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Abstract—We present the theoretical study of a novel highly sen-
sitive, miniaturized, integrated optic refractive index sensor based
on a Au-Ag surface grating. The grating is considered to be made of
alternate layers of equi-thick Au and Ag regions along the direction
of propagation, on the surface of the waveguide. Due to the same
thickness of both the metals, the surface plasmon polaritons (SPP)
for both metals have their field maxima at the same transverse dis-
tance, leading to an increased modal overlap in the grating region
and hence a reduced grating length. An exact coupled-mode-theory
based on the local mode matching has been used to analyze the
mode coupling between the guided mode and the SPP. It has been
shown that the proposed design requires nearly one fourth of the
grating length as compared to the corrugated metal grating for the
same metal thickness. Further, for co-propagating mode coupling
(LPG based sensor) the structure is found to be maximum sensitive
at an optimum metal thickness, however, such an optimum metal
thickness does not exist for counter-propagating coupling (FBG
based sensor).

Index Terms—Integrated optic waveguides, refractive index
sensor, surface gratings, surface plasmon polariton.

I. INTRODUCTION

I N the recent past there has been a growing interest in ex-
citing the surface plasmon polaritons (SPPs) using optical

waveguide gratings for their possible applications in biochem-
ical sensing. Several structures based on the power coupling
between counter propagating as well as co-propagating guided
and SPP modes have been studied [1]–[9]. In most of these
structures the grating is assumed to be written in the wave-
guide core region (higher index photosensitive region). Such
gratings, however, are relatively weak in nature and since the
modal overlap between the modes is very small, due to the
sharply decaying SPP field beyond metal/dielectric interface,
the required grating length to couple an appreciable amount of
power is very large (typically ranging to several centimeters)
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[1]–[8]. For device miniaturization and ease of fabrication, how-
ever, a shorter grating length is preferred, which is further useful
in realizing the whole of the optical assembly on a single chip
for the so called lab-on-a-chip (LOC) applications [10]–[14].
The modal overlap within the grating region can be increased
by reducing the cladding thickness, which, however, increases
the mode loss associated with the core mode and hence has lim-
ited scope in reducing the grating length. To increase the modal
coupling within the grating region it is pertinent to write the
grating in the metal region itself where the SPP has its field
maxima. For example, Nemova and Kashyap have reported a
refractive index sensor based on the corrugated metal grating
assisted power coupling between core mode and the SPP [6],
which is benefited from the large field present in the metal re-
gion. It has been reported [6] that even for a very thick cladding
region ( 4.5 m) the grating length ranges typically between
4–6 cm, as compared to the typical grating lengths of 15
cm for gratings written in the photosensitive core region even
with thinner claddings ( 1 m). Lu and Huang [15] have re-
cently studied the effect of mode loss on the performance of
such sensors and have shown that such sensors would work only
if the grating length is less than the propagation length of the
SPP. Thus, a smaller grating length should always be preferred.
In the case of corrugated metal gratings, the SPP maxima in
consecutive regions do not coincide, resulting in a lower modal
overlap at the corrugated junction, which can be increased by re-
ducing the corrugation depth. However, this weakens the grating
due to the reduced refractive index modulation, and therefore a
compromise has to be made between the modal overlap and the
refractive index modulation.

In order to reduce the grating length by maximizing the modal
overlap within the grating region, we propose the grating to be
made of equi-thick, alternate regions of two different metals.
Such a structure can be realized by using the photolithography
and liftoff techniques used in the fabrication of optical inte-
grated circuits [16]. The refractive index difference between the
two metals provides the necessary perturbation for power cou-
pling between the core mode and the SPP and the same thickness
of the metal regions facilitates the increased modal overlap. In
this paper we have analyzed such a grating and have presented
its ambient refractive index sensing characteristics both in the
co-propagating and counter-propagating regimes. Modal cou-
pling from the core mode to both, the co-propagating SPP as
well as counter-propagating SPP has been studied. The struc-
ture of the paper is as follows. In Section II, the sensor de-
sign and the mode propagation characteristics have been dis-
cussed. In Section III, an analysis of mode coupling, based on
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Fig. 1. Transverse section and the coordinate system used for the analysis of
the proposed structure.

the local-normal-mode matching, has been discussed. A com-
parative study of the performance of the proposed sensor, both
in co-propagating and counter-propagating regimes, with that
of a corrugated metal garting based sensor has also been carried
out in this section. Finally, the concluding remarks have been
given in Section IV.

II. SENSOR STRUCTURE AND MODAL CHARACTERISTICS

The schematic diagram of the proposed sensor is shown in
Fig. 1. It consists of a substrate over which are grown a core of
width , an upper cladding of width and a metal layer having
thickness , made of alternate Au-Ag metals along the direction
of propagation . The refractive indices of substrate, core, upper
cladding and metal regions are denoted by and ,
respectively. On the top of the metallic region is a uniform layer
of the ambient refractive index (ARI) to be sensed, and unless
explicitly mentioned its refractive index has been taken as
1.33. The direction of refractive index variation is taken along
the axis, and the direction is considered to be extended in-
finitely. The substrate and the cladding regions are considered
to be made of fused Silica and the core region is made of 6.3
mol% GeO doped SiO . The wavelength dependence of the re-
fractive indices of various dielectric layers have been obtained
by using the Sellmeier relation [17], and that of the metallic re-
gions have been obtained by using the Drude
formula [18]

(1)

where is the high frequency value of dielectric constant,
is the plasma frequency and is the damping frequency,

which for Au and Ag have been listed in Table I. The dielectric
constant at m as predicted by (1) for Au and Ag
comes out to be and ,
agreeing well to the experimental values
and reported in [18]. Here it is important to
emphasize that the structure will support the SPP, only for the
frequencies for which .

In order to carry out a comparative study with the corrugated
gratings, in our simulations, the width of the core and upper
cladding regions have been taken same as used in [6]. i.e.,

m and m, respectively.
As only TM modes of the planar structure can excite the SPP,

we obtained the propagation constant and field distribution for

TABLE I
METAL PARAMETERS USED IN NUMERICAL SIMULATIONS

both the core mode and the SPP, by solving the well-known TM
wave equation [17]

(2)

where, is the free space propagation constant
and the dependence of the fields is taken of the form

being the propagation constant of the mode.
The solutions of (2) to obtain the effective indices of the core
mode and the SPP has been recalled in Appendix. We first
obtain the effective indices of the core mode
and the SPP , for different values of and . In
Fig. 2(a), (b) we have plotted the variation of the real part of the

and for both the Au and Ag metal coated waveguide
sections, with , for different values of . Further, their vari-
ation with , for , has been plotted in Fig. 3(a), (b).
These figures show that the SPP effective index changes much
faster as compared to that of the core mode: indicating that SPP
field is more sensitive with respect to the change in or ,
as compared to the core mode.

Having obtained the effective indices and the field distribu-
tions of both the modes, the fields are then normalized to carry
unit power per unit length along the direction. The compo-
nent of the normalized electric field distribution for both the SPP
and the core mode have been plotted in Fig. 4(a), and an ampli-
fied curve in the regions close to the metallic layer is shown in
Fig. 4(b). These fields have been calculated for Au as the metal
layer, at an operating wavelength m and for
nm and . A similar distribution can also be obtained
taking Ag as the metal layer. One can see that the core mode
supports a local SPP at the metal/dielectric interface; however
the field amplitude is extremely small as compared to that in
the waveguide core region. The pure SPP, on the other hand,
has its field maxima at the metal/dielectric interfaces and de-
cays sharply in the regions beyond the interfaces, revealing the
fact that to increase the modal overlap in the grating region the
grating itself should be present in the metallic region.

The grating based sensors involve the measurement of the
shift in the resonance wavelength of the transmission spectrum,
by measuring the power carried by the core mode at the output
end of the optical waveguide. It is, thus, worthwhile to know the
loss in the transmitted power due to metal induced core mode
loss as compared to the coupling from core mode to the SPP. In
Fig. 5 we have plotted the variation of the propagation length
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Fig. 2. Variation of the real part of modal effective index with � for ��� core mode and ��� SPP for different values of metal thickness �, corresponding to
� � � �m, � � ��� �m, and � � 	��� �m.

Fig. 3. Variation of the real part of modal effective index with � for ��� core mode and ��� SPP at � � 	���, corresponding to � � � �m, � � ��� �m, and
� � 	��� �m.

of the core mode, for both the Au and Ag
layers, with respect to the metal thickness.

As can be observed, due to a very thick upper cladding
the mode loss is very small leading to the propagation length
ranging between 4–12 cm. As discussed later, the grating length
for the proposed structure comes out to be a few millimeters,
which is much smaller compared to the propagation length of
the core mode. This means the imaginary part of the has very
little effect on the location of the resonance dip. Further, since
for all practical purposes the grating period is decided by the
real part of the propagation constant, for the ease of calculation,
in the analysis followed we set the damping frequency as zero.

III. SENSING CHARACTERISTICS

In order to analyze the mode coupling and sensing
characteristics of the proposed structure, we follow the
local-normal-mode transfer matrix method [6]. In this method,
the grating structure is treated as a sequence of tiny sections of
alternate waveguides with uniform Au and Ag metal layers. In

each of these waveguides the net field is the superposition of all
the local-normal-modes with properly chosen amplitudes. The
amplitudes of these local modes are calculated by the mode
matching, i.e., the continuity of and components, at each
junction plane. As a result, at th junction, the field amplitudes
of the th and th sections are connected by the relations

(3)

(4)

where, the scripts stand for core mode, the SPP, for-
ward propagating and backward propagating, respectively, and
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Fig. 4. Distribution of � component for the SPP and the core mode ��� throughout the waveguide cross section ��� in the vicinity of the metallic region;
corresponding to � � � �m, � � ��� �m, � � �	 nm, and � � ���� �m.

Fig. 5. Propagation length of the core mode, with Au as the metal layer (dotted
curve) and Ag as the metal layer (solid curve,) as a function of � for � �
����� � � � �m, � � ��� �m, and � � ���� �m.

represents the field amplitude in the th or th region.
Using the orthonormality of the modes we have

(5)

with being the characteristic impedance of
vacuum, being the effective index of th mode, and is
the Kronecker symbol.

Using relation, in (4) and utilizing the
(5), after some manipulations we get a matrix connecting
the field amplitudes on either side of the junction via the
relation

with

(6)

where

and

are the various elements of the matrix . The forward and
backward propagating modes propagate in the th region
with their respective propagation constants. The field ampli-
tudes in the th region at the junction can thus be
obtained by multiplying the field amplitude matrix by a phase
matrix given by (7), shown at the bottom of the following page,
where is the width of the th region at the
junction, which is selected from the phase matching condition.
Accordingly, for the co-propagating coupling is obtained
from the following relation,

(8)
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and for the counter-propagating coupling,

(9)

, respectively. Thus, one complete grating period is
and the matrix linking the field amplitudes at the beginning

and at the end of the period takes the form,

(10)

Thus, if the grating contains repeated sections of period ,
the transfer matrix coupling the field amplitudes at the input
and output ends of the grating is given by . The
transmission and reflection coefficients of the core mode and the
SPP through the grating are connected by

(11)

where, and are the transmission coefficients of the core
mode and the SPP, respectively, and and are their reflec-
tion coefficients, T is a 4 4 matrix. From (11) we obtain the
reflection and transmission coefficients in terms of the matrix
elements as

(12)

(13)

(14)

The fractional core mode transmitted power is obtained as

(15)

Using (15), in Fig. 6 we have plotted the transmission spec-
trum of the waveguide for a metal thickness of nm,
for three different cases namely, a uniform layer of Au (
curve), an Au-Ag metal grating (solid curve) and a corrugated
grating made of Au with the grating amplitude 1 nm and a duty
cycle 0.5 (dashed curve) for . For Au-Ag grating
the widths of the Au and Ag regions are 11.067 m
and 8.567 m, resulting in the grating period
19.634 m. In order to achieve 30% transmission at the reso-
nance wavelength ( m), the required grating length
comes out to be 4.32 mm . For the corru-
gated grating, on the other hand, the required grating length is

17.41 mm , the periods of two consecutive

Fig. 6. Transmission spectrum corresponding to a metal thickness of � �

�� nm with uniform Au layer ( curve), Au-Ag grating (solid curve) and
an Au corrugated grating with grating amplitude of 1 nm. The ARI being water
with � � ���� and � � � �m, and � � ��� �m.

Fig. 7. Transmission spectrum for Au-Ag grating with � � �� nm, for � �

���� (solid curve) and � � ����� (dashed curve), corresponding to � � � �
m, and � � ��� �m.

sections being 11.067 m and 9.659 m respec-
tively, with grating period 20.726 m. It should be noted
that in the case of the alternate Au-Ag structure the required
grating length is reduced to nearly one fourth of that required for
a corrugated Au grating. The transmission bandwidth, however,
is relatively large in case of Au-Ag grating, which is attributed
to the increased modal overlap within the grating region. Next
we calculate the spectral shift of the transmission spectrum of
Au-Ag grating by changing the ARI from 1.33 to 1.331,
which has been plotted in Fig. 7, showing a spectral shift of

1242 pm, at nm. A similar calculation has also been
done for corrugated grating. The grating period, grating length

(7)
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TABLE II
TYPICAL CHARACTERISTICS OF AU-AG GRATINGS AND CORRUGATED AU GRATING

Fig. 8. Sensitivity variation for co propagating coupling (dashed curve) and
counter propagating coupling (solid curve), with metal thickness, for an Au-Ag
grating, with � � � �m, and � � ��� �m.

and the corresponding sensitivity (defined as the spectral shift
in the resonance wavelength per unit change in ARI), of
both the Au-Ag grating and the corrugated Au grating, for dif-
ferent metal thicknesses have been tabulated in Table II. As can
be observed, the sensitivity of the Au-Ag grating for a given
metal thickness is nearly the same (slightly larger) as that of
the corrugated Au grating, whereas the required grating length
is much shorter for Au-Ag gratings, making them a favorable
choice over the corrugated gratings.

In Fig. 8 we have shown the variation of sensitivity for both
the co-propagating coupling and the counter-propagating cou-
pling, for different metal thicknesses, for the Au-Ag grating.
It shows that the structure is more sensitive while operating in
co-propagating configuration and also that there exists an op-
timum metal thickness at which the structure is maximum sen-
sitive to the changes in ARI. For counter-propagating coupling,
however, no such optimum metal thickness is obtained.

The existence of the optimum metal thickness as well as the
larger sensitivity in the co-propagating configuration can be un-
derstood in the following manner [3], [8].

The phase matching conditions for co-propagating (8) and
counter-propagating (9) couplings can be written as

(16)

(17)

Therefore, in terms of the grating period , the phase
matching condition for co-propagating coupling can be written
as

(18)

which gives

(19)

with

(20)

Similarly, for counter-propagating coupling we can write

(21)

which gives

(22)

with

(23)

The sensitivity (fractional change in due to a given change
in ) is, thus, basically proportional to , for co-propa-
gating coupling and proportional to , for counter-prop-
agating coupling. Further, it is also clear from these expressions
that for a given , the sensitivity of the co-propagating modes
based sensor will be times larger than that of a
counter-propagating modes based device explaining its higher
sensitivity. In order to understand the dependence of the sen-
sitivity on in the two cases, we have plotted, in Fig. 9, the
variation of with . It is clear from this figure that
the parameter first increases with increasing the metal
thickness and after attaining a certain maximum value, near a
metal thickness of 18 nm, starts decreasing with further increase
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Fig. 9. Variation of �� �� with� for co propagating (dashed curve) and
counter propagating (solid curve) coupling, for � � � �m, � � ��� �m, and
� � ���� �m.

in ; explaining the existence of the optimum metal thickness
for the co-propagating modes based sensor. On the other

hand the parameter keeps on decreasing monotonically
with the increase in , explaining the absence of any optimum
value of for the counter propagating modes based sensors.

Using the peak/dip finding algorithm [19], and assuming a
detector with a resolution of 1 pm, changes as small as

in the ARI can be detected at the optimum metal thickness
( 17 nm). The present grating structure not only requires much
smaller grating length but also has comparable sensitivity with
those reported for ultra thin cladding, pure SPP based photo-
sensitive gratings [1]–[8], and larger sensitivity as compared to
the gratings in highly miniaturized high index contrast Si/SiO
waveguides [14].

IV. CONCLUSION

An exact coupled mode theory is used to study a novel highly
sensitive, miniaturized, integrated optic refractive index sensor
based on the Au-Ag surface gratings. The grating is considered
to be made of alternate layers of equi-thick Au and Ag regions
along the direction of propagation, on the surface of the wave-
guide. It has been shown that the present structure requires much
shorter grating lengths as compared to the corrugated Au grat-
ings with same metal thickness and nearly the same sensitivity.
Further, both the co-propagating and counter-propagating grat-
ings are studied. It has been found that for co-propagating modes
the structure is maximum sensitive at an optimum metal thick-
ness, however, such an optimum metal thickness does not exist
for counter-propagating modes. However, it should be noted that
the transmission bandwidth of an Au-Ag grating is relatively
large in comparison with the transmission bandwidth of the Au
corrugated grating.

APPENDIX

Here we give the field expressions corresponding to the solu-
tion of (2) to obtain the propagation constant for the core mode
and the SPP. Since for the core mode the field is guided within
the core region and decays in all regions except the core, and for

the SPP the field decays in all the regions, the solution of (2) for
both the core mode and the SPP can be written as [4], [17]

(A1)

where, su, co, cl, , se. stand for substrate, core, cladding,
metal and sensing regions, respectively, and is defined as

with , with
for the core mode and for the SPP.

The other two nonzero field components, and are re-
lated to the component via the relation [14]

(A2)

where is the characteristics impedance of the free space. In
order to obtain the propagation constant we apply the boundary
condition that and must be continuous at every dielectric
discontinuity, . Following this an eigen value
equation of the type is obtained, here is the propa-
gation constant of the mode.

Now, to obtain the complex value of the propagation constant
we plot a function

(A3)

against the trial values of effective index with
for the core mode and for the SPP) and, a

Lorentzian curve is obtained [20]. The value of at which the
Lorentzian has its peak gives the real value of the effective index
and the FWHM gives the imaginary value of the effective index
of the mode.

Having obtained the propagation constant and the field dis-
tributions in various regions, the fields are then normalized to
carry unit power along the direction using the relation,

(A4)

where, is the normalization factor. The propagation constants
and the normalized fields are thus obtained in our analysis.
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