in [31], Lannes proved that adding a small amount of
surface tension guarantees the well-posedness of the Cauchy problem (with a flat rigid lid), with
a time of existence that may remain quite large even with a small surface tension coefficient, and
thus is consistent with the observations. The idea behind this result is that the Kelvin-Helmholtz
instabilities appear for high frequencies, where the regularization effect of the surface tension is
relevant, even if Bo the Bond number measuring the ratio of gravity forces over capillary forces
is very large.1 On the contrary, the main profile of the wave that we want to capture is located
at lower frequencies, and will therefore be unaffected by surface tension. Driven by this analysis,
we decide to omit the surface tension term in the models of the regime 2 presented below, as they
do not give rise to Kelvin-Helmholtz instabilities. On the contrary, we keep the surface tension
term in the fully nonlinear models of regime 1. As a matter of fact the regularization effect of the
surface tension in this case plays a critical role in our numerical simulations, as it stabilizes the
scheme, even if Bo−1 is one order smaller than the coefficients in front of all other terms.

The following terminology is used throughout the paper.

1As an example, let us consider the values of the experiments of Vasseur, Mercier and Dauxois [53]. One
has d1 = 0.05m, d2 = 0.12m, ρ1 = 1, 000.5kg.m−3, ρ2 = 1, 022.7kg.m−3. Taking advantage of the analysis of
Lannes [31], we use σ = 0.095N.m−1 as a typical value for the interfacial tension coefficient. As a conclusion, one

has Bo =
c20ρ2d1

σ
1

µ
≈

40

µ
. The coefficient in front of the surface tension term is therefore much smaller than the

coefficients in front of any other term.
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Definition 1.3 (Adapted solutions). We call adapted solution of (1.4) any strong solution
(ζ1, ζ2, ψ1, ψ2), bounded in W 1,∞([0, T ];Hs+t0) with T > 0, s > 1 and t0 big enough, and such
that ζ1(t, x) = ζ1(x) (in the frame reference of the ship) and the domains of the fluids remain
strictly connected, i.e. there exists hmin > 0 such that

(1.5) 1 + ǫ1ζ1(x)− ǫ2ζ2(t, x) ≥ hmin > 0 and
1

δ
+ ǫ2ζ2(t,X) ≥ hmin > 0.

From the discussion above, it is legitimate to assume that such a smooth, uniformly bounded
family of solutions of (1.4) indeed exists.

1.3 Description of the results, and the regimes under study

The models displayed in the following sections are justified with a consistency, or a convergence
result, in the following sense (the convergence theorems are precisely disclosed in Proposition 3.1
and 3.2).

Definition 1.4 (Consistency). The full Euler system (1.4) is consistent with a system of two
equations (Σ) on [0, T ] if any adapted solution U defines, via the changes of variables explained
throughout the paper, a pair of functions satisfying (Σ) up to a small residual, called the precision
of the model. The order of the precision will be O(ε), if there exists s0, t0 ≥ 0 such that if
U ∈W 1,∞([0, T ];Hs+t0) with s > s0, then the L∞([0, T ];Hs) norm of the residual is bounded by
C0 ε, with C0 a constant independent of ε.

Definition 1.5 (Convergence). The full Euler system (1.4) and a well-posed system (Σ) of two
equations are convergent at order O(ε) on [0, T ] if any adapted solution with small initial data U
defines, via the changes of variables explained throughout the paper, a pair of functions V such
that Ṽ the solution of (Σ) with same initial data satisfies

∣

∣V − Ṽ
∣

∣

L∞([0,T ];Hs)
≤ C0 ε,

with C0 independent of ε.

The small parameter ε in these definitions is a function of some of the dimensionless parameters
of the system that are assumed to be small. The regimes that we study throughout the paper
have been briefly presented in the introduction; let us describe them here in more details. When
nothing is specifically said in the regimes below, we assume the parameters to be fixed as

γ ∈ (0, 1), ǫ1, ǫ2 ∈ (0, 1), 0 < δmin ≤ δ ≤ δmax, Fr ∈ [0,Frmax], 0 < Bomin ≤ Bo .

In particular, the two layers are assumed to be of finite, comparable depth.

The mutual and crucial assumption between the two regimes is that the depth of the two
layers of fluids is small when compared with the internal wavelength. This is commonly called
shallow water regime and is simply given by (with our notation)

µ ≪ 1.

The shallow water regime has been widely used in the framework of gravity waves. In the one
layer, free surface case, it leads at order O(µ) to the shallow water equations [18], and at order
O(µ2) to the Green-Naghdi equations[23]. The analysis has been extended to the case of two
layers with a free surface in [20], and the models presented here can be recovered from models in
this situation, when fixing the surface as a data of the problem.
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Regime 1 (Small sized boats).

µ ≪ 1 ; α ≡ ǫ1
ǫ2

= O(µ) , 1− γ = O(µ).

The two additional smallness assumptions of this regime are very natural. First, we assume that
the depth of the submerged part of the ship is small when compared with the depth of the fluid,
and the attainable size of the deformation. The numerical simulations of our model show that
even with this assumption, the waves generated by the small disturbance can be very large (of the
order of the depth of the two layers, and therefore very large when compared with the variation
of the surface induced by the ship). This explains why the dead-water phenomenon can be so
powerful. What is more, we assume that the densities of the two fluids are almost equal. This is
known as the Boussinesq approximation, and is valid most of the time (the value of 1−γ reported
in Celtic Sea in [46] is ≈ 10−3, and the value in the experiments of [53] is ≈ 10−2).

Regime 2 (Small wave amplitudes).

µ ≪ 1 ; ǫ2 = O(µ) , α ≡ ǫ1
ǫ2

= O(µ).

In this regime, we assume that the internal wave generated by the disturbance will remain small
when compared with the depth of the two fluids. As previously, we assume that the waves
generated by the ship are large when compared with the depth of the disturbance, so that the
ship suffers from a relatively large wave resistance. In that way, the models we obtain involve
only weak nonlinearities, and will be much easier to study. In particular, we are able to obtain
well-posedness and convergence results for both of the models presented here. The counterpart is
that these models remain valid only for relatively small waves. Again, this regime has been widely
used in the literature. The one layer, free surface equivalent systems of the models presented here
are the classical Boussinesq system [7, 8] and the KdV approximation [27]. These models have
been extended to the case of two layers, with a free surface in [19].

2 Strongly nonlinear models

In this section, we introduce different strongly nonlinear asymptotic models for the full Euler
system (1.4). The weakly nonlinear models (Regime 2) are presented in Section 3. The first
assumption we use is the so-called shallow water assumption

µ ≪ 1,

which states that the depth of the two layers of fluids are small when compared with the char-
acteristic wavelength of the system. The key ingredient in the construction of the asymptotic
models in the shallow water regime, lies in the construction and the justification of the following
expansion of the operators G1, G2 and H :

Lemma 2.1. Let ζ1, ζ2, ψ1, ψ2, such that (ζ1, ζ2, ∂xψ1, ∂xψ2) ∈ W 1,∞([0, T ];Hs+t0(R)), with
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s > 1 and t0 ≥ 9/2, and such that (1.5) is satisfied. Then one has
∣

∣

∣G1(ψ1, ψ2) + µ∂x(h1∂xψ1 + h2∂xψ2)− µ2∂x

(

T [h1, h2]∂xψ1 + T [h2, 0]∂xψ2

−1

2
(h21∂

2
x(h2∂xψ2))− (h1ǫ1

d

dx
ζ1∂x(h2∂xψ2))

)∣

∣

∣

L∞Hs
≤ µ3C0,

∣

∣

∣G2ψ2 + µ∂x(h2∂xψ2)− µ2∂xT [h2, 0]∂xψ2

∣

∣

∣

L∞Hs
≤ µ3C0,

∣

∣

∣H(ψ1, ψ2)− ∂xψ1 − µ∂x

(

h1(∂x(h1∂xψ1) + ∂x(h2∂xψ2))

−1

2
h21∂

2
xψ1 − h1ǫ1(∂xψ1)

d

dx
ζ1(x)

)∣

∣

∣

W 1,∞Hs
≤ µ2C0,

with C0 = C0

(

1
hmin

,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

, and the operator T defined by

T [h, b]V ≡ −1

3
∂x(h

3∂xV ) +
1

2

(

∂x(h
2(∂xb)V ))− h2(∂xb)(∂xV )

)

+ h(∂xb)
2V.

These estimates have been proved for L∞([0, T ];Hs) norms in Propositions 2.2, 2.5 and 2.7
of [20]. The proof can easily be adapted to work with the time derivative of the functions,
following in the proof of [20, Proposition 2.12].

The idea is then simply to plug these expansions into the full Euler system (1.4), and withdraw
all O(µ2) terms. Then, using the fact that ζ1 is a forced parameter of our problem, the system
reduces to two evolution equations for (ζ2, v), with v the shear velocity defined by

(2.1) v ≡ ∂x
((

φ2 − γφ1
) ∣

∣

z=ǫ2ζ2

)

= ∂xψ2 − γH(ψ1, ψ2).

These calculations are postponed to Appendix A for the sake of readability, and we directly
present here the system thus obtained:

(2.2)















































(∂t − Fr ∂x)ζ2 + ∂x

(

h2
h1 + γh2

(h1v + γαFr ζ)

)

+ µ∂x
(

L(v1, v2)
)

= 0,

(∂t − Fr ∂x)v + (γ + δ)∂xζ2 +
ǫ2
2
∂x

( |h1v + γαFr ζ|2 − γ|h2v − αFr ζ|2
(h1 + γh2)2

)

+µǫ2∂x
(

Q[v1, v2]
)

=
1

Bo
∂2x

(

∂xζ2
√

1 + µǫ22|∂xζ2|2

)

,

where L andQ are respectively linear and quadratic in (v1, v2), the latter being the approximation
at order O(µ) of (∂xψ1, ∂xψ2) given by

(2.3) v1 ≡ −h2v − αFr ζ1
h1 + γh2

, and v2 ≡ h1v + γαFr ζ1
h1 + γh2

.

Precisely, the operators L and Q are defined by

(h1 + γh2) L(v1, v2) = γh2T [h1, h2]v1 − h1T [h2, 0]v2

+ γh1h2

(

∂x

(

h21
2
∂xv1 − h1(∂xh2)v1

)

+
h1
2
∂2x(h2v2)− (∂xh2)∂x(h2v2)

)

,

(h1 + γh2) Q[v1, v2] = γ(v2 − v1)(T [h1, h2]v1 + T [h2, 0]v2)

+ γ(v2 − v1)h1

(

∂x

(

h21
2
∂xv1 − h1(∂xh2)v1

)

+
h21
2
∂2x(h2v2)− h1(∂xh2)∂x(h2v2)

)

− 1

2
(h1 + γh2)

(

(h2∂xv2)
2 − γ((∂xh2)v1 − ∂x(h2v2))

2
)

.
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The full Euler system (1.4) is consistent with this system at order O(µ2) on [0, T ], T > 0, as
stated in Proposition A.1, page 31.

The next step consists in deducing from system (2.2) simpler models, using the additional
assumptions of Regime 1 and Regime 2 (see page 10). The full Euler system (1.4) is still con-
sistent at order O(µ2) with the models thus obtained, that is (see below) the strongly nonlinear
systems (2.4) and (2.6), the Boussinesq-type system (3.2) and its symmetrized version (3.3). The
KdV approximation (3.12) is then deduced from the symmetric Boussinesq-type system.

2.1 The fully nonlinear model in Regime 1

The system (2.2) only presumes some smallness on the shallowness parameter µ, that is to say
the depth of the fluids are small when compared with the characteristic wavelength of the system.
In this section, we use the additional smallness assumptions of Regime 1 in order to introduce a
simplified system, which remains consistent at order O(µ2). Therefore, we assume that

µ ≪ 1 ; α ≡ ǫ1
ǫ2

= O(µ) , 1− γ = O(µ),

where we recall that γ is the density ratio and α the ratio between the amplitudes of the de-
formations at the surface and at the interface. As it has been said in the introduction, these
assumptions are very natural in the framework of our study. The first one suppose that the
deformation induced by the presence of the ship at the surface is small when compared with the
depth of the two layers of fluid, and small when compared with the attainable size of the wave
generated at the interface. The second one is the classical Boussinesq approximation.

The first obvious observation is that the total depth of the fluid is then approximatively
constant, equal to h ≡ 1 + 1

δ at order O(µ). What is more, one has

h1 + γh2 = h + O(µ) ≡ 1 +
1

δ
+ O(µ).

Therefore, the approximations of (∂xψ1, ∂xψ2) at order O(µ) given in (2.3) are now simply

h2v = −h v1 +O(µ), h1v = h v2 +O(µ).

It follows then some substantial simplifications, and one obtains in the end the system

(2.4)















































(∂t − Fr ∂x)ζ2 + ∂x

(

h1h2
h1 + γh2

v + h2
αFr

h
ζ1

)

+ µ∂x
(

P1v
)

= 0,

(∂t − Fr ∂x)v + (γ + δ)∂xζ2 + ǫ2∂x

(

1

2

|h1v|2 − γ|h2v|2
(h1 + γh2)2

+
αFr

h
ζ1v

)

+ µǫ2∂x
(

P2[v]
)

=
1

Bo
∂2x

(

∂xζ2
√

1 + µǫ22|∂xζ2|2

)

,

where h ≡ 1 + 1
δ and the operators P1 and P2 are defined by

h2 P1v =
1

3

(

h2∂x(h
3
1∂x(h2v)) + h1∂x(h

3
2∂x(h1v))

)

,

h2 P2[v] =
v

3
∂x
[

h31∂x(h2v)− h32∂x(h1v)
]

+
1

2

(

(h1∂x(h2v))
2 − (h2∂x(h1v))

2
)

.
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Linearizing the system (2.4) around the rest state, leads to











(∂t − Fr ∂x)ζ2 +
1

γ + δ
∂xv + µ

1

3δ(1 + δ)
∂3xv =

αFr

1 + δ
∂xζ1,

(∂t − Fr ∂x)v + (γ + δ)∂xζ2 =
1

Bo
∂3xζ2,

from which we can easily deduce dispersion relation of the system, without forcing. Indeed, setting
α ≡ 0, the wave frequency ω(k), corresponding to plane-wave solutions eik·X−iωt, is solution of
the quadratic equation

(2.5) (Fr k + ω)2 = k2
(

1 +
k2

Bo(γ + δ)

)(

1 − µk2
δ + γ

3δ(1 + δ)

)

.

Therefore, for high frequencies, there is no real-valued solution of (2.5), which means that the
system (2.4) is linearly ill-posed, and leads to instabilities. In order to deal with this issue, we
use a nonlinear change of variables on the shear velocity v, that leads to a formally equivalent
system. This idea is not new (see [5, 44, 15, 20] for example), and usually relies on a “shear
velocity” constructed from horizontal velocities at any depth in the upper and lower layers. The
choice of the depth allows then to control properties of the linear relation dispersion. Here, we
define w with

h1h2
h1 + γh2

w ≡ h1h2
h1 + γh2

v + µP1v =⇒ v = w − µ
hP1w

(h− h2)h2
+O(µ2).

This leads immediately to the following system, equivalent at order O(µ2):

(2.6)















































(∂t − Fr ∂x)ζ2 + ∂x

(

h1h2
h1 + γh2

w + h2
αFr

h
ζ1

)

= 0,

(∂t − Fr ∂x) (w − µS1w) + (γ + δ)∂xζ2 + ǫ2∂x

(

1

2

h21 − γh22
(h1 + γh2)2

w2 + w
αFr

h
ζ1

)

+ µǫ2∂x (w S2w) =
1

Bo
∂2x

(

∂xζ2
√

1 + µǫ22|∂xζ2|2

)

,

with h ≡ 1 + 1
δ , h1 ≡ 1 + ǫ1ζ1 − ǫ2ζ2, h2 ≡ 1

δ + ǫ2ζ2, and the operators

S1w ≡ 1

3

(

∂2x
(

h1h2w
)

− (∂xh2)
2w
)

,

S2w ≡ h1h2
3h

(

(∂2xh2)w + 2(∂xw)(∂xh2)
)

+
h1 − h2

2h
(∂xh2)

2w.

Under this form, our system corresponds to the Green-Naghdi model presented in the one-layer
case in [1, 2], and proved to be well-posed and convergent, in the sense that their solutions provide
an approximation at order O(µ2) in L∞([0, T ];Hs) to the solutions of the one layer water wave
equations. When withdrawing all O(µ) terms, one obtains a shallow water model, similar to
the ones derived in [16] and [17] in the flat rigid lid case (the forcing terms induced by the
presence of the body do not appear). Such a system has been studied in details and analyzed
as a hyperbolic system (leading to well-posedness results under reasonable assumptions on the
initial data) in [39, 24, 9].
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One can check that the issue of linear ill-posedness is now solved. Indeed, linearizing the
system (2.6) around the rest state, leads to











(∂t − Fr ∂x)ζ2 +
1

γ + δ
∂xw =

αFr

1 + δ
∂xζ1,

(∂t − Fr ∂x)(1−
µ

3δ
∂2x)w + (γ + δ)∂xζ2 =

1

Bo
∂3xζ2.

The dispersion relation of this linear system, when setting α ≡ 0, is

(2.7) (Fr k + ω)2
(

1 +
µ

3δ
k2
)

= k2
(

1 +
1

(γ + δ) Bo
k2
)

,

which leads to real-valued waves frequencies ω, for any values of k ∈ R.

Let us remark that under the assumptions of regime 1, the relations (2.5) and (2.7) are
asymptotically equivalent at order O(µ2k4), so that the effect of the nonlinear change of variable
only affects high frequencies.

We now state that the two systems (2.4) and (2.6) are equivalently justified as models for the
full Euler system, with the following consistency result.

Proposition 2.2. Assuming that α = O(µ) and 1 − γ = O(µ), the full Euler system (1.4) is
consistent with the models (2.4) and (2.6), both at precision O(µ2) on [0, T ], with T > 0.

Proof. Let U ≡ (ζ1, ζ2, ψ1, ψ2) be a strong solution of (1.4), bounded inW 1,∞([0, T ];Hs+t0) with
s > 1 and t0 ≥ 9/2, and such that (1.5) is satisfied with ζ1(t, x) ≡ ζ1(x). The consistency
result of Proposition A.1 states that (ζ2, v), with v ≡ ∂xψ2 − γH(ψ1, ψ2), satisfies (2.2), up to
R1 = (r1, r2)

T ∈ L∞([0, T ];Hs)2, with (for i = 1, 2)

∣

∣ri
∣

∣

L∞Hs ≤ µ2 C0

(

1

hmin
,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

.

Since R1, R2, T and ∂xH (defined in Appendix A) involve two spatial derivatives, and thanks
to straightforward calculations using the smallness assumptions of regime 1, one has for i = 1, 2

∣

∣Li − Pi

∣

∣

L∞([0,t);Hs)
≤ µ2 C0

(

1

hmin
,
∣

∣(h1, h2, v)
∣

∣

L∞Hs+2

)

≤ µ2 C0

(

1

hmin
,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

.

The consistency of (1.4) with (2.4) is therefore proved.

Now, we set w ≡ v + µh1+γh2

h1h2
P1[h2]v, and one has immediately, using the fact that Hs(R)

is an algebra for s > 1/2,

∣

∣

∣

∣

v − w + µ
hP1[h2]w

(h− h2)h2

∣

∣

∣

∣

W 1,∞Hs

≤ µ2 C0

(

1

hmin
,
∣

∣(h1, h2, v)
∣

∣

W 1,∞Hs+2

)

≤ µ2 C0

(

1

hmin
,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

.

It is then straightforward to deduce from the previous consistency result, the consistency of (1.4)
with (2.6).
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2.2 Numerical simulations

In figures 3 and 4, we plot the behavior of the flow predicted by the model (2.6), for different
values of the parameters. In these simulations, and throughout the paper, we use zero initial
data conditions, and a function ζ1(x) defined by

ζ1(x) ≡
{

− exp(− x2

(1−x)(x+1)) if x ∈ (−1, 1),

0 otherwise.

The parameters of the system ǫ2, µ, α ≡ ǫ1/ǫ2, δ, γ, Fr and Bo, are specified below each of the
figures. The schemes used are described and justified in Appendix D.

Here, we decide to study the effect of the depth ratio coefficient δ. We choose two different
values for the depth ratio: δ = 5/12 (corresponding to the experiments of [53]), or δ = 12/5 for
a thicker upper layer. Each time, we set Fr = 1, since the amplitude of the generated waves, and
therefore the magnitude of the wave resistance coefficient, is significantly smaller away from this
critical value. In that way, for subcritical and supercritical values, the weakly nonlinear models
are justified, and the analysis of these cases is postponed until Section 3.3.

Each figure contains three panels. The left panel represents the interface deformation, de-
pending on space (x ∈ [−20, 20]) and time (t ∈ [0, 15]) variables. The right panel contains the
time evolution of the wave resistance coefficient, computed thanks to formula (C.4). Finally, we
plot in the bottom panel the situation of the system (i.e. the surface and interface deformations)
at final time t = 15.

Figure 3: Flow predicted by (2.6), with steady initial data and a thicker lower layer.
ǫ2 = 1, α = µ = 0.1, γ = 0.99, Fr = 1, Bo = 100, δ = 5/12.

Let us express a few remarks on these results. There are some similarities for each of the
situations. First, one sees that there is no deformation on the right hand side of the plots,



16 Asymptotic models for the generation of internal waves, and the dead-water phenomenon

Figure 4: Flow predicted by (2.6), with steady initial data and a thicker upper layer.
ǫ2 = 1, α = µ = 0.1, γ = 0.99, Fr = 1, Bo = 100, δ = 12/5.

which corresponds to the up-streaming part. This is due to the fact that we have set Fr = 1,
which corresponds to the maximum gravitational wave velocity in the flat rigid lid case. On
the contrary, on the left-hand side (down-streaming part), one remarks a small elevation wave,
followed by even smaller perturbations, progressing with velocity c− = −2 (in the frame of the
ship). This corresponds to the η− part of the KdV approximation decomposition, and is studied
with more details in Section 3.3. Finally, the most important part takes place just behind the
location of the body. Each time, an important wave of elevation is generated just behind the
body, producing a severe wave resistance (see Remark C.1 page 38). This wave comes with a tail
of smaller waves, that are located away from the boat, and therefore do not produce any drag.

However, one can see that the shape and time-behavior of this elevation wave is quite different,
depending on the value of the depth ratio δ. When the upper fluid domain is thiner than the
lower fluid’s, the generated wave is flattening as it is growing up. Its height is relatively low, but
the deformation carries on with a depression wave, located just below the body. On the contrary,
when the upper fluid domain is the thicker one, then the generated wave remains sharp and is
continuously growing. It is separated with its tail, while all of the energy produced by the ship
contributes to the elevation of the wave. The wave produced wave resistance is greater in this
case, and the dead-water effect appears therefore much stronger.

The experiments conducted in [53] (this has also been reported in [37] for example) exhibit
an interesting behavior, that is not predicted by our models. Indeed, with their setting, the
dead-water phenomenon appears to be periodic in some sense, as the generated wave increases
its amplitude, slows down the boat, breaks, and the process repeats. This cannot be seen in
any of our simulations in figures 3 and 4. As a matter of fact, even when running simulations
for much longer (around ten times) time intervals, the solution of (2.6) does not display such a
phenomenon. It is interesting to see that this is a major difference with the solutions of the KdV
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Figure 5: Flow predicted by (2.6), when the velocity of the body Fr is not constant.
ǫ2 = 1, δ = 1, α = µ = 0.1, γ = 0.99, Bo = 100.

approximation, which generate periodically up-streaming waves, inducing an oscillation in the
related wave resistance (see Figure 9 page 28). However, even with this model, the time-period of
generation of these solitons (∆T ≈ 100 in our situation) is too large to explain the phenomenon.
This discrepancy is due to our assumption of a constant velocity for the body, as the setting
in [53] (presented in more details in [52]) constrains a constant power. As a numeric experiment,
we performed simulations with a Froude number Fr adjusted at each step:

Fr((n+ 1)∆t) ≡ Fr(n∆t)− Cstt1(CW (n∆t)− Cstt2).

This roughly corresponds to a case where the acceleration of the ship is given by a constant force
brought to the ship, minus the resistance suffered by the body. We present in Figure 5 the results
of this computation.

A periodicity can clearly be seen in the wave resistance (with a time period of order ∆T ≈ 10).
One can explain the phenomenon as follows. The velocity of the ship, suffering from the drag
generated by the wave resistance, decreases down to a value where the generated wave resistance is
very small. Released from its drag, the ship speeds up, and the phenomenon repeats periodically.

3 Weakly nonlinear models

The aim of this section is to introduce simple weakly nonlinear models for our problem, using
the smallness assumptions of Regime 2:

µ≪ 1 ; ǫ2 = O(µ), α = O(µ).

We recall that µ stands for the shallowness parameter, that is the ratio between the depth of
the upper fluid layer and the internal wavelength. The parameter ǫ2 measures the magnitude of
the deformation at the interface when compared with the upper fluid layer, and α is the ratio
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between the amplitudes of the deformations at the surface and at the interface. As discussed
in Remark 1.2, the effect of the surface tension term will be relevant only if Kelvin-Helmholtz
instabilities, located at high frequencies, appear. The models we obtain in this section do not give
rise to these instabilities, and we therefore neglect the surface tension term, and set Bo−1 ≡ 0
(Bo−1 = O(µ2) would in fact suffice).

Starting with the strongly nonlinear model (2.2), we deduce easily a Boussinesq-type model
and its symmetrized version. Then, using a classical BKW expansion, we obtain a rougher
approximation, that consists in two uncoupled Korteweg-de Vries equation, with a forcing term.
These two equations are studied in details in Section 3.3. The symmetric Boussinesq-type model,
as well as the KdV approximation, are justified thanks to convergence results.

3.1 The Boussinesq-type models

Let us withdraw O(µ2) terms in system (2.2), using the assumptions of Regime 2. One obtains
straightforwardly the following system
(3.1)






















(∂t − Fr ∂x)ζ2 +
1

δ + γ
∂xv + ǫ2

δ2 − γ

(γ + δ)2
∂x(ζ2v) + µ

1 + γδ

3δ(δ + γ)2
∂3xv = −α Fr γ

δ + γ

d

dx
ζ1,

(∂t − Fr ∂x)v + (γ + δ)∂xζ2 +
ǫ2
2

δ2 − γ

(γ + δ)2
∂x
(

|v|2
)

= 0.

This Boussinesq-type system can be written in a compact form as

(3.2) ∂tU + A0∂xU + ǫ2A1(U)∂xU − µA2∂
3
xU = αb0(x),

with U = (ζ2, v)
T , b0 = −Fr γ

δ+γ (
d
dxζ1, 0)

T , and

A0 =

(−Fr 1
δ+γ

δ + γ −Fr

)

, A1(U) =
δ2 − γ

(γ + δ)2

(

v ζ2
0 v

)

, A2 =

(

0 − 1+γδ
3δ(δ+γ)2

0 0

)

.

Following the classical theory of hyperbolic quasilinear equations, our aim is now to obtain an
appropriate symmetrizer of this system. Let us define

S(U) ≡ S0 + ǫ2S1(U) − µS2∂
2
x

=

(

δ + γ 0
0 1

δ+γ

)

+ ǫ2
δ2 − γ

(γ + δ)2

(

0 −v
−v ζ2

)

− µ

(

0 0

0 − 1+γδ
3δ(δ+γ)2

)

∂2x .

Multiplying (3.2) on the left by S(U)− µKS0∂
2
x, and withdrawing the O(µ2) terms, leads to the

following equivalent system

(3.3)
(

S0 + ǫ2S1(U) − µ(S2 +KS0)∂
2
x

)

∂tU + ( Σ0 + ǫ2Σ1(U) − µΣ2 ) ∂xU = αb(x),

with b = −Fr γ( d
dxζ1, 0)

T , and

Σ0 =

(−Fr(γ + δ) 1
1 −Fr

γ+δ

)

, Σ1(U) =
δ2 − γ

γ + δ

(

0 ζ2 +
Fr v
γ+δ

ζ2 +
Fr v
γ+δ

−Fr ζ2
γ+δ

)

,

Σ2 = − 1 + γδ

3δ(δ + γ)

(

0 1
1 0

)

+ K Σ0.
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As we can see, the system (3.3) is perfectly symmetric, and K can be chosen so that S0 and
S2+KS0 are definite positive. With these properties, we are able to use energy methods in order
to prove that (3.3) is well-posed, and convergent with the full Euler system (1.4), at order O(µ)
up to times of order O(1/µ). More precisely, one has

Proposition 3.1. Let s > 3/2, t0 ≥ 9/2 and U = (ζ1, ζ2, ψ1, ψ2) be an adapted solution of the
full Euler system (1.4), bounded in W 1,∞([0, T/µ);Hs+t0). We define V ≡ (ζ2, v) by

v ≡ ∂x
(

φ2
∣

∣

z=ǫ2ζ2
− γφ1

∣

∣

z=ǫ2ζ2

)

≡ ∂xψ2 − γH(ψ1, ψ2).

Moreover, let us assume that there exists a constant C0 such that ǫ2 ≤ C0µ and α ≤ C0µ. Then
there exists a constant C1 = C( 1

γ+δ , γ + δ, C0) > 0 such that if ǫ2
∣

∣V |
t=0

∣

∣

Hs+1
µ

≤ 1
C1

, there ex-

ists T > 0, independent of µ, and a unique solution VB ∈ C0([0, T/µ);Hs+1
µ ) ∩ C1([0, T/µ);Hs

µ),
bounded in W 1,∞([0, T/µ);Hs

µ), of the Cauchy problem (3.3) with VB |
t=0

= V |
t=0

. Moreover,
one has for all t ∈ [0, T/µ),

∣

∣V − VB
∣

∣

L∞([0,t];Hs)
≤ µ2tC,

with C = C( 1
hmin

, 1
γ+δ , γ + δ,

∣

∣V
∣

∣

W 1,∞Hs+t0
, T ).

Before starting with the proof, let us remark that the proposition is not empty only if there
actually exists a family of solutions of (1.4), smooth and bounded in W 1,∞([0, T/µ);Hs+t0). As
discussed in Remark 1.2 page 8, this requires adding a surface tension term. However, this surface
tension term is very small in practical cases, so that we can assume 1

Bo = O(µ2), and the result
is obtained as in the proof presented below.

Proof. Step 1: Well-posedness. In order to prove the well-posedness of the symmetric sys-
tem (3.3), we use techniques of [19]. It is proved in Proposition 2.4 that systems of the form (3.3)
(with four equations instead of two and without the right hand size), satisfying

i. The matrices S0, Σ0, S2, Σ2 are symmetric,

ii. S1(·) and Σ1(·) are linear mappings, and for all U ∈ R
4, S1(U) and Σ1(U) are symmetric,

iii. S0 and S2 are definite positive,

are well-posed and satisfy an energy estimate. The proof is easily adapted for the case of a non-
zero right hand side, and we briefly give the arguments here. The key point of the proof relies on
a differential inequality, satisfied by the following energy

Es(U) ≡ 1/2(S0Λ
sU,ΛsU) + ǫ2/2(S1(U)ΛsU,ΛsU) + µ/2(S2Λ

s∂xU,Λ
s∂xU).

This energy is easily proved, thanks to the positiveness of S0 and S2 and using the smallness
assumptions of Regime 2, to be equivalent to the

∣

∣ ·
∣

∣

Hs+1
µ

norm, that is to say there exists C0 > 0

such that
1

C0

(

∣

∣U
∣

∣

2

Hs + µ
∣

∣U
∣

∣

2

Hs+1

)

≤ Es(U) ≤ C0

(

∣

∣U
∣

∣

2

Hs + µ
∣

∣U
∣

∣

2

Hs+1

)

.

Then, we prove that there exists C1 = C1(
1

γ+δ , γ + δ) > 0 such that if ǫ2
∣

∣U
∣

∣

Hs+1
µ

≤ 1
C1

, then the

operator defined by P (U, ∂x) = S0 + ǫ2S1(U)− µS2∂
2
x : Hs+1 → Hs−1 is one-to-one and onto,

and that P (U, ∂x)
−1
(

Σ0+ ǫ2Σ1(U)−Σ2∂
2
x

)

is uniformly bounded Hs
ǫ → Hs

ǫ , so that any solution
V of (3.3) will satisfy the a priori estimate

∣

∣∂tV
∣

∣

Hs
ǫ

=
∣

∣

∣P (V, ∂x)
−1
(

(

Σ0 + ǫ2Σ1(V )− Σ2∂
2
x

)

∂xV − αb
)∣

∣

∣

Hs
ǫ

≤ C2(
∣

∣V
∣

∣

Hs+1
ǫ

+ α
∣

∣b
∣

∣

Hs),
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with C2 independant of ǫ2 and µ, as long as ǫ2
∣

∣V
∣

∣

Hs+1
µ

≤ 1
C1

. It follows that Es(V ) satisfies

d

dt
Es(V ) = ǫ2/2(S1(∂tV )ΛsV,ΛsV )− ǫ2([Λ

s, S1(V )]∂tV,Λ
sV ) + ǫ2/2((Σ1(∂xV )ΛsV ),ΛsV )

− ǫ2([Λ
s,Σ1(V )]∂xV,Λ

sV ) + α(Λsb,ΛsV )

≤ C3

(

µ
∣

∣V
∣

∣

2

Hs

(∣

∣V
∣

∣

Hs+1
µ

+ α
∣

∣b
∣

∣

Hs

)

+ α
∣

∣b
∣

∣

Hs

∣

∣V
∣

∣

Hs

)

≤ C4

(

ǫ2Es(V )3/2 + α
∣

∣b
∣

∣

HsEs(V )1/2
)

.

The last inequalities come from Cauchy-Schwarz inequality, Sobolev embeddings, Kato-Ponce
commutator estimates and the above a priori estimate (see Appendix A of [19]). The Gronwall-
Bihari’s Lemma allows to conclude that as long as ǫ2

∣

∣V
∣

∣

Hs+1
µ

≤ 1
C0

, one has

(3.4)
∣

∣V
∣

∣

Hs+1
µ

≤ C0 E(Rs)
1/2 ≤ C5α

∣

∣f
∣

∣

Hs t.

Using the assumptions of Regime 2 (α = O(µ), ǫ2 = O(µ)), one can then follow the classical
Friedrichs proof, and obtain the existence of T (γ + δ, 1

γ+δ , (ǫ2
∣

∣V 0
∣

∣

Hs+1
µ

)−1) > 0 and a solution V

of (3.3), defined over times [0, T/µ), such that V ∈ C0([0, T/µ);Hs+1) ∩C1([0, T/µ);Hs).
Finally, the uniqueness of the solution is obtained in the same way, applying the energy esti-

mate to the difference of two solutions. Indeed, let V1, V2 ∈ C0([0, T/ǫ);Hs+1)∩C1([0, T/ǫ);Hs)
be two solutions of the Cauchy problem (3.3) with same initial value V1 |t=0

= V2 |t=0
= V 0. The

functions V1 and V2 are uniformly bounded thanks to (3.4). One can immediately check that
R ≡ V1 − V2 satisfies

(

S0 + ǫ2S1(V1)− µS2∂
2
x

)

∂tΛ
sR+

(

Σ0 + ǫ2Σ1(V1)− µΣ2∂
2
x

)

∂xΛ
sR

+ǫ2[Λ
s, S1(V1)]∂tR+ ǫ2[Λ

s,Σ1(V1)]∂xR = ǫ2F,(3.5)

with F = −Λs
(

S1(R)∂tV2 +Σ1(R)∂xU2

)

. Then, we can carry out the above method on R with

a modified right hand side, and obtain the equivalent energy estimate

d

dt
Es(R) ≤ ǫ2C6(

∣

∣V1
∣

∣

Hs +
∣

∣V2
∣

∣

Hs)Es,

with C6 = C( 1
γ+δ , δ+γ,

∣

∣U0
∣

∣

Hs+1
ǫ

). From Gronwall-Bihari’s inequality, using the uniform bound-

edness of V1 and V2 on [0, T/ǫ), and since Es(R) |t=0
= 0, one has immediately Es(R) = 0 on

[0, T/ǫ), and finally V1 = V2.

Step 2: Consistency. We prove that, assuming that α = O(µ) and ǫ2 = O(µ), the full Euler
system (1.4) is consistent with the models (3.2) and (3.3), both at precision O(µ2) on [0, T ],
T > 0.

Let U ≡ (ζ1, ζ2, ψ1, ψ2) be a strong solution of (1.4), bounded in W 1,∞([0, T ];Hs+t0) with
s > 1 and t0 ≥ 9/2, and such that (1.5) is satisfied with ζ1(t, x) ≡ ζ1(x). The consistency
result of Proposition A.1 states that (ζ2, v), with v ≡ ∂xψ2 − γH(ψ1, ψ2), satisfies (2.2), up to
R1 = (r1, r2)

T ∈ L∞([0, T ];Hs)2, satisfying (for i = 1, 2)

∣

∣ri
∣

∣

L∞Hs ≤ µ2 C0

(

1

hmin
,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

.

It is the straightforward, as in the proof of Proposition 2.2, to show that the terms dropped

in (3.1), and later in (3.3), are all bounded by µ2 C0

(

1
hmin

,
∣

∣U
∣

∣

W 1,∞Hs+4

)

in L∞([0, T ];Hs)
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norm. Finally, (ζ2, v) satisfies (3.2) and (3.3) with modified right hand sides, i.e. , respectively,

αb̃0 = αb0 + µ2f0, and αb̃ = αb + µ2f,

with f0, f uniformly bounded in L∞([0, T ];Hs).

Step 3: Convergence. The convergence estimates of the proposition follow easily from the cal-
culations of Step 1, together with Step 2. Indeed, thanks to the consistency result, V − VB
satisfy (3.5), with modified right hand side

F̃ ≡ F + µ2f, f ∈ L∞([0, T ];Hs).

It follows that Es(V − VB) satisfies

d

dt
Es(V − VB) ≤ ǫ2C6Es(V − VB) + µ2C7

∣

∣f
∣

∣

HsEs(V − VB)
1/2,

and the Gronwall-Bihari’s Lemma leads to

∣

∣V − VB
∣

∣

L∞([0,T/µ);Hs+1
µ )

≤ C0Es(V − VB)
1/2 ≤ C7µ

2

C6ǫ2

∣

∣f
∣

∣

Hs(e
C6ǫ2t − 1).

The convergence estimate of the proposition follow from ǫ2 = O(µ).

3.2 The Korteweg-de Vries approximation

In this section, we use a BKW expansion, in order to deduce from the symmetric Boussinesq-type
system (3.3), an approximated model that consists in two uncoupled forced Korteweg-de Vries
(fKdV) equations. This method has been used, for example, in [19, 32], and is briefly presented
in the following.

The idea is to look for an approximate solution of the Cauchy problem (3.3) with initial data
U0, under the form

Uapp(t, x) = U0(µt, t, x) + µU1(µt, t, x),

with the profiles U0(τ, t, x) and µU1(τ, t, x) satisfying U0 |t=τ=0
= U0 and U1 |t=τ=0

= 0.
Plugging the Ansatz into (3.3) leads to the following equation

(S0∂t + Σ0∂x)U0 + µS0∂τU0 + ǫ2
(

S1(U0)∂tU0 +Σ1(U0)∂xU0

)

− µ
(

S2∂
2
x∂tU0 +Σ2∂

3
xU0

)

+µ(S0∂t +Σ0∂x)U1 + µ2R = 0.(3.6)

We now deduce U0(τ, t, x) and U1(τ, t, x), by solving (3.6) at each order.

At order O(1) : We solve

(3.7) ( S0∂t + Σ0∂x )U0 = 0.

Let us define e± ≡ 1√
2
(± 1√

γ+δ
,
√
γ + δ)T . One can check that the basis satisfies

ei · Σ0ej = ciδi,j , and ei · S0ej = δi,j ,

with δi,j the classical Kronecker delta symbol, and c± = ±1− Fr.
Therefore, when we define u± ≡ e± · S0U0 (and hence U0 = u+e+ + u−e−), the scalar

product of (3.7) with e± leads to

( ∂t + c±∂x )u± = 0.
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Finally, since u± satisfies a scalar transport equation, we use the notation

(3.8) u±(τ, t, x) = u±(τ, x − c±t) = u±(τ, x±),

with initial data u±(0, x±) = e± · S0U
0(x±).

At order O(µ) : We solve

(3.9) S0∂τU0+
ǫ2
µ

(Σ1(U0)∂xU0 + S1(U0)∂tU0)−Σ2∂
3
xU0−S2∂

2
x∂tU0+(S0∂t+Σ0∂x)U1 =

α

µ
b(x),

that we can split in

(3.10) ∂τu± + λ±u±∂x±
u± + ν±∂

3
x±
u± = β±(x),

with λ± ≡ ǫ2
µ e± · (Σ1 − c±S1)(e±))e±, ν± ≡ e± · (−Σ2 + c±S2)e± and β± ≡ α

µe± · b; and in
the other hand,

(3.11) (∂t + ci∂x)ei ·S0U1+
∑

(j,k) 6=(i,i)

αijkuk(τ, x− ckt)∂xuj(τ, x− cjt) =
∑

j 6=i

βij∂
3
xuj(τ, x− cjt),

with αijk ≡ ei · (Σ1(ek)− cjS1(ek))ej and βij ≡ ei · (Σ2 − cjS2)ej .
It is clear that ui satisfies (3.8) and (3.10), if and only if ui(ǫt, t, x) satisfies the Korteweg-de

Vries equation:

∂tu± + c±∂xu± + µ
(

λ±u±∂xu± + ν±∂
3
xu±

)

= µβ±(x).

Finally, simple calculations show that in our case, we can decompose

ζ2 ≡ η+ + η−, with η± ≡ ± 1
√

2(γ + δ)
u±

satisfying precisely the following KdV equation

∂tη± + (−Fr±1)∂xη± ± ǫ2
3

2

δ2 − γ

γ + δ
η±∂xη± ± µ

1

6

1 + γδ

δ(γ + δ)
∂3xη± = −αFr γ

d

dx
ζ1.

Unsurprisingly, we recover the KdV approximation with a flat rigid lid, when α = 0 (see [19]
and references therein).

Using these forced Korteweg-de Vries equations as an approximation of the full problem is
justified up to times of order O(1/µ) by the following proposition.

Proposition 3.2. Let s > 1/2, t0 ≥ 5 + 5/2 and U = (ζ1, ζ2, ψ1, ψ2) be an adapted solution of
the full Euler system (1.4), bounded in W 1,∞([0, T/µ);Hs+t0). We define V ≡ (ζ2, v) by

v ≡ ∂x
(

φ2
∣

∣

z=ǫ2ζ2
− γφ1

∣

∣

z=ǫ2ζ2

)

≡ ∂xψ2 − γH(ψ1, ψ2).

Then there exists η+ and η−, the two solutions of the following forced Korteweg-de Vries equation

(3.12) ∂tη± + (−Fr±1)∂xη± ± ǫ2
3

2

δ2 − γ

γ + δ
η±∂xη± ± µ

1

6

1 + γδ

δ(γ + δ)
∂3xη± = −αFr γ

d

dx
ζ1(x),

with η± |
t=0

= 1
2

(

ζ2 ± 1
γ+δv

)

|
t=0

. Moreover, if there exists a constant C0 such that ǫ2 ≤ C0µ and

α ≤ C0µ, then one has for all t ∈ [0, T/µ),
∣

∣ζ2 − (η+ + η−)
∣

∣

L∞([0,t];Hs +
∣

∣v − (γ + δ)(η+ − η−)
∣

∣

L∞([0,t];Hs)
≤ µ

√
tC,
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with C = C( 1
hmin

, 1
γ+δ , γ + δ,

∣

∣U
∣

∣

W 1,∞Hs+t0
, C0).

Additionally, if there exists a > 1/2 such that (1 + x2)aV |
t=0

∈ Hs+5, then one has the
improved estimate

∣

∣ζ2 − (η+ + η−)
∣

∣

L∞([0,t];Hs +
∣

∣v − (γ + δ)(η+ − η−)
∣

∣

L∞([0,t];Hs)
≤ ǫC′,

with C′ = C( 1
hmin

, 1
γ+δ , γ + δ,

∣

∣U
∣

∣

W 1,∞Hs+t0
,
∣

∣(1 + x2)aV |
t=0

∣

∣

Hs+5).

The proposition is obtained by a simple adaptation of the techniques presented in [19], with
additional forcing terms in the Korteweg-de Vries equations. The proof is given in Appendix B,
for the sake of completeness.

3.3 Analysis of the forced Korteweg-de Vries equation

The forced Korteweg-de Vries equation

(3.13) ∂tu + c∂xu + ελu∂xu + εν∂3xu = ε
d

dx
f(x)

has attracted a lot of interests, especially in the framework of the one layer water wave problem
(where a moving topography, or pressure, is the forcing term that generates waves). Of particular
interest is the problem of the generation of solitons, that have first been numerically discovered by
Wu and Wu [43], and validated with experiments by Lee [33]. Using the Boussinesq-type system
or the KdV approximation, they found that starting with a zero initial data, the solution can
generate periodically an infinite number of solitary waves. Numerous work have have then tackled
this problem, including [55, 34, 49, 47]. It appeared that the Froude number (which is given by
1 − c in (3.13)) is playing a predominant role in this phenomenon, as the generation of solitons
only occurs for a narrow band of its values. One could roughly summarize the observations by
the existence of Fc > 1 such that

i. if Fr > Fc, then the flow approaches a steady state, symmetric and localized at the site of
forcing;

ii. for Fr < Fc, solitons are periodically generated at the site of forcing and radiated up-stream;

iii. the amplitude of the generated solitons goes to zero as Fr → −∞.

The existence of steady solitary waves of (3.13), and their stability is therefore essential. This
issue has been studied for specific forcing terms by Camassa and Wu in [11, 10], and for general
forcing terms by Choi, Lin, Sun and Whang in [14, 13]. They prove that for Fr sufficiently large,
there exists a unique small steady solution. Moreover, this solution is proved to be symmetric
and localized at the site of forcing, and stable in H1(R) (in the Lyapunov sense). The behavior
when the Froude number Fr approaches unity is more peculiar and depends on the sign of the
forcing term. Subcritical Froude numbers are not studied.

In the framework of our analysis, the values of the coefficients λ and ν depend on the param-
eters γ and δ, and their order of magnitude depends on ǫ2 and µ (the magnitude of the forcing
term depends mostly on α). We use the factor ε to keep in mind that all of these coefficients are
assumed to be small. More precisely, we recall

c± = ±1−Fr, ελ± = ±ǫ2
3

2

δ2 − γ

γ + δ
, εν± = ±µ1

6

1 + γδ

δ(γ + δ)
, εf(x) = −Frαγζ1(x).

When δ2−γ 6= 0, a simple change of parameters allows to recover values of the one layer problem,
and one obtains straightforwardly similar results. Our approach is quite different. In the following
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section, we prove that away from the critical speed (c = 0), the solution of (3.13) with small initial
data will remain small (in Hs(R) norm) for long times, using smallness assumptions on the forcing
terms and the coefficients ελ and εν. Numerically, it appears that the solution converges locally
towards a negative steady state in the supercritical case, and that small solitons are continuously
generated otherwise. Then, in Section 3.3.2, we study numerically the generation of up-streaming
solitons for Froude numbers around the critical value.

The consequences of this study to the dead-water effect are the following:

i. away from the critical Froude number, the drag suffered by the ship is always small;

ii. the peak of wave resistance occurs for Froude numbers just below the critical value;

iii. the time-period of the generation of solitons predicted by the KdV approximation is bigger
than the time-scale of relevance of the model, and another explanation has to be provided
to explain the periodic aspect described among others in [53].

3.3.1 Non-critical Froude numbers

In the following proposition, we obtain an improved growth rate for the solution of the forced
Korteweg-de Vries equation (3.13), if the velocity coefficient c is away from zero, when assuming
smallness on the nonlinearity and dispersion coefficients λ and ν, and on the initial data and the
forcing term. This phenomenon is easily explained, when looking at the linear transport equation
related to (3.13):

(3.14) ∂tv + c∂xv = ε
d

dx
f(x).

The Cauchy problem, with initial data v |
t=0

= εu0, is solved by

v ≡ ε u0(x− ct) +
ε

c

(

f(x)− f(x− ct)
)

.

The solution is therefore bounded for all times as soon as c 6= 0, and small if the initial data and
the forcing terms are small. We will obtain improved bound estimates on u the solution of the
forced KdV equation, by estimating the difference

∣

∣u− v
∣

∣

Hs .

Proposition 3.3. Let s > 3/2 and u be the solution of

∂tu + c∂xu + ελu∂xu + εν∂3xu = ε
d

dx
f(x),

such that u |
t=0

= εu0. Let us assume that there exists M > 0 such that

∣

∣

∣

∣

1

c

∣

∣

∣

∣

, |λ| , |ν| ,
∣

∣u0
∣

∣

Hs+3 ,
∣

∣f
∣

∣

Hs+3 ≤M.

Then there exists T (M, s) > 0 and C = C(M, s) > 0, such that the function u is bounded on
[0, T/ε] by

∣

∣u(t)
∣

∣

L∞([0,T/ε];Hs)
≤ Cε.

Proof. Thanks to [6], we know that the function u exists and is unique. We define as above

v ≡ ε u0(x− ct) +
ε

c

(

f(x)− f(x− ct)
)

,
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the solution of the transport equation

∂tv + c∂xv = ε
d

dx
f(x),

with same initial data v |
t=0

= εu0. Since the function v is uniformly bounded by
∣

∣v(t)
∣

∣

L∞(R;Hs)
≤ Cε,

the estimate of the proposition follows from the same estimate on the difference r ≡ u − v. It
is easy to check that r satisfies

(3.15) ∂tr + c∂xr + ελ(r + v)∂x(r + v) + εν∂3x(r + v) = 0,

and r |
t=0

= 0. When multiplying (3.15) by Λ2sr, and integrating, one obtains

1

2

d

dt
(Λsr,Λsr) + c(Λs∂xr,Λ

sr) + ελ(Λs ((r + v)∂x(r + v)) ,Λsr) − εν(Λs∂2x(r+v),Λ
s∂xr) = 0,

denoting (f, g) ≡
∫

R
fg the L2-based inner product. It follows then

1

2

d

dt

(

∣

∣r
∣

∣

2

Hs

)

= −ελ(Λs ((r + v)∂x(r + v)) ,Λsr) − εν(Λs∂3xv,Λ
sr).

Some of the terms of the right-hand side are straightforwardly estimated using Cauchy-Schwarz
inequality, and the algebraic properties of Hs(R), s > 1/2:

∣

∣(Λs∂3xv,Λ
sr)
∣

∣ ≤
∣

∣v
∣

∣

Hs+3

∣

∣r
∣

∣

Hs ,
∣

∣(Λs(v∂xv),Λ
sr)
∣

∣ ≤ C0(s)
∣

∣v
∣

∣

Hs+1

∣

∣v
∣

∣

Hs

∣

∣r
∣

∣

Hs ,
∣

∣(Λs(r∂xv),Λ
sr)
∣

∣ ≤ C0(s)
∣

∣v
∣

∣

Hs+1

∣

∣r
∣

∣

2

Hs .

As for the remaining terms, we integrate by part and obtain

(Λs(r∂xr),Λ
sr) = −1

2
(∂xrΛ

sr,Λsr) + ([Λs, r]∂xr,Λ
sr),

(Λs(v∂xr),Λ
sr) = −1

2
(∂xvΛ

sr,Λsr) + ([Λs, v]∂xr,Λ
sr),

with [T, f ] the commutator defined by [T, f ]g ≡ T (fg)− fT (g). Since for f ∈ Hs, s > 3/2, one
has

∣

∣∂xf
∣

∣

L∞ ≤
∣

∣f
∣

∣

Hs , one can use the classical Kato-Ponce Lemma [25] to deduce the following
estimates

∣

∣(Λs(v∂xr),Λ
sr)
∣

∣ ≤ C0(s)
∣

∣v
∣

∣

Hs

∣

∣r
∣

∣

2

Hs ,
∣

∣(Λs(r∂xr),Λ
sr)
∣

∣ ≤ C0(s)
∣

∣r
∣

∣

3

Hs .

Altogether, it follows that
∣

∣r
∣

∣

Hs satisfies the differential inequality

1

2

d

dt

(

∣

∣r
∣

∣

2

Hs

)

≤ C0(s)ελ
(

∣

∣v
∣

∣

2

Hs+1

∣

∣r
∣

∣

Hs +
∣

∣v
∣

∣

Hs+1

∣

∣r
∣

∣

2

Hs +
∣

∣r
∣

∣

3

Hs

)

+ εν
∣

∣v
∣

∣

Hs+3

∣

∣r
∣

∣

Hs ,

with C0(s) a constant depending only on the parameter s > 3/2. Now, using the assumptions of
the proposition, it is straightforward to see that one can rewrite

d

dt

∣

∣r
∣

∣

Hs ≤ C0ε
2 + C0(s)ε

(

ε2 + ε
∣

∣r
∣

∣

Hs +
∣

∣r
∣

∣

2

Hs

)

.
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Now, let us define T ⋆ the maximum time such that
∣

∣r
∣

∣

Hs ≤ ε on [0, T ⋆] (this is true at t = 0,
so that T ⋆ > 0 by a continuity argument). Then we deduce from the above inequality, and
Gronwall’s Lemma, that for all t ∈ [0, T ⋆],

∣

∣r
∣

∣

Hs ≤ C(s)ε2t,

with a constant C(s) depending only on the parameter s > 3/2. From this very a priori estimate,
we deduce that T ⋆ ≥ (C(s)ε)−1, and the proposition is proved.

Remark 3.4. One of the immediate consequences of Proposition 3.3 to our problem is that, in the
decomposition of the KdV approximation (Proposition 3.2), the function η− remains small on the
time interval where the KdV approximation is a relevant model. Indeed, as c− ≡ −1− Fr < −1,
then if η− |

t=0
= 0 (small in Hs+3 would suffice), then for t ∈ [0, T/µ), one has

∣

∣η−(t)
∣

∣

Hs ≤ C
( 1

γ + δ
, γ + δ,

∣

∣ζ1
∣

∣

Hs+3

)

µ.

Therefore, we focus in the following on η+, the solution of

(3.16) ∂tη+ + (1− Fr)∂xη+ + ǫ2
3

2

δ2 − γ

γ + δ
η+∂xη+ + µ

1

6

1 + γδ

δ(γ + δ)
∂3xη+ = −αFr γ

d

dx
ζ1.

In Figures 6 and 7, we compute the solution of (3.16), with zero initial data, in the supercritical
(Fr = 1.5) and subcritical (Fr = 0.5) cases. For each of the figures, we plot the flow, depending
on space and time variables, as well as the evolution of the related wave resistance coefficient CW ,
calculated with formula (C.5) page 37. We use two values for the depth ratio: δ ∈ {5/12, 12/5}.

(a) δ = 5/12. (b) δ = 12/5.

Figure 6: Subcritical flow: Fr = 0.5. α = ǫ2 = µ = 0.1, γ = 0.99.

As we are away from the critical Froude number, the amplitudes of the generated waves, as
well as the magnitude of the wave resistance coefficient, are small (at most of the order O(µ)).
One remarks that the behavior of the flow is roughly independent of the value of the depth ratio
δ. This is easily explained, as the quadratic nonlinearities do not play an important role when the
deformation is small (as they are of order O(µ3)). Therefore, the variations of δ are mostly seen
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(a) δ = 5/12. (b) δ = 12/5.

Figure 7: Supercritical flow: Fr = 1.5. α = ǫ2 = µ = 0.1, γ = 0.99.

through a variation of the size of the dispersion coefficient ν, which do not change the behavior
pattern of the solution.

On the contrary, the Froude number parameter has an essential role on the behavior of
the solution. One sees that for subcritical flows (Figure 6), up-streaming solitary waves are
continuously generated, as a widening oscillatory tail is generated at the down-streaming area.
The former will generate most of the wave resistance, as they overtake the body. However, the
drag remains small, and possibly tends to zero in the long time limit. The behavior of supercritical
flows (Figure 7) are quite different. A down-streaming solitary wave, with a small oscillatory tail,
is generated and travels at constant velocity c0 ≈ −1/2. It remains a symmetric, depression
wave at the location of the body, that do not generates any wave resistance. Unsurprisingly, this
corresponds to the observations of the one-layer theory in the supercritical case.

3.3.2 Critical Froude numbers

As we have seen in the previous section, the solution of the fKdV equation, and therefore the
wave resistance coefficient (C.5), are small when the Froude number is away from its critical
number Fr = 1. We present in Figure 8 the behavior of the wave resistance at time t = 10,
depending on the Froude number, for different values of the depth ratio δ, and different values of
the shallowness parameter µ.

It appears that the maximum of the critical wave is obtained below the critical speed, at
approximate value Fr ≈ 1 − Cstt λ+ = 1 − Cstt µ 1+γδ

γ+δ . The fact that the maximum peak is

slightly subcritical has been obtained using the linear theory in [40], and explained as a result of
dispersion effects (without the nonlinear and dispersion terms, the peak is infinite and obtained
at Fr = 1). This effect is therefore preserved in the nonlinear theory.

In Figure 9, we compute the solution of (3.16), with zero initial data, in the critical case
(Fr = 1). Our aim is to exhibit the generation of up-streaming solitary waves, as in [55]. This
requires a rather long period of time computation, as discussed in the following. Again, we plot
the flow, depending on space and time variables, as well as the wave resistance coefficient, and
we set δ ∈ {5/12, 12/5}.
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(b) α = ǫ2 = µ = 0.1, δ = 12/5, γ = 0.99.

0 0.5 0.97 1.5 2

0

0.01

0.02

0.03

0.04

0.05

0.06

F
r

C
W

(c) α = ǫ2 = µ = 0.01, δ = 5/12, γ = 0.99.
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(d) α = ǫ2 = µ = 0.01, δ = 12/5, γ = 0.99.

Figure 8: Dependence of the wave resistance coefficient on the Froude number, at time T = 10.

(a) δ = 5/12. (b) δ = 12/5.

Figure 9: Critical flow: Fr = 1. α = ǫ2 = µ = 0.1, γ = 0.99.
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As we can see, the depth ratio δ now plays an essential role. Upstreaming solitary waves
are generated for both of the values of δ, but these waves are of elevation if the upper fluid is
thicker, and of depression in the opposite case. These waves induce a periodic aspect to the wave
resistance. However, we do not believe that these waves are the cause of the periodic behavior
recorded in [53], based on the two following facts.

i. The time period of the generation of waves ∆T is very large. A simple scaling argument
shows that ∆T ∝ 1/µ if c = 0 and λ, α, ν ∝ µ, and the proportionality constant appears to
be big (see also scaling arguments in [55]). By Proposition 3.2, the KdV approximation is
a valid model only up to times of order O(1/µ), so that nothing shows that the solutions
of the full Euler equations (1.4) follow this behavior.

ii. As a matter of fact, the solutions of the strongly nonlinear model (2.6) do not exhibit such
a phenomenon, as the generated internal wave stays in the trail of the body, and never
overtake the ship, even for long times.

In Figure 5 page 17, we present the results of a simulation where the velocity of the ship is affected
by the generated wave resistance. A similar periodic behavior is exhibited, with a more reasonable
time period (∆T ≈ 10). What is more, in this case, the up-streaming solitons vanish as soon as
they overtake and slow down the body. This phenomenon corresponds to the observations of [53],
but cannot be seen in Figure 9.

A Derivation of the Green-Naghdi type model

In this section, we derive the strongly nonlinear model (2.2). This model only requires the shallow
water assumption

µ ≪ 1,

and is a convenient intermediate step to construct the models of Regimes 1 and 2 used throughout
the paper. The full Euler system is proved to be consistent with our model at order O(µ2), in
Proposition A.1 below.

Let us first plug the expansions of Lemma 2.1 into (1.4), and withdraw O(µ2) terms. One
can easily check that we obtain the approximate system

(A.1)



























































−αFr d
dxζ1 + ∂x(h1∂xψ1) + ∂x(h2∂xψ2) = µ∂x

(

R1(∂xψ1, ∂xψ2))
)

,

(∂t − Fr ∂x)ζ2 + ∂x(h2∂xψ2) = µ∂xT [h2, 0]∂xψ2,

(∂t − Fr ∂x) (∂xψ2 − γ∂xψ1) + (γ + δ)∂xζ2 +
ǫ2
2
∂x
(

|∂xψ2|2 − γ|∂xψ1|2
)

= µ
(

γ(∂t − Fr ∂x)∂xH(∂xψ1, ∂xψ2) + ǫ2∂xR2[∂xψ1, ∂xψ2]
)

+
1

Bo
∂2x

(

∂xζ2
√

1 + µǫ22|∂xζ2|2

)

,
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where we have used the following notations:

T [h, b]V ≡ −1

3
∂x(h

3∂xV ) +
1

2

(

∂x(h
2(∂xb)V ))− h2(∂xb)(∂xV )

)

+ h(∂xb)
2V,

N [V1, V2] ≡ ((∂xh)V2 − ∂x(hV2))
2 − γ((∂xh)V1 − ∂x(hV2))

2

2
,

H(V1, V2) ≡ h1

(

∂x(h1V1) + ∂x(h2V2)−
1

2
h1∂xV1 − ∂x(h1 + h2)V1

)

,

R1(V1, V2) ≡ T [h1, h2]V1 + T [h2, 0]V2 −
1

2
∂x(h

2
1∂x(h2V2))− h1∂xh2∂x(h2V2)),

R2[V1, V2] ≡ γV1∂x
(

H(V1, V2)
)

+N [V1, V2].

Now, thanks to the fact that ζ1 is a forced parameter of our problem, the system reduces to two
evolution equations for (ζ2, v), with v the shear velocity defined by

v ≡ ∂x
(

φ2
∣

∣

z=ǫ2ζ2
− γφ1

∣

∣

z=ǫ2ζ2

)

= ∂xψ2 − γH(ψ1, ψ2).

From the last estimate of Lemma 2.1, one has immediately

(A.2) v = ∂xψ2 − γ∂xψ1 − µγ∂xH(∂xψ1, ∂xψ2) +O(µ2).

Now, one deduces from the first equation of (A.1), and (A.2), the following relations

h1∂xψ1 + h2∂xψ2 = αFr ζ1 + µ R1(∂xψ1, ∂xψ2) +O(µ2),

v = ∂xψ2 − γ∂xψ1 − µ γ∂xH(∂xψ1, ∂xψ2) +O(µ2).(A.3)

It follows that any linear operator defined above can be approximated as in the following example

H(∂xψ1, ∂xψ2) = H
(

−h2v − αFr ζ1
h1 + γh2

,
h1v + γαFr ζ1
h1 + γh2

)

+O(µ).

For the sake of readability, we do not precise the arguments in the following, and simply write

H ≡ H
(

−h2v − αFr ζ1
h1 + γh2

,
h1v + γαFr ζ1
h1 + γh2

)

, R1 ≡ R1

(

−h2v − αFr ζ1
h1 + γh2

,
h1v + γαFr ζ1
h1 + γh2

)

.

Using (A.3), one can approximate ∂xψ1 and ∂xψ2 at order O(µ2) with

(h1 + γh2)∂xψ1 = −h2v + αFr ζ + µ (R1 − γh2∂xH) + O(µ2),

(h1 + γh2)∂xψ2 = h1v + γαFr ζ + µγ (R1 + h1∂xH) +O(µ2).(A.4)

Using these formulae, the system (A.1) becomes (withdrawing O(µ2) terms)

(A.5)







































(∂t − Fr ∂x)ζ2 + ∂x

(

h2
h1 + γh2

(h1v + γαFr ζ)

)

+ µ∂xL = 0,

(∂t − Fr ∂x)v + (γ + δ)∂xζ2 +
ǫ2
2
∂x

( |h1v + γαFr ζ|2 − γ|h2v − αFr ζ|2
(h1 + γh2)2

)

+ µǫ2∂xQ

=
1

Bo
∂2x

(

∂xζ2
√

1 + µǫ22|∂xζ2|2

)

,
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where L and Q are defined by

L = γ
h2

h1 + γh2
(R1 + h1∂xH) − T [h2, 0]

(

h1v + γαFr ζ1
h1 + γh2

)

,

Q = γ
(h1 + h2)v − (1− γ)αFr ζ1

(h1 + γh2)2
R1 − R2

[

−h2v − αFr ζ1
h1 + γh2

,
h1v + γαFr ζ1
h1 + γh2

]

+ γ
((h21 − γh22)v + γ(h1 + h2)αFr ζ1

(h1 + γh2)2
∂xH.

It is now simple to check that the system (A.5) is exactly the system (2.2).

This model is justified by the following proposition:

Proposition A.1. The full Euler system (1.4) is consistent with (A.5), at precision O(µ2) on
[0, T ], with T > 0.

Proof. Let U ≡ (ζ1, ζ2, ψ1, ψ2) be a strong solution of (1.4), bounded in W 1,∞([0, T ];Hs+t0) with
s > 1 and t0 ≥ 9/2+ 5, and such that (1.5) is satisfied with ζ1(t, x) ≡ ζ1(x). Using Lemma 2.1,
it is clear that (ζ1, ζ2, ∂xψ1, ∂xψ2) satisfies (A.1), up to R1 = (r1, r2, r3, r4)

T ∈ L∞([0, T ];Hs+5)4,
satisfying (for i = 1 . . . 4)

∣

∣ri
∣

∣

W 1,∞Hs+5 ≤ µ2 C0

(

1

hmin
,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

.

Now, we set v ≡ ∂xψ2 − γH(ψ1, ψ2), and v satisfies (A.2), up to R2 ∈ W 1,∞([0, T ];Hs+5), with
(again, thanks to Lemma 2.1)

∣

∣R2

∣

∣

W 1,∞Hs+5 ≤ µ2 C0

(

1

hmin
,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

.

Therefore, since R1 and ∂xH involve two spatial derivatives, one has
{

(h1 + γh2)∂xψ1 = −h2v + αFr ζ + µR3,
(h1 + γh2)∂xψ2 = h1v + γαFr ζ + µR4,

with R3, R4 ∈ L∞([0, T ];Hs+3). Consequently, using the fact that Hs(R) is an algebra for
s > 1/2 and that (1.5) is satisfied, we deduce that (A.4) is satisfied, up to R5 ∈ L∞([0, T ];Hs+1),
with

∣

∣R5

∣

∣

L∞Hs+1 ≤ µ2
(∣

∣R3

∣

∣

L∞Hs+3 +
∣

∣R4

∣

∣

L∞Hs+3

)

C0

(

1

hmin
,
∣

∣U
∣

∣

W 1,∞Hs+t0

)

.

Finally, when plugging (v, ζ2) into (A.1), the residuals are clearly bounded by µ2C0, uniformly
in L∞([0, T ];Hs), and the proposition is proved.

B Proof of Proposition 3.2

The sketch of the proof is the following. We will first prove the convergence between

Uapp(t, x) = U0(µt, t, x) + µU1(µt, t, x),

defined by (3.8)–(3.11), and the solutions of the symmetric Boussinesq-type system (3.3). This is
obtained thanks to a consistency result, together with energy estimates. The convergence towards
solutions of the full Euler system (1.4) follows then immediately from Proposition 3.1. Finally,
the proposition is completed when remarking that the corrector term U1 obeys to a sublinear
growth. This result is a consequence of the following Lemma, that proceeds from Propositions 3.2
and 3.5 of [30]:
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Lemma B.1. Let u be the solution of

(B.1)

{

(∂t + c∂x)u = g(v1, v2),
u |

t=0
= 0,

with ∀i ∈ {1, 2},
{

(∂t + ci∂x)vi = 0,
vi |t=0

= v0i ,

with c1 6= c2, v
0
1, v

0
2 ∈ Hs(R), s > 1/2, and g is a bilinear mapping defined on R

2 and with values
in R. Then one has the following estimates:

i. If c = c1 , then lim
t→∞

1√
t

∣

∣u(t, ·)
∣

∣

Hs(R)
= 0.

ii. If c 6= c1 6= c2, then
1√
t

∣

∣u(t, ·)
∣

∣

Hs(R)
= O(1).

Moreover, if there exists a > 1/2 such that v01(1 + x2)a, and v02(1 + x2)a ∈ Hs(R), then one has
the better estimate

∣

∣u
∣

∣

L∞Hs(R)
≤ C0

∣

∣v01(1 + x2)a
∣

∣

Hs(R)

∣

∣v02(1 + x2)a
∣

∣

Hs(R)
,

with C0 = C(c, c1, c2).

We can now proceed with the proof.

Step 1: Well-posedness of Uapp(t, x). The global well-posedness of the forced Korteweg-de Vries
equation is given by Bona and Zhang in [6].

The proof relies on an a priori estimate, that we recall here, as it will be useful for the following
arguments. Let u be a solution of

∂tu + c∂xu + λu∂xu + ν∂3xu = b(x).

As we multiply the equation by Λ2s′u (with s′ > 3/2), and integrate with respect to the space
variable, one obtains

1

2

d

dt

∫

R

(Λs′u)2 dx =

∣

∣

∣

∣

λ

∫

R

Λs′(u∂xu)Λ
s′u dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R

(Λs′b)(Λs′u) dx

∣

∣

∣

∣

.

Thanks to the Kato-Ponce Lemma, we estimate the right-hand side as follows:

∣

∣

∣

∣

∫

R

Λs′(u∂xu)Λ
s′u dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

2

∫

R

∂xu(Λ
s′u)2

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R

[Λs′ , u]∂xu(Λ
s′u) dx

∣

∣

∣

∣

≤ Cs

∣

∣u
∣

∣

2

Hs′

∣

∣∂xu
∣

∣

L∞ ,

and the Cauchy-Schwarz inequality leads to

1

2

d

dt

∣

∣u
∣

∣

2

Hs′ ≤ C0λ
∣

∣u
∣

∣

2

Hs′

∣

∣∂xu
∣

∣

L∞ +
∣

∣u
∣

∣

Hs′

∣

∣b
∣

∣

Hs′ .

It follows

sup
t∈[0,T ]

∣

∣u
∣

∣

Hs′ ≤ exp

(

λ

∫ T

0

∣

∣∂xu(s, ·)
∣

∣

L∞ ds

)

(∣

∣u |
t=0

∣

∣

Hs′ + T
∣

∣b
∣

∣

Hs′

)

.

In the particular case of (3.12), since α = O(µ), ǫ2 = O(µ) and η± |
t=0

= 1
2

(

ζ2 ± 1
γ+δv

)

|
t=0

,

it is straightforward that there exists T = T (γ + δ, 1
γ+δ ) > 0 such that for all s′ > 3/2,

(B.2) sup
t∈[0,T/µ]

∣

∣u
∣

∣

Hs′ ≤ C0(
∣

∣

d

dx
ζ1
∣

∣

Hs′ ,
∣

∣V |
t=0

∣

∣

Hs′ , T ).
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We can then exhibit U1. Indeed, (3.11) can be written in a simplified form as

(B.3) (∂t + ci∂x)ei · S0U1 =
∑

(j,k) 6=(i,i)

fijk(τ, t, x) +
∑

j 6=i

∂xgij(τ, t, x),

with

fijk(τ, t, x) ≡ αijkuj(τ, x − cjt)∂xuk(τ, x− ckt) and gij(τ, t, x) ≡ βij∂
2
xuj(τ, x− cjt).

Thanks to estimate (B.2), one has for s′ > 1/2,

∣

∣fijk
∣

∣

L∞([0,T ]×[0,T/ǫ);Hs′+1)
+
∣

∣gij
∣

∣

L∞([0,T ];Hs′ )
≤ C0(

∣

∣

d

dx
ζ1
∣

∣

Hs′+2 ,
∣

∣V |
t=0

∣

∣

Hs′+2 , T ).

with C0 = C0(
1

γ+δ , γ + δ). Hence, for s′ > 1/2, one can set

e± · S0U1(τ, t, x) =
∑

(j,k) 6=(i,i)

∫ t

0

fijk(τ, s, x+ ci(s− t)) ds

+
∑

j 6=i

1

ci − cj

(

gij(τ, x− cjt)− gij(τ, x− cit)
)

≡
∑

(j,k) 6=(i,i)

U ijk +
∑

j 6=i

V ij .(B.4)

One checks immediately that U1 ∈ L∞([0, T ]× [0, T/µ);Hs′) and U1 |τ=t=0
= 0.

Step 2: Estimate on U1. Let us estimate each term of the decomposition (B.4). Thanks to the
uniform estimates of Step 1. above, one has gij ∈ L∞([0, T ];Hs′), so that it follows immediately

∀j 6= i,
∣

∣V ij
∣

∣

L∞(R+×[0,T ];Hs′ )
≤ C0(

∣

∣

d

dx
ζ1
∣

∣

Hs′+2 ,
∣

∣V |
t=0

∣

∣

Hs′+2 , T ).

Moreover, for j 6= i, we remark that fijj can be written as

fijj(τ, t, x) ≡ αijjuj(τ, x− cjt)∂xuj(τ, x− cjt) ≡ ∂xhij(τ, x − cjt),

so that U ijj has actually the same form as V ij , and can be treated in the same way. Since
fijj ∈ L∞([0, T ] × [0, T/ǫ);Hs′+1), U ijj is bounded in Hs′ by C0(

∣

∣

d
dxζ1

∣

∣

Hs′ ,
∣

∣V |
t=0

∣

∣

Hs′ , T ), for
all j 6= i.

Finally, for all (j, k) 6= (i, i) with j 6= k, U ijk satisfies the hypothesis of Lemma B.1, with
fijk = g(uj, ∂xuk). Therefore, we deduce

(B.5)
∣

∣U1

∣

∣

L∞(R+×[0,T ];Hs′ )
≤

√
tC0(

∣

∣

d

dx
ζ1
∣

∣

Hs′+2 ,
∣

∣V |
t=0

∣

∣

Hs′+2 , T ).

As for the second estimate of the proposition, let us first remark that the estimates of V ij

and U ijj are time-independant, and in agreement with the improved estimate. Therefore, the
only remaining terms we have to control are U ijk with j 6= k. Of course, we will use the second
case of Lemma B.1, but we have to check first that for every τ ∈ R

+, the initial data uj(τ, 0, x)
and ∂xuk(τ, 0, x) are localised in space, that is

∀τ ∈ R
+,

∣

∣(1 + x2)au±(τ, 0, x)
∣

∣

Hs′ +
∣

∣(1 + x2)a∂xu±(τ, 0, x)
∣

∣

Hs′ < ∞.
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This property is true at τ = 0 (by hypothesis of the proposition), and is propagated to τ > 0, using
the fact that u±(τ, x±) satisfies the KdV equation (3.10). This propagation of the localisation in
space has been proved for a = 2 by Schneider and Wayne in [48, Lemma 6.4]. Their proof, relying
on classical energy estimates and Gronwall’s inequality in weighted Sobolev space, actually holds
for any a > 1/2. We do not recall it here, and make direct use of the statement:

Lemma B.2. If (1 + x2)aV |
t=0

∈ Hs′+2, for any a > 0, then there exists C1, C̃1 > 0 such that
∣

∣(1 + x2)au±(τ, 0, x)
∣

∣

Hs′+1 ≤ C1

∣

∣(1 + x2)au± |
τ=t=0

∣

∣

Hs′+2 ≤ C̃1

∣

∣(1 + x2)aV |
t=0

∣

∣

Hs′+2 .

This Lemma, together with the second estimate of Lemma B.1, allows to control uniformly
U ijk ∈ L∞(R+× [0, T ];Hs′). Every term of the decomposition (B.4) has been controled, and one
has the following estimate:

(B.6)
∣

∣U1

∣

∣

L∞(R+×[0,T ];Hs′ )
≤ C0(

∣

∣

d

dx
ζ1
∣

∣

Hs′+2 ,
∣

∣V |
t=0

∣

∣

Hs′+2 ,
∣

∣(1 + x2)aV |
t=0

∣

∣

Hs′+2 , T ).

Step 3: Consistency results. We first prove the the consistency of the Boussinesq-type system (3.3)
with our approximation. The precision is O(µ3/2) in the general case, and O(µ2) in the second
case. Here and in the following, we set α = ǫ2 = µ in order to simplify the notations. The general
case α = O(µ), ǫ2 = O(µ) is obtained with slight obvious modifications.

Plugging Uapp(t, x) into (3.6), we see from (3.7)-(3.11) that the only remaining term we have
to control is µ2R(µt, t, x), with

R ≡ ∂τU1 +Σ1(U0)∂xU1 +Σ1(U1)∂xU0 + S1(U0)∂tU1 + S1(U1)∂tU0

−Σ2∂
3
xU1 − S2∂

2
x∂tU1 + µΣ1(U1)∂xU1 + µS1(U1)∂xU1,

where U0(µt, t, x) = u+(µt, x− c+t)ei + u−(µt, x− c−t)e−. We bound each term of the right
hand side in the Sobolev Hs-norm, with s > 1/2 as in the proposition.

The estimate (B.5), with s′ = s+ 3, leads to

∣

∣Σ2∂
3
xU1

∣

∣

Hs ≤
√
t C0(

∣

∣

d

dx
ζ1
∣

∣

Hs+5 ,
∣

∣V |
t=0

∣

∣

Hs+5 , T ).

Then, from (3.11), one has
ei · ∂tS0U1 = −ciei · ∂xS0U1 + fi

with fi ∈ L∞([0, T ]× [0, T/µ);Hs+2), and
∣

∣fi
∣

∣

Hs+2 ≤ C0(
∣

∣

d
dxζ1

∣

∣

Hs+5 ,
∣

∣V |
t=0

∣

∣

Hs+5 , T ), so that

∣

∣S2∂
2
x∂tU1

∣

∣

Hs ≤
√
t C0

∣

∣∂tU1

∣

∣

Hs+2 ≤
√

T/µC0(
∣

∣

d

dx
ζ1
∣

∣

Hs+5 ,
∣

∣V |
t=0

∣

∣

Hs+5 , T ).

One obtains in the same way the desired estimates for Σ1(U0)∂xU1, Σ1(U1)∂xU0, S1(U0)∂tU1,
S1(U1)∂tU0, Σ1(U1)∂xU1 and S1(U1)∂xU1.

Finally, in order to estimate ∂τU1, we differentiate (3.11) with respect to τ . Since ui satis-
fies (3.10), one has ∂τui ∈ L∞([0, T ];Hs+2). We are on the framework of Lemma B.1, so that we
can obtain, as for (B.5), that ∂τU1 ∈ L∞([0, T ];Hs), with

∣

∣∂τU1

∣

∣

Hs ≤
√
t C0(

∣

∣

d

dx
ζ1
∣

∣

Hs+5 ,
∣

∣V |
t=0

∣

∣

Hs+5 , T ).

Hence, the residual µ2R is uniformly bounded in L∞([0, T/µ);Hs), and

∣

∣R
∣

∣

Hs ≤ C0µ
−1/2C0(

∣

∣

d

dx
ζ1
∣

∣

Hs+5 ,
∣

∣V |
t=0

∣

∣

Hs+5 , T ),
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which gives the consistency at order O(µ3/2).

The consistency at order O(µ2), for initial data sufficiently decreasing in space, is obtained in
the same way, using the second estimate (B.6).

Step 4: Convergence results. The convergence is deduced from the consistency, as in the proof of
Proposition 3.1. Indeed, when setting Rµ ≡ Uapp − V ≡ U0(µt, t, x) + µU1(µt, t, x)− V (t, x), one
can check that Rµ satisfies the following equation:

(B.7)
(

S0 − µS2∂
2
x + µS1(Uapp

)

∂tR
µ +

(

Σ0 − µΣ2∂
2
x + µΣ1(Uapp)

)

∂xR
µ = µ3/2f + µA+ µB,

with A = ∂tS1(Uapp)R
µ − S1(R

µ)∂tV , B = ∂xΣ1(Uapp)R
µ − Σ1(R

µ)∂xV and the function f
proved to be uniformly bounded in Hs, by the consistency result. We define the energy as

Es(R
µ) ≡ 1

2
(S0Λ

sRµ,ΛsRµ) +
µ

2
(S2∂xΛ

sRµ, ∂xΛ
sRµ) +

µ

2
(S1(Uapp)Λ

sRµ,ΛsRµ),

as in the proof of Proposition 3.1. The same calculations lead to the following differential in-
equality:

d

dt
Es(R

µ) ≤ C0µEs(R
µ) + C0µ

3/2(Es(R
µ))2,

with C0 = C0(
∣

∣

d
dxζ1

∣

∣

Hs+5 ,
∣

∣V |
t=0

∣

∣

Hs+5 , T ). Then, Gronwall-Bihari’s theorem allows to obtain

(Es(R
µ))1/2 ≤ C0µ

1/2(eC0µt − 1), and finally for µt ≤ T ( 1
γ+δ , γ + δ),

∣

∣Uapp − V
∣

∣

Hs ≤ C0(Es(R
µ))1/2 ≤ µ3/2t C0(

∣

∣

d

dx
ζ1
∣

∣

Hs+5 ,
∣

∣V |
t=0

∣

∣

Hs+5 , T ).

The first estimate of the proposition is now a direct consequence of (B.5), and

∣

∣

d

dx
ζ1(x)

∣

∣

Hs+5 +
∣

∣V (t, x)
∣

∣

Hs+5 ≤
∣

∣U(t, x)
∣

∣

Hs+t0
,

thanks to an appropriate estimate of the operator H(ψ1, ψ2); see [20, Proposition 2.7].

The second estimate of the proposition follows in the same way, using (B.6) and the consistency
at order O(µ2).

C Wave resistance and the dead-water phenomenon

Following Lamb [29] and Kostyukov [28], we assume that the drag experienced by ships is mostly
due to the wave (making) resistance. This section is devoted to the analysis of this wave resis-
tance. We first work with the variables with dimension, and deduce an explicit formula for the
wave resistance RW , depending on the flow, given as a solution of the full Euler equation (1.1).
Accordingly with the nondimensionalization performed in Section 1.2, we introduce the dimen-
sionless version of the wave resistance, that we call wave resistance coefficient and denote CW .
Finally, we derive simple approximations, for the two regimes considered throughout the paper.

The wave resistance acknowledges the energy required from the body to push the water away,
and is defined by (see [41, 40, 54] and references therein)

RW ≡
∫

Γship

P (−ex · n) dS,
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where Γship is the exterior domain of the ship, P is the pressure, ex is the horizontal unit vector
and n the normal unit vector exterior to the ship. The pressure being constant (≡ P∞) on the
non-submerged part of the ship, one has

RW =

∫

Γship

(P − P∞)(−ex · n) dS =

∫

R

(

P
∣

∣

d1+ζ1
− P∞

)

(−∂xζ1) dx

= −
∫

R

P
∣

∣

d1+ζ1
∂xζ1 dx.

As a solution of the Bernoulli equation in (1.1), the pressure P is given in the upper domain by

P (x, z)

ρ1
= −∂tφ1(x, z) − 1

2
|∇x,zφ1(x, z)|2 − gz,

so that the wave resistance satisfies

RW = ρ1

∫

R

g(1 + ζ1)∂xζ1 −
(

∂x∂tφ1 +
1

2
∂x (∂xφ1)

2
+

1

2
∂x (∂zφ1)

2

)

∣

∣

z=d1+ζ1
ζ1 dx.

≡
∫

R

FW [ζ2, φ1] (d1 + ζ1) ζ1 dx.

Let us now construct the dimensionless version of this formula. Using the same change of
variables as in Section 1.2, it is straightforward to obtain the dimensionless wave resistance (that
we call wave resistance coefficient, and denote CW ):

CW ≡ ρ1λ

a2c20
RW =

∫

R

F̃W [φ̃1](x̃)ζ̃1(x̃) dx̃, with(C.1)

− F̃W [φ̃1] ≡ (∂t̃ − Fr ∂x̃)∂x̃φ̃1 +
ǫ2
2
∂x̃

(

(

∂x̃φ̃1

)2

+
ǫ2
2µ

(

∂z̃φ̃1

)2
)

.

Again, we omit the tildes in the following, for readability. Let us remark that by definition of the
Dirichlet-Neumann operator G1, and using (1.4), one has

(C.2) − FW [φ1] = (∂t − Fr ∂x)∂xφ1 +
ǫ2
2
∂x

(

(∂xφ1)
2
+

(

−αFr ∂xζ1 + ǫ1
d

dx
ζ1∂xφ1

)2
)

.

For practical purposes, we use approximations to compute the wave resistance coefficient,
corresponding to the leading order term in the asymptotic expansion of CW , for the different
regimes at stake. These formulae use the variables of Sections 2 and 3, i.e. the surface and
interface deviations ζ1 and ζ2 and the shear velocity, defined by

v ≡ ∂x
(

φ2
∣

∣

z=ǫ2ζ2
− γφ1

∣

∣

z=ǫ2ζ2

)

.

First of all, we use the following estimate, justified in [20]:

φ1(x, z) = ψ1(x) + O(µ).

When combined with the first equation of (A.4):

∂xψ1 =
−h2v + αFr ζ1
h1 + γh2

+O(µ), with h1 ≡ 1 + ǫ1ζ1, and h2 ≡ 1

δ
+ ǫ2ζ2,
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one has immediately that (C.2) simplifies into

−FW [φ1] = (∂t − Fr ∂x)

(−h2v + αFr ζ1
h1 + γh2

)

+
ǫ2
2
∂x

(

(−h2v + αFr ζ1)
2
+ (α d

dxζ1)
2 ((h1 + γh2) Fr+ǫ2(h2v − αFr ζ1))

2

(h1 + γh2)2

)

+O(µ).(C.3)

Now, ∂th2, and ∂tv can be written using only ζ1, ζ2, v, and their spatial derivatives, since they
satisfy system (A.5) up to O(µ2). Therefore, the leading order term of the wave resistance
coefficient CW can be deduced from the knowledge of the solution (ζ2, v). We do not write
explicitly this expression, as the models used in our simulations benefit from extra smallness
assumptions, and simpler formulae are deduced in these cases.

Case of Regime 1 :

µ ≪ 1 ; α ≡ ǫ1
ǫ2

= O(µ) , 1− γ = O(µ).

The first immediate simplification in this regime is

h1 + γh2 = h1 + h2 + O(µ) = 1 +
1

δ
+ O(µ).

Then, we use that (ζ2, v) satisfies system (2.4) up to O(µ2) to deduce2 (with h̄1 ≡ 1 + 1
δ − h2)

∂t(h2v) = Fr ∂x(h2v) + (1 + δ)h2∂xζ2 + ǫ2
δ

1 + δ

(

v∂x
(

h̄1h2v
)

+
h2
2
∂x
(

h̄1 − h2)v
2
)

)

+O(µ)

= Fr ∂x(h2v) + (1 + δ)h2∂xh2 + ǫ2∂x(h2v) +
3ǫ2
2

δ

1 + δ
∂x(h

2
2v

2).

Finally, using these approximations into (C.1) and (C.3), one has

CW =
δ

1 + δ

∫

R

(

(1 + δ)h2∂xζ2 + ǫ2∂x(h2v) + ǫ2
δ

1 + δ
∂x(h

2
2v

2)

)

ζ1(x) dx+O(µ2)

= −
∫

R

(

(

ζ2 +
ǫ2
2
ζ22

)

+ ǫ2
δ h2v

1 + δ
+ ǫ2

(

δ h2v

1 + δ

)2
)

d

dx
ζ1(x) dx+O(µ).(C.4)

This is the formula used in Figures 3–5, in Section 2.2.

Case of Regime 2 :

µ≪ 1 ; ǫ2 = O(µ) , α = O(µ).

Most of the terms of (C.3) are now of size O(µ). The first order of system (2.6) leads immediately
to

∂t(h2v)− Fr ∂x(h2v) = −γ + δ

δ
∂xζ2 +O(µ),

so that we obtain simply

(C.5) CW = −
∫

R

ζ2
d

dx
ζ1 dx+O(µ).

This formula is used in Figures 6–9, in Section 3.3.

2as we use Bo−1 = µ2 in our simulations, we do not take here into account the surface tension term.
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Remark C.1. As we can see in (C.4) and (C.5), the wave resistance coefficient will be small in
the two following cases

i. The internal wave is small, or is not located below the ship,

ii. The internal wave is symmetric and centered at the location of the ship.

The first case is obvious, and the last case reflects the fact that the integrands of (C.4) and (C.5)
are odd if ζ2, v and ζ1 are even.

On the contrary, the ship will encounter a strong positive wave resistance if the functions ζ2
and h2v are decreasing at the location of the body. This is the case when an internal wave of
elevation is located just behind the ship. The dead-water effect is then explained in that way: the
ship, traveling in a density-stratified water, generates internal waves of elevation in its trail, and
therefore suffers from a severe wave resistance.

D The Numerical schemes

We present in this section the numerical method used to obtains the figures of this study. For
all of the simulations, we use a scheme based one the Crank-Nicholson method, and take care of
the nonlinearities using a predictive step. This method has been introduced in [4, 3], and used
in the water wave framework in [12, 21, 19]. We give the general directions of such a method in
the following, and then present the exact schemes we used for each of the models.

Time discretization. Denoting ∆t the time step of the scheme, we approximate a function u(x, t)
at time t = n∆t by u(x, n∆t) ≡ un(x). Then, we approximate the time derivative by

∂tu ≈ un+1 − un

∆t

and any linear function of u by

F (u) ≈ F (un+1) + F (un)

2
.

Now we deal with the nonlinearities using a predictive step, defined by

un+
1
2 + un−

1
2

2
= un.

The discretization of the quadratic nonlinearity F (u, v) is then a linear combination of the two
possible discretizations, namely

F (u, v) ≈ αF

(

un+
1
2 ,
vn+1 + vn

2

)

+ (1− α)F

(

un+1 + un

2
, vn+

1
2

)

.

The parameter α can be chosen so that natural quantities are conserved.

Space discretization. With ∆x the space step of the scheme, the functions are discretized spatially
with a central difference. In particular,

u(x, t) ≈M(β)u with (M(β)un)i = (1− β)uni +
β

2
(uni+1 + uni−1),

and again, the parameter β is chosen so that natural quantities are conserved. The spatial
derivatives are given by

∂xu ≈ uni+1 − uni−1

2∆x
≡ (D1u

n)i, ∂2xu ≈ uni+1 − 2u2i + uni−1

∆x2
≡ (D2u

n)i, . . .

We use periodic boundary conditions.
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D.1 The forced Korteweg-de-Vries equation

We want to solve numerically the following generic forced KdV equation

(D.1) ∂tu+ c∂xu+ λu∂xu+ ν∂3xu = f(x).

When there is no forcing term (f ≡ 0), it is known that the KdV equation preserves the energy

E ≡
∣

∣u
∣

∣

2

L2 . The following scheme has been presented and studied (without the forcing term)
in [21], and has the property to preserve the discrete energy when f ≡ 0.

un+1
i − uni

∆t
+ c

(

D1
un+1 + un

2

)

i
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)
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2
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i
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2
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i

)

= f(i∆x).(D.2)

Proposition D.1. If f ≡ 0, then the scheme (D.2) preserves the discrete l2-norm:

∀ n ∈ N,
∣

∣un
∣

∣

2

l2
≡
∑

i

|uni |2 =
∑

i

|u0i |2.

The proof is given in [21, Theorem 2].

D.2 The fully nonlinear model of Regime 1

The system we deal with now is (2.6), that we can write under the compact form
(D.3)

(∂t−Fr ∂x) (U − µR1[U ]) + ∂x ((A[U ] + ǫ1B(x))U) + µǫ2∂x(R2[U ] ·U) = b(x)+
1

Bo
∂2x (T [U ]) ,

with U ≡ (ζ2, w)
T , b(x) ≡ −αFr /(1 + δ) (ζ1(x), 0)

T , and

A[U ] ≡
(

0 h1h2

h1+γh2

γ + δ ǫ2
h2
1−γh2

2

(h1+γh2)2
w

)

, B(x) ≡ Fr

h

(

ζ1(x) 0
0 ζ1(x)

)

,

Ri[U ] ≡
(

0
Si[h2]w

)

, T [U ] ≡
(

0
∂xζ2√

1+µǫ22|∂xζ2|2

)

.

It is convenient to denote, with h1 ≡ 1 + ǫ1ζ1 − ǫ2ζ2 and h2 ≡ 1
δ + ǫ2ζ2,

f [ζ2] ≡ h1h2
h1 + γh2

, g[ζ2] ≡ ǫ2
h21 − γh22

(h1 + γh2)2
, and t[ζ2] ≡ ∂xζ2

√

1 + µǫ22|∂xζ2|2
.

Advised by the above work on the KdV equation, we use the following time discretization:
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2
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Finally, after the space discretization, this leads to the following scheme (with hn ≡ 1
δ + ǫ2ζ

n)
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D.3 Validation of the method

In order to validate the proposed schemes, we use known explicit solutions of the forced Korteweg-
de Vries equation (3.13). The first test function we use is the travelling wave

(D.6) u0 ≡ − sech2(k(x − cswt)),

with csw = c + 4νk2, k =
√

−λ/(12ν), corresponding to the classical case where there is no
forcing.

The second test function is the steady solution

(D.7) u1 ≡ ± sech2(kx),

with k2 = λ
12ν and the corresponding forcing

f(x) =
(

c+
λ

3

)

sech2(kx).

These two functions are exact solutions of the forced KdV equations

∂tu+ c∂xu+ λu∂xu+ ν∂3xu =
d

dx
f(x).

In the absence of non-trivial solutions system (2.6), we use the same functions as reference.
After an appropriate change of variables, u0 and u1 will satisfy system (2.6) up to small terms.
Therefore, adding the corresponding forcing term to the equations, u0 and u1 are exact solutions
of the modified system, and we are able to compare the results of our numerical schemes with
the theoretical solution.

These comparisons are presented in Tables 2 and 3. The error are givens in term of the
normalized l2 norm. The results show a convergence behavior of order O((∆x)2 + (∆t)2), and
allow to validate our schemes.



41 REFERENCES 41

∆x = ∆t L T KdV scheme fully nonlinear scheme
0.1 20 10 8.1530 10−4 4.9498 10−4

0.05 20 10 2.0393 10−4 1.5154 10−4

0.01 20 10 8.1604 10−6 1.8363 10−5

Table 2: Numerical errors of the KdV and Green-Naghdi schemes for the initial data (D.6). We
choose the parameters µ = ǫ2 = α = 0.1, γ = 0.9, δ = 5/12, Fr = 1.1, Bo = 100.

∆x = ∆t L T KdV scheme fully nonlinear scheme
0.1 20 10 4.7397 10−4 1.7844 10−4

0.05 20 10 1.1850 10−4 4.4557 10−5

0.01 20 10 4.7409 10−6 8.1604 10−6

Table 3: Numerical errors of the KdV and Green-Naghdi schemes for the initial data (D.7). We
choose the parameters µ = ǫ2 = α = 0.1, γ = 0.9, δ = 5/12, Fr = 1.1, Bo = 100.
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[18] B. de Saint-Venant. Théorie du mouvement non-permanent des eaux, avec application aux
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[20] V. Duchêne. Asymptotic shallow water models for internal waves in a two-fluid system with
a free surface. SIAM J. Math. Anal., 42(5):2229–2260, 2010.

[21] M. Durufle and S. Israwi. A numerical study of variable depth KdV equations and gen-
eralizations of Camassa-Holm-like equations. preprint, http://hal.archives-ouvertes.fr/hal-
00454495/en/.

[22] V. W. Ekman. On dead water. Sci. Results Norw. North Polar Expedi. 1893-96, 5(15):1–152,
1904.

[23] A. E. Green and P. M. Naghdi. A derivation of equations for wave propagation in water of
variable depth. J. Fluid Mech., 78(02):237–246, 1976.

[24] P. Guyenne, D. Lannes, and J.-C. Saut. Well-posedness of the Cauchy problem for models
of large amplitude internal waves. Nonlinearity, 23(2):237–275, 2010.

[25] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations.
Comm. Pure Appl. Math., 41(7):891–907, 1988.

[26] G. H. Keulegan. Characteristics of internal solitary waves. J. Res. Nat. Bur. Stand, 51:133–
140, 1953.

[27] D. J. Korteweg and G. De Vries. On the change of form of long waves advancing in a
rectangular canal, and on a new type of long stationary waves. Philos. Mag., 5(39):422–443,
1895.



43 REFERENCES 43

[28] A. Kostyukov. Theory of ship waves and wave resistance. 1959. In Russian, English trans-
lation: Iowa City, Effective Communications Inc. (1968).

[29] H. Lamb. On waves due to a travelling disturbance, with an application to waves in super-
posed fluids. Philos. Mag., 6(31):386–398, 1916.

[30] D. Lannes. Secular growth estimates for hyperbolic systems. J. Differential Equations,
190(2):466–503, 2003.

[31] D. Lannes. A stability criterion for two-fluid interfaces and applications. Arxiv preprint:
1005.4565, 2010.

[32] D. Lannes and J.-C. Saut. Weakly transverse Boussinesq systems and the Kadomtsev-
Petviashvili approximation. Nonlinearity, 19(12):2853–2875, 2006.

[33] S.-J. Lee. Generation of long water waves by moving disturbances. PhD thesis, California
Institute of Technology, 1985.

[34] S.-J. Lee, G. T. Yates, and T. Y. Wu. Experiments and analyses of upstream-advancing
solitary waves generated by moving disturbances. J. Fluid Mech., 199(-1):569–593, 1989.

[35] R. R. Long. On the Boussinesq approximation and its role in the theory of internal waves.
Tellus, 17(1):46–52, 1965.

[36] D.-q. Lu and T.-t. Chen. Surface and interfacial gravity waves induced by an impulsive
disturbance in a two-layer inviscid fluid. Journal of Hydrodynamics, Series B, 21(1):26–33,
2009.

[37] L. Maas and J. van Haren. Worden mooi-weer verdrinkingen door dood-water veroorzaakt.
Meteorologica, 15:211–216, 2006. In Dutch.

[38] M. Maleewong, R. Grimshaw, and J. Asavanant. Free surface flow under gravity and surface
tension due to an applied pressure distribution. II. Bond number less than one-third. Eur.
J. Mech. B Fluids, 24(4):502–521, 2005.

[39] P. Milewski, E. Tabak, C. Turner, R. Rosales, and F. Menzaque. Nonlinear stability of
two-layer flows. Commun. Math. Sci., 2(3):427–442, 2004.

[40] T. Miloh, M. Tulin, and G. Zilman. Dead-water effects of a ship moving in stratified seas.
J. Offshore Mech. Arct. Eng., 115(2):105–110, 1993.

[41] O. V. Motygin and N. G. Kuznetsov. The wave resistance of a two-dimensional body moving
forward in a two-layer fluid. J. Engrg. Math., 32(1):53–72, 1997.

[42] F. Nansen. The Norwegian north polar expedition 1893-1896. Nansen Fund, 1900.

[43] National Academy Press. Three-dimensional nonlinear long waves due to moving surface
pressure, Ann Arbor, Michigan, 1983. Proc. 14th Symp. Naval Hydrodyn.

[44] H. Y. Nguyen and F. Dias. A Boussinesq system for two-way propagation of interfacial
waves. Phys. D, 237(18):2365–2389, 2008.

[45] T. Nguyen and R. Yeung. Steady-wave sytems in a two-layer fluid of finite depth. In Proc.
12th Int. Workshop Water Waves and Floating Bodies, pages 115–119, March 1997.



44 Asymptotic models for the generation of internal waves, and the dead-water phenomenon

[46] L. A. Ostrovsky and J. Grue. Evolution equations for strongly nonlinear internal waves.
Phys. Fluids, 15(10):2934–2948, 2003.

[47] B. E. Protopopov. Upstream generation of solitons: Numerical analysis of the dependence
on key parameters. J. Appl. Mech. Tech. Phys., 34:85–90, 1993. 10.1007/BF00851810.

[48] G. Schneider and C. E. Wayne. The long-wave limit for the water wave problem. I. The case
of zero surface tension. Comm. Pure Appl. Math., 53(12):1475–1535, 2000.

[49] S. S. P. Shen. Forced solitary waves and hydraulic falls in two-layer flows. J. Fluid Mech.,
234:583–612, 1992.

[50] L. Sretenskii. On internal waves at the interface of two fluids with application to a dead
water phenomenon. Zh. Geofiz., 4:332–370, 1934.

[51] I. Ten and M. Kashiwagi. Hydrodynamics of a body floating in a two-layer fluid of finite
depth. Part 1. Radiation problem. J. Mar. Sci. Technol., 9(3):127–141, 2004.

[52] R. Vasseur. Ondes d’interface dans les fluides stratifiés. Master’s thesis, Ecole Normale
Supérieure de Lyon, 2008. In French.

[53] R. Vasseur, M. Mercier, and T. Dauxois. Dead waters: Large amplitude interfacial waves
generated by a boat in a stratified fluid, 2008. Arxiv preprint: 0810.1702.

[54] J. Wu and B. Chen. Unsteady ship waves in shallow water of varying depth based on
Green-Naghdi equation. Ocean Engineering, 30(15):1899–1913, 2003.

[55] T. Y.-t. Wu. Generation of upstream advancing solitons by moving disturbances. J. Fluid
Mech., 184:75–99, 1987.


	1 Introduction
	1.1 The basic equations
	1.2 Nondimensionalization of the system
	1.3 Description of the results, and the regimes under study

	2 Strongly nonlinear models
	2.1 The fully nonlinear model in Regime 1 
	2.2 Numerical simulations

	3 Weakly nonlinear models
	3.1 The Boussinesq-type models
	3.2 The Korteweg-de Vries approximation
	3.3 Analysis of the forced Korteweg-de Vries equation
	3.3.1 Non-critical Froude numbers
	3.3.2 Critical Froude numbers


	A Derivation of the Green-Naghdi type model
	B Proof of Proposition 3.2
	C Wave resistance and the dead-water phenomenon
	D The Numerical schemes
	D.1 The forced Korteweg-de-Vries equation
	D.2 The fully nonlinear model of Regime 1
	D.3 Validation of the method


