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DENSE ORBITS FOR ABELIAN AFFINE GROUPS

ADLENE AYADI

Abstract. In this paper, we give a characterization of existence of a dense
orbit for the action on Cn of an abelian affine subgroup G of GA(n,C). We

prove in particular that if G has a dense orbit then the closure G is an affine
space of dimension n. If G is finitely generated, this characterization is explicit.

1. Introduction

Let Mn(C) be the set of all square matrices of order n ≥ 1 with entries in C and
GL(n, C) be the group of all invertible matrices ofMn(C). A map f : Cn −→ Cn is
called an affine map if there exist A ∈Mn(C) and a ∈ Cn such that f(x) = Ax+a,
x ∈ Cn. We denote f = (A, a), we call A the linear part of f . Denote byMA(n, C)
the set of all affine maps and GA(n, C) the set of all invertible affine maps of
MA(n,C). MA(n,C) is a vector space and for composition of maps, GA(n, C) is
a group.

Let G be an abelian affine subgroup of GA(n, C). For a vector v ∈ Cn, we
consider the orbit of G through v: G(v) = {f(v) : f ∈ G} ⊂ Cn. A subset E ⊂ Cn

is called G-invariant if f(E) ⊂ E for any f ∈ G; that is E is a union of orbits.
Before stating our main results, we introduce the following notions:

A subsetH of Cn is called an affine subspace of Cn if there exist a vector subspace
H of Cn and a ∈ Cn such that H = H + a. For a ∈ Cn, denote by Ta : Cn −→ Cn;
x 7−→ x + a the translation map by vector a, so H = Ta(H). We say that H has
dimension p (0 ≤ p ≤ n), denoted dim(H) = p, if H has dimension p.

Denote by A the closure of a subset A ⊂ Cn. A subset E of Cn is called a
minimal set of G if E is closed in Cn, non empty, G-invariant and has no proper
subset with these properties. It is equivalent to say that E is a G-invariant set such
that every orbit contained in E is dense in it.

If V is a G-invariant open set in Cn, we say that E is a minimal set in V if it is
a minimal set of the restriction G/V of G to V .

Define the map

Φ : GA(n, C) −→ Φ(GA(n,C)) ⊂ GL(n+ 1, C)
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2 ADLENE AYADI

f = (A, a) 7−→
[
1 0
a A

]

We have the following composition formula
[
1 0
a A

] [
1 0
b B

]
=

[
1 0

Ab+ a AB

]
.

Then Φ is a homomorphism of groups.

Let G be an abelian affine subgroup of GA(n, C). Then Φ(G) is an abelian sub-
group of GL(n+ 1,C).

Let π : Cn −→ {1} × Cn be the map defined by π(y) = (1, y). Clearly π is
an invertible affine maps and we have for every x ∈ Cn,

π(G(x)) = Φ(G)(1, x) = {1} × G(x) ⊂ {1} × Cn.

Let n ∈ N0 be fixed. For each m = 1, 2, . . . , n+ 1, denote by:
• C∗ = C\{0} and N0 = N\{0}.
• B0 = (e1, . . . , en+1) the canonical basis of Cn+1 and In+1 the identity matrix of
GL(n+ 1,C).

• Tm(C) the set of matrices over C of the form



µ 0
a2,1 µ
...

. . .
. . .

am,1 . . . am,m−1 µ


 (1)

• T∗
m(C) the group of matrices of the form (1) with µ 6= 0.

Let r ∈ N and η = (n1, . . . , nr) be a sequence of positive integers such that
n1 + · · ·+ nr = n+ 1. In particular, r ≤ n+ 1.
Write
• Kη,r(C) := Tn1

(C)⊕· · ·⊕Tnr
(C). In particular if r = 1, then Kη,1(C) = Tn+1(C)

and η = (n+ 1).
• K∗

η,r(C) := Kη,r(C) ∩GL(n+ 1, C).

Define the map

Ψ : MA(n, C) −→ Ψ(GA(n,C)) ⊂Mn+1(C)

f = (A, a) 7−→
[
0 0
a A

]

We have Ψ is an isomorphism. Remark that Φ(f) = Ψ(f) + D1, where D1 =[
1 0
0 0

]
∈Mn+1(C), f ∈ GA(n,C), so Φ is an affine map.

Denote by:

• Fn+1 =

{[
0 0
b B

]
∈Mn+1(C), B ∈Mn(C), b ∈ Cn

}
= Ψ(MA(n,C)).
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• exp : Mn+1(C) −→ GL(n+ 1,C) is the matrix exponential map; set exp(M) =
eM .

There always exists a P ∈ Φ(GA(n,C)) and a partition η of n + 1 such that
G′ = P−1GP ⊂ K∗

η,r(C) ∩Φ(GA(n,C)) (see Proposition 2.3). For such a choice of
matrix P , we let

• g = exp−1(G) ∩
(
P (Kη,r(C))P

−1
)
∩ Fn+1. If G ⊂ K∗

η,r(C), we have g =

exp−1(G) ∩ Kη,r(C) ∩ Fn+1.
• gu = {Bu : B ∈ g}, u ∈ Cn+1.
• g = Ψ−1(g).
• gv = {f(v), f ∈ g}, v ∈ Cn.

Let π̃ : Cn −→ {0} × Cn be the map defined by π̃(y) = (0, y). Clearly π̃ is
an isomorphism.

Denote by:
• u0 = [e1,1, . . . , er,1]

T ∈ Cn+1 where ek,1 = [1, 0, . . . , 0]T ∈ Cnk , for k = 1, . . . , r.
One has u0 ∈ {1} × Cn.
• w0 = π−1(Pu0) ∈ Cn. As P ∈ Φ(GA(n,C)), Pu0 ∈ {1} × Cn. So π(w0) =
(1, w0) = Pu0.

• e(k) = [e
(k)
1 , . . . , e

(k)
r ]T ∈ Cn+1 where

e
(k)
j =

{
0 ∈ Cnj if j 6= k
ek,1 if j = k

for every 1 ≤ j, k ≤ r.

• p2 : Cn+1 −→ Cn the projection defined by p2(x1, . . . , xn+1) = (x2, . . . , xn+1).
Notice that π−1 is the restriction of p2 to {1} × Cn.
• MT is the transpose of any M ∈Mm(C), m ≤ n+ 1.
• G is the closure of G in MA(n,C), which is considered as a vector space with the
norm defined by ‖f‖ = max(‖A‖, ‖a‖) the maximum of ‖A‖ and ‖a‖, for every
f = (A, a) ∈MA(n,C).

For a finitely generated subgroup G ⊂ GA(n,R), let introduce the following
property. Consider the following rank condition on a collection of affine maps
f1, . . . , fp ∈ GA(n,C), where f ′

1, . . . , f
′
p ∈ g such that eΨ(f ′

k) = Φ(fk), k =
1, . . . , p.

We say that f1, . . . , fp satisfy property D if for every (s1, . . . , sp; t1, . . . , tr) ∈
Zp+r\{0}:

rank




Re(f ′
1(w0)) . . . Re(f ′

p(w0)) 0 . . . 0

Im(f ′
1(w0)) . . . Im(f ′

p(w0)) 2πe(1) . . . 2πe(r)

s1 . . . sp t1 . . . tr



= n+ 1.

For a vector v ∈ Cn, we write v = Re(v)+ iIm(v) where Re(v) and Im(v) ∈ Rn.
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For groups of affine maps on Kn (K = R or C), their dynamics were recently
initiated for some classes in different point of view, (see for instance, [3], [4], [5],[6]).
The purpose here is to give analogous results of that theorem for linear abelian
subgroup of GL(n,C) proved in [1]. Our main results are the following:

Theorem 1.1. Let G be an abelian subgroup of GA(n,C). The following are equiv-
alent:
(i) G has a dense orbit in Cn

(ii) The orbit G(w0) is dense in Cn

(iii) gw0
is an additive subgroup dense in Cn

Corollary 1.2. If G has a dense orbit then G is an affine subspace of GA(n,C) of
dimension n.

For a finitely generated subgroup G, the Theorem can be stated as follows:

Theorem 1.3. Let G be an abelian subgroup of GA(n,C) generated by f1, . . . , fp
and let f ′

1, . . . , f
′
p ∈ g such that eΨ(f ′

1) = Φ(f1), . . . , e
Ψ(f ′

p) = Φ(fp). Then the
following are equivalent:
(i) G has a dense orbit in Cn

(ii) the maps f1, . . . , fp satisfy property D
(iii) gw0

=
p∑

k=1

Zf ′
k(w0) + 2iπ

r∑
k=1

Z(p2 ◦ Pe(k)) is an additive group dense in Cn.

Corollary 1.4. If G is of finite type p with p ≤ 2n− r, then it has no dense orbit.

Corollary 1.5. If G is of finite type p with p ≤ n, then it has no dense orbit.

2. Notations and Lemmas

Denote by LG the set of the linear parts of all elements of G and vect(F ) is the
vector space generated by a subset F ⊂ Cn+1.

Lemma 2.1. Let P ∈ Φ(GA(n,C)) and h : Mn+1(C) −→ Mn+1(C) the isomor-
phism defined by h(A) = PAP−1. Then h(Fn+1) = Fn+1 and h(Φ(GA(n,C))) =
Φ(GA(n,C)).

Proof. Let f = (A, a) ∈MA(n,C). As P ∈ Φ(GA(n,C)), write

P =

[
1 0
d C

]
, C ∈ GL(n,C), d ∈ Cn.

Then

h(Ψ(f)) =

[
1 0
d C

] [
0 0
a A

] [
1 0

−C−1d C−1

]

=




0 0

d+ Ca− CAC−1d CAC−1


 ,
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so h(Ψ(f)) ∈ Fn+1. It follows that h(Fn+1) ⊂ Fn+1. Conversely, let h′ = h−1, so
h′ : Mn+1(C) −→ Mn+1(C) is the isomorphism defined by h(B) = P−1BP . By
replacing h by h′ in above, we have h′(Fn+1) ⊂ Fn+1. It follows that

Fn+1 = h ◦ h′(Fn+1) ⊂ h(Fn+1).

The same proof is used to show h(Φ(GA(n,C))) = Φ(GA(n,C)). �

Proposition 2.2. ([1], Proposition 2.3) Let G be an abelian subgroup of GL(n,C).
Then there exists P ∈ GL(n,C) such that P−1GP is a subgroup of Kη′,r′(C), for

some r′ ≤ n and η′ = (n′
1, . . . , n

′
r′) ∈ Nr′

0 .

Proposition 2.3. Let G be an abelian subgroup of GA(n,C) and G = Φ(G).
Then there exists P ∈ Φ(GA(n,C)) such that P−1GP is a subgroup of K∗

η,r(C) ∩
Φ(GA(n,C)), for some r ≤ n + 1 and η′ = (n1, . . . , nr) ∈ Nr

0. In particular,
Pu0 ∈ {1} × Cn.

Proof. We have LG is an abelian subgroup of GL(n,C). By Proposition 2.2, there
exists P1 ∈ GL(n,C) such that P−1

1 GP1 is a subgroup of K∗
η′,r′(C) for some r′ ≤ n

and η′ = (n′
1, . . . , n

′
r′) ∈ Nr′

0 such that n′
1 + . . . , n′

r′ = n. Write for every A ∈ LG ,

P−1
1 AP1 = diag(A1, . . . , A

′
r′) with Ak ∈ T∗

n′
k
and µAk

is the only eigenvalue of Ak,

k = 1, . . . , r′. Let J = {k ∈ {1, . . . , r′}, µAk
= 1, ∀ A ∈ LG}. There are two cases:

- Case1: Suppose that J = {k1, . . . , ks} for some s ≤ r′. We can take J = {1, . . . , s},
otherwise, we replace P1 by RP1 for some permutation matrix R of GL(n,C). Let
P = diag(1, P1), so P ∈ Φ(GA(n,C)) and

P−1Φ(f)P =

[
1 0

P−1
1 a P−1

1 AP1

]
.

Write P (B0) = (e1, C1, . . . , Cr′), where Ck = (e′k,1, . . . , e
′
k,n′

k
) is a basis of Cn′

k ,

k = 1, . . . , r′. Then H = vect(e1, C1, . . . , Cs) is G-invariant and the restriction
Φ(f)/H has 1 as only eigenvalue for every f ∈ G. Therefore for every f = (A, a) ∈ G
we have

P−1Φ(f)P =

[
A1 0
0 A2

]
,

where A1 ∈ T∗
q(C), q = 1 + n′

1 + · · · + n′
s and A2 ∈ Kη′′,r′−s(C) with η′′ =

(n′
s+1, . . . , n

′
r′). As µA1

= 1 is the only eigenvalue ofA1, so P
−1Φ(f)P ∈ Φ(GA(n,C)).

It follows that P−1GP is a subgroup of K∗
η,r(C)∩Φ(GA(n,C)), where r = r′−s+1

and η = (q, n′
s+1, . . . , n

′
r′).

- Case:2 Suppose that J = ∅, then 1 is the commune eigenvalue of all element of
G and let v be the commune eigenvector of all element of G associated to 1. Since
{0} ×Cn is G-invariant, one has v ∈ C∗ ×Cn, so we can take v = (1, v1), v1 ∈ Cn,
otherwise, if v = (λ, v′1) we replace v by 1

λv. As Φ(f)(1, v1) = (1, f(v1)) = (1, v1)
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so f(v1) = π−1(Φ(f)(1, v1)) = π−1(1, v1) = v1, hence f(v1) = Av1 + a = v1. Let

P =

[
1 0
v1 P1

]
∈ Φ(GA(n,C)), so for every f = (A, a) ∈ G

P−1Φ(f)P =

[
1 0

−P−1
1 v1 P−1

1

] [
1 0
a A

] [
1 0
v1 P1

]

=

[
1 0

P−1
1 (Av1 + a− v1) P−1

1 AP1

]

=

[
1 0
0 P−1

1 AP1

]
.

It follows that P−1GP is a subgroup of K∗
η,r(C) ∩ Φ(GA(n,C)), where r = r′ + 1

and η = (1, n′
1, . . . , n

′
r′).

Since u0 ∈ {1} × Cn and P ∈ Φ(GA(n,C)), so Pu0 ∈ {1} × Cn. �

Denote by:

• G′ = P−1GP .
• g′ = exp−1(G′) ∩ Kη,r(C) ∩ Fn+1.
• C(G′) = {B ∈ Kη,r(C), A

′B = BA′, A′ ∈ G′}.
• C(G) = PC(G′)P−1.

Proposition 2.4. (Under above notation), we have exp(g) = G. In particular,
exp(g′) = G′.

The proof of Proposition 2.4 uses the following Lemmas:

Lemma 2.5. ([1], Lemma 4.2) Let G be an abelian subgroup of GL(n+ 1,C) and
P ∈ GL(n+ 1,C) such that P−1GP is a subgroup of Kη,r(C). If g1 = exp−1(G) ∩(
PKη,r(C)P

−1
)
then:

(i) exp(g1) = G.
(ii) g1 ⊂ C(G).

Lemma 2.6. ([1], Proposition 3.2) exp(Kη,r(C)) = K∗
η,r(C).

Lemma 2.7. (i) If N ∈ PKη,r(C)P
−1 such that eN ∈ Φ(GA(n,C)), so N −

2ikπIn+1 ∈ Fn+1, for some k ∈ Z.
(ii) exp(Fn+1) = Φ(GA(n,C)).
(iii) exp(Fn+1 ∩ Kη,r(C)) = Φ(GA(n,C)) ∩ K∗

η,r(C).

Proof. (i) Let N ′ = P−1NP ∈ Kη,r(C), M = eN and M ′ = P−1MP . We have

eN
′
= M ′ and by Lemma 2.6, M ′ ∈ K∗

η,r(C). Write M ′ = diag(M ′
1, . . . ,M

′
r) and

N ′ = diag(N ′
1, . . . , N

′
r),M

′
k, N

′
k ∈ Tnk

(C), k = 1, . . . , r. Then eN
′
= diag(eN

′
1 , . . . , eN

′
r),

so eN
′
1 = M ′

1. As 1 is the only eigenvalue of M ′
1, N

′
1 has an eigenvalue µ ∈ C such

that eµ = 1. Thus µ = 2ikπ for some k ∈ Z. Therefore, N ′′ = N ′ − 2ikπIn+1 ∈
Fn+1 and satisfying eN

′′
= e−2ikπeN

′
= M ′. It follows by Lemma 2.1, that

N − 2ikπIn+1 = PN ′′P−1 ∈ PFn+1P
−1 = Fn+1, since P ∈ Φ(GA(n,C)).



DENSE ORBITS FOR ABELIAN AFFINE GROUPS 7

(ii) let N =

[
0 0
b B

]
∈ Fn+1, we have Nk =

[
0 0

Bk−1b Bk

]
∈ Fn+1 for every

k ∈ N0, so

eN = In+1 +
∑

k∈N0

1

k!
Nk

=




1 0

∑
k∈N0

1
k!B

k−1b In +
∑

k∈N0

1
k!B

k




=




1 0

∑
k∈N0

1
k!B

k−1b eB


 .

Then eN ∈ Φ(GA(n,C)). It follows that exp(Fn+1) ⊂ Φ(GA(n,C)).

Conversely, let M =

[
1 0
a A

]
∈ Φ(GA(n,C)). By applying Proposition 2.3

on the group generated by M , there exists P ∈ Φ(GA(n,C)) such that M ′ =
P−1MP ∈ K∗

η,r(C) ∩ Φ(GA(n,C)). By Lemma 2.6, there exists N ′ ∈ Kη,r(C)

such that eN
′
= M ′. By (i), N ′′ = N ′ − 2ikπIn+1 ∈ Fn+1 for some k ∈ Z

and satisfying eN
′′
= M ′. Hence , N = PN ′P−1 ∈ PFn+1P

−1 and satisfying

eN = PeN
′′
P−1 = PM ′P−1 = M . By Lemma 2.1, N ∈ Fn+1. It follows that

Φ(GA(n,C)) ⊂ exp(Fn+1).

(iii) By Lemma 2.6 and (ii) we have exp(Fn+1∩Kη,r(C)) ⊂ Φ(GA(n,C))∩K∗
η,r(C).

Conversely, let M =

[
1 0
a A

]
∈ Φ(GA(n,C))∩K∗

η,r(C). By Lemma 2.6, there ex-

ists N ′ ∈ Kη,r(C) such that eN
′
=M . By (i), N = N ′− 2ikπIn+1 ∈ Fn+1 for some

k ∈ Z and satisfying eN = e−2ikπeN
′
=M . It follows that Φ(GA(n,C))∩K∗

η,r(C) ⊂
exp(Fn+1). The proof is complete. �

Proof of Proposition 2.4. By Lemma 2.5.(i), we have exp(g1) = G. Since g =
g1 ∩ Fn+1 then

exp(g) ⊂ exp(g1) = G.

Conversely, let M ∈ G. By lemma 2.5.(i) we have exp(g1) = G then there exists
N ∈ g1 ⊂ Kη,r(C) such that eN = M . By Lemma 2.7.(i), there exists k ∈ Z

such that N ′ = N − 2ikπIn+1 ∈ Fn+1. Since N and 2ikπIn+1 ∈ PKη,r(C)P
−1,

N ′ ∈ g1 ∩ Fn+1 = g. It follows that M = eN
′ ∈ exp(g). The proof is complete.

In particular if P = In+1, we have exp(g′) = G′. �
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3. Parametrization

Let G be an abelian subgroup of GA(n,C) and G = Φ(G). In all the following,
P denotes the matrix defined in Proposition 2.3 (i.e. P ∈ Φ(GA(n,C)) such that
P−1GP is a subgroup of K∗

η,r(C) ∩ Φ(GA(n,C))). Recall that G′ = P−1GP and

g′ = exp−1(G′) ∩ Kη,r(C) ∩ Fn+1, so every A′ ∈ G′ is in the form

A′ = diag(A′
1, . . . , A

′
r) ∈ K∗

η,r(C), A′
k ∈ T∗

nk
(C), k = 1, . . . , r

and every B′ ∈ g′ is in the form

B′ = diag(B′
1, . . . , B

′
r) ∈ Kη,r(C), B′

k ∈ Tnk
(C), k = 1, . . . , r

For every k = 1, . . . , r, denote by:
• G′

k = {A′
k, A′ ∈ G′} .

• g′k = {B′
k, B′ ∈ g′}.

• FG′
k
=
{
(A′

k − µA′
k
Ink

)ek,i, A′ ∈ G′, 1 ≤ i ≤ nk − 1
}
.

• Fg′
k
=
{
(B′

k − µB′
k
Ink

)ek,i, B′ ∈ g′, 1 ≤ i ≤ nk − 1
}
.

where µA′
k
(resp. µB′

k
) is the only eigenvalue of A′

k. (resp. B
′
k) and (ek,1, . . . , ek,nk

)
is the canonical basis of Cnk .
• Let h : Mn+1(C) −→ Mn+1(C) be the isomorphism defined by h(B) = PBP−1.
one has h(G′) = G.

See that π is an affine map, because π = (D0, e1), where D0 = diag(0, In). Remark
that π /∈ GA(n,C), however π : Cn −→ {1} × Cn is invertible.
Denote by :

• U =
r∏

k=1

C∗ × Cnk−1, we have U is a G′-invariant open set.

• V = π−1 ◦ P (U ∩ ({1} × Cn)).
We have V is an open subset of Cn, because V = π−1 (P (U) ∩ P ({1} × Cn)), π is
continuous and P (U)∩P ({1}×Cn) = P (U)∩ ({1}×Cn) is an open set of {1}×Cn

(since P ∈ Φ(GA(n,C)) and so P ({1} × Cn) = {1} × Cn).
• C(g′) = {B ∈ Kη,r(C), A

′B = BA′, A′ ∈ g′}.
• C(g) = PC(g′)P−1 (i.e. C(g) = h(C(g′))).
• C(G) = Φ−1(C(G) ∩ Φ(GA(n,C))).
• C(g) = Ψ−1(C(g) ∩ Fn+1).

Notice that by construct, C(G) is an affine subspace of MA(n,C), since Φ is
affine map. However, C(g) is a vector subspace of MA(n,C), since Ψ is a linear
map.
Recall the following results proved in [1] for an abelian subgroup G′ of K∗

η,r(C).

Lemma 3.1. ([1], Lemma 4.2) We have C(G′) = C(g′).

By Lemma 3.1 we have C(G′) = C(g′) and so C(G) = C(g). By construct,
this identification can not be true in the affine case (i.e. C(G) 6= C(g)). Because
f0 = (0, 0) /∈ C(G) and C(g) is a vector space.
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Proposition 3.2. ([1], Theorem 5.2 and Corollary 5.4) Let G′ be an abelian
subgroup of K∗

η,r(C). If rank(FG′
k
) = nk − 1 (resp. rank(Fg′

k
) = nk − 1 ),

k = 1, . . . , r, then there exists a linear injective map ϕ : Cn+1 −→ Kη,r(C) (resp.
ψ : Cn+1 −→ Kη,r(C)) such that:
(i) C(G′) ⊂ ϕ(Cn+1), (resp. C(G′) ⊂ ψ(Cn+1)).
(ii) For every v ∈ Cn+1, ϕ(v)u0 = v, (resp. ψ(v)u0 = v). In particular ϕ(G′(u0)) =
G′ and ϕ(g′u0

) = g′ (resp. ψ(G′(u0)) = G′ and ψ(g′u0
) = g′).

Lemma 3.3. ([1], Corollaries 2.7 and 3.2.(ii)) The linear injective map ψ : Cn+1 −→
Kη,r(C)) defined in Proposition 3.2 satisfies exp(C(g′)) = C(G′) ∩ K∗

η,r(C).

Corollary 3.4. ([1], Proposition 6.2) If G′(u0) = Cn+1(resp. g′u0
= Cn+1) then ϕ

(resp. ψ) is an isomorphism of Cn+1 on C(G′).

Corollary 3.5. ([1], Corollary 3.7 and Propositions 3.6, 3.2) The restriction exp/Kη,r(C) :
Kη,r(C) −→ K∗

η,r(C) is a local diffeomorphism.

Lemma 3.6. The restriction exp/(Kη,r(C)∩Fn+1) : Kη,r(C)∩Fn+1 −→ Φ(GA(n,C))∩
K∗

η,r(C) is a local diffeomorphism.

Proof. The proof results from Corollary 3.5 and Lemma 2.7.(iii). �

Recall the following Proposition:

Proposition 3.7. ([1], Proposition 6.6) U is G′-invariant dense open set in Cn+1

and all orbits of G′ in U are minimal in U .

Lemma 3.8. Under notation of Proposition 3.2, we have:
(i) h(g′) = g and P−1(g(1,w0)) = g′u0

.

(ii) ϕ(Cn+1) ∩Φ(GA(n,C)) ⊂ ϕ ({1} × Cn) and ϕ(Cn+1) ∩ Fn+1 ⊂ ϕ ({0} × Cn).
(iii) h(C(G′)) = C(G).
(iv) π̃(f ′(u)) = Ψ(f ′)(1, u), for every f ′ ∈ g and u ∈ Cn. In particular, π̃(gu) =
g(1,u).

Proof. (i) Let B′ ∈ g′ = exp−1(G)∩Kη,r(C)∩Fn+1, so e
h(B) = h(eB) ∈ h(G′) = G

and since h(Fn+1) = Fn+1 so h(B) ∈ Fn+1, then

h(B) ∈ exp−1(G) ∩ h(Kη,r(C)) ∩ Fn+1 = g.
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Conversely, we use the same proof by replacing h by h−1.
Since h(g′) = g, so g = h−1(g′) = P−1g′P . Then

P−1(g(1,w0)) = {P−1B(1, w0) : B ∈ g}
= {P−1BPu0 : B ∈ g}
= {B′u0 : B′ ∈ g′}
= g′u0

(ii) Let v = [x1, . . . , xn+1]
T ∈ Cn+1 such that ϕ(v) ∈ Φ(GA(n,C)), so by Proposi-

tion 3.2.(ii), ϕ(v)u0 = v. It follows that x1 = 1 and so v ∈ {1} × Cn.

(iii) Since h(G′) = G and AB = BA if and only if h(A)h(B) = h(B)h(A), for
every A,B ∈Mn+1(C), it follows that h(C(G′)) = C(G).

(iv) Let f ′ = (B, b) ∈ g and u ∈ Cn, then

Ψ(f ′)(1, u) =

[
0 0
b B

] [
1
u

]
= (0, f ′(u)) = π̃(f ′(u)),

so

π̃(gu) = Ψ(g)(1,u) = g(1,u) = {0} × gu ⊂ {0} × Cn.

�

Proposition 3.9. Let G be an abelian subgroup of GA(n,C), G = Φ(G) and P ∈
Φ(GA(n,C)) so that G′ = P−1GP is a subgroup of K∗

η,r(C) ∩ Φ(GA(n,C)). If
rank(FG′

k
) = nk − 1 (resp. rank(Fg′

k
) = nk − 1), k = 1, . . . , r− 1, then there exists

two injective affine maps γ : Cn −→ GA(n, C) and γ̃ : Cn −→ MA(n, C)

(resp. δ : Cn −→ GA(n, C) and δ̃ : Cn −→ MA(n, C)) such that :

(i) C(G) ⊂ γ(Cn) and C(g) ⊂ γ̃(Cn) (resp. C(G) ⊂ δ(Cn) and C(g) ⊂ δ̃(Cn)).

(ii) γ(G(w0)) = G and γ̃(gw0
) = g. (resp. δ(G(w0)) = G and δ̃(gw0

) = g).

Proof. Let’s prove the Proposition for rank(FGk
) = nk−1. The proof for rank(Fgk) =

nk − 1, k = 1, . . . , r is analogous.

(ii) As G(1, w0) = {1} × G(w0) we have π(G(w0)) = G(1, w0). Then

P−1 ◦ π(G(w0)) = P−1G(1, w0) = P−1GP (u0) = G′(u0) (2)

By proposition 3.2, there exists a linear injective map ϕ : Cn+1 −→ Kη,r(C) such
that ϕ(G′(u0)) = G′. Then by (2) we have

h ◦ ϕ(P−1 ◦ π(G(w0))) = h ◦ ϕ(G′(u0)) = h(G′) = G. (3)

Since Φ−1(G) = G then by (3), we have

G = Φ−1 ◦ h ◦ ϕ ◦ P−1 ◦ π(G(w0)).

It follows that γ = Φ−1◦h◦ϕ◦P−1◦π is an injective affine map from Cn to GA(n,C)
and satisfying γ(G(w0)) = G. (Because π and Φ are invertible affine maps; h, P are
isomorphisms and ϕ is an injective linear map)
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Let γ̃ = Ψ−1 ◦ h ◦ϕ ◦P−1 ◦ π̃, so γ̃ is an injective affine map from Cn to MA(n,C)
and satisfying:

γ̃(gw0
) = Ψ−1 ◦ h ◦ ϕ ◦ P−1 ◦ π̃ (gw0

)

= Ψ−1 ◦ h ◦ ϕ ◦ P−1
(
g(1,w0)

)
(by Lemma 3.8.(iv))

= Ψ−1 ◦ h ◦ ϕ(g′u0
) (by Lemma 3.8.(i))

= Ψ−1 ◦ h(g′)
= Ψ−1(g) (by Lemma 3.8.(i))

= g

By analogous proof, we replace ϕ by ψ in the construction of γ and γ̃ and we find

δ = Φ−1 ◦ h ◦ ψ ◦ P−1 ◦ π and δ̃ = Ψ−1 ◦ h ◦ ψ ◦ P−1 ◦ π̃ (4)

(i) By Lemma 3.8.(iii), h(C(G′)) = C(G) and by proposition 3.2, C(G′) ⊂ ϕ(Cn+1).
Then we have:

C(G) = Φ−1(C(G) ∩ Φ(GA(n,C)))

= Φ−1 (h(C(G′)) ∩Φ(GA(n,C)))

⊂ Φ−1 ◦ h
(
ϕ(Cn+1) ∩ h−1(Φ(GA(n,C)))

)

⊂ Φ−1 ◦ h
(
ϕ(Cn+1) ∩Φ(GA(n,C))

)
(by Lemma 2.1)

⊂ Φ−1 ◦ h ◦ ϕ ({1} × Cn) (by Lemma 3.8.(ii)) (5)

On the other hand, we have P−1({1}×Cn) = {1}×Cn, because P ∈ Φ(GA(n,C)).
As {1} × Cn = π(Cn), so {1} × Cn = P−1({1} × Cn) = P−1 ◦ π(Cn). By (5), we
have

C(G) ⊂ Φ−1 ◦ h ◦ ϕ ◦ P−1 ◦ π(Cn) = γ(Cn).

By Lemma 3.1 and Proposition 3.2, C(g′) = C(G′) ⊂ ϕ(Cn+1). By Lemma 3.8.(iii),
h(C(g′)) = C(g), then we have:

C(g) = Ψ−1(C(g) ∩ Fn+1)

= Ψ−1 (h(C(g′)) ∩ h(Fn+1)) (by Lemma 2.1)

⊂ Ψ−1 ◦ h
(
ϕ(Cn+1) ∩ Fn+1

)

⊂ Ψ−1 ◦ h ◦ ϕ ({0} × Cn) (by Lemma 3.8.(i)) (6)

On the other hand, we have P−1({0}×Cn) = {0}×Cn, because P ∈ Φ(GA(n,C)).
As {0} × Cn = π̃(Cn), so {0} × Cn = P−1({0} × Cn) = P−1 ◦ π̃(Cn). By (6), we
have

C(g) ⊂ Ψ−1 ◦ h ◦ ϕ ◦ P−1 ◦ π̃(Cn) = γ̃(Cn).

This completes the proof. �
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Corollary 3.10. If G(w0) = Cn (resp. gw0
= Cn) then γ : Cn −→ C(G) and

γ̃ : Cn −→ C(g) (resp. δ : Cn −→ C(G) and δ̃ : Cn −→ C(g)) are homeomorphisms.

Proof. Suppose that G(w0) = Cn. Then by Proposition 3.9 there exists an injective
affine map γ : Cn −→ GA(n,C) such that C(G) ⊂ γ(Cn). Let’s prove that
γ(Cn) ⊂ C(G):
By proposition 3.9.(ii), we have γ(G(w0)) = G. Then since γ is continuous, we
have:

γ(Cn) = γ(G(w0)) ⊂ γ(G(w0)) = G.

By construction, C(G) is an affine subspace of Cn then it is closed and so G ⊂ C(G).
Hence γ(Cn) ⊂ C(G). We conclude that γ is an homeomorphism of Cn on C(G).

The same proof is given for γ̃, δ and δ̃. �

Corollary 3.11. If G(w0) = Cn then the map α : Cn −→ Cn defined by
α = γ−1 ◦ Φ−1 ◦ h ◦

(
exp/Kη,r(C)∩Fn+1

)
◦ h−1 ◦Ψ ◦ γ̃ satisfies:

(i) α is an open map
(ii) α−1(G(w0)) = gw0

.

Proof. If G(w0) = Cn then ϕ is invertible so are γ and γ̃. Hence α is well defined.
(i) Since exp/Kη,r(C) is a local diffeomorphism (Corollary 3.5) then α is open.

(ii) By Proposition 3.9.(ii), we have γ̃−1(g) = gu0
and γ(G(w0)) = G. Then

α−1(G(w0)) = γ̃−1 ◦Ψ−1 ◦ h ◦
(
exp/(Kη,r(C)∩Fn+1)

)−1 ◦ h−1 ◦ Φ ◦ γ (G(w0))

= γ̃−1 ◦Ψ−1 ◦ h ◦
(
exp/(Kη,r(C)∩Fn+1)

)−1 ◦ h−1 ◦ Φ(G)
= γ̃−1 ◦Ψ−1 ◦ h ◦

(
exp/(Kη,r(C)∩Fn+1)

)−1 ◦ h−1(G)

= γ̃−1 ◦Ψ−1 ◦ h ◦
(
exp/(Kη,r(C)∩Fn+1)

)−1
(G′)

= γ̃−1 ◦Ψ−1 ◦ h(g′) (by definition of g′)

= γ̃−1 ◦Ψ−1(g) (by Lemma 3.8.(i))

= γ̃−1(g)

= gw0
.

�

Lemma 3.12. Let v ∈ Cn+1. Then v ∈ U ∩ ({1} × Cn) if and only if ψ(v) ∈
K∗

η,r(C) ∩Φ(GA(n,C)). Moreover, ψ−1(K∗
η,r(C) ∩Φ(GA(n,C)) = U ∩ ({1} ×Cn).

Proof. Let x = [x1,1, . . . , x1,n1
; . . . ;xr,1, . . . , xr,nr

]T ∈ Cn+1. By Proposition 3.2.(i),
ψ(x) = diag(B1, . . . , Br) ∈ Kη,r(C) with Bk ∈ Tnk

(C), k = 1, . . . , r. By Proposi-
tion 3.2.(ii), x = ψ(x)u0 = [B1e1,1, . . . Brer,1]

T . ThereforeB1e1,1 = [1, x1,2, . . . , x1,n1
]T

and Bkek,1 = [xk,1, . . . , xk,nk
]T , k = 2, . . . , r. The proof of Lemma 3.12 follows,

since Bk has xk,1 as only eigenvalue, for every k = 1, . . . , r. �
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Lemma 3.13. ([1], Proposition 2.3) If A,B ∈ Kη,r(C) satisfy e
AeB = eBeA then

AB = BA.

Lemma 3.14. Under notation of Proposition 3.9. If gw0
= Cn then:

(i) U ∩ ({1} × Cn) = ψ−1(C(G′) ∩Φ(GA(n,C)) ∩ K∗
η,r(C)).

(ii) V = δ−1
(
C(G) ∩ Φ−1 ◦ h(K∗

η,r(C))
)
.

(iii) exp (C(g′) ∩ Fn+1) = C(G′) ∩ K∗
η,r(C) ∩ Φ(GA(n,C)).

Proof. (i) By Lemma 3.12, we have

ψ−1(C(G′)∩Φ(GA(n,C))∩K∗
η,r(C)) ⊂ ψ−1

(
K∗

η,r(C) ∩ Φ(GA(n,C))
)
= U∩({1}×Cn).

Conversely, let x ∈ U ∩ ({1}×Cn), so xk,1 6= 0, k = 2, . . . , r. Then ψ(x) ∈ ψ(Cn) =
C(G′) (Corollary 3.4). By Lemma 3.12, ψ(x) ∈ K∗

η,r(C) ∩ Φ(GA(n,C)). It follows
that ψ(x) ∈ C(G′) ∩ Φ(GA(n,C)) ∩ K∗

η,r(C).

(ii) Recall that C(G) = Φ−1(C(G)∩Φ(GA(n,C))), by Lemma 2.1, h(Φ(GA(n,C))) =
Φ(GA(n,C)) and by (4), δ = Φ−1 ◦ h ◦ ψ ◦ P−1 ◦ π. Then we have

V = π−1 ◦ P (U ∩ ({1} × Cn))

= π−1 ◦ P [ψ−1(C(G′) ∩Φ(GA(n,C)) ∩ K∗
η,r(C))] (by (i))

= π−1 ◦ P ◦ ψ−1 ◦ h−1[C(G) ∩ Φ(GA(n,C)) ∩ h(K∗
η,r(C))] (by Lemma 3.8.(iii))

=
(
π−1 ◦ P ◦ ψ−1 ◦ h−1 ◦ Φ

) (
Φ−1 [C(G) ∩ Φ(GA(n,C))] ∩Φ−1 ◦ h(K∗

η,r(C))
)

= δ−1(C(G) ∩ Φ−1 ◦ h(K∗
η,r(C)))

(iii) By Lemma 3.3.(i), exp(C(g′)) = C(G′) ∩ K∗
η,r(C) and by Lemma 2.7.(i),

exp(Fn+1) = Φ(GA(n,C)). So exp (C(g′) ∩ Fn+1) ⊂ C(G′)∩K∗
η,r(C)∩Φ(GA(n,C)).

Conversely, let M ∈ C(G′) ∩K∗
η,r(C) ∩Φ(GA(n,C)). By Lemma 2.7.(iii). there ex-

ists N ∈ Fn+1 ∩ Kη,r(C) such that eN = M . As M ∈ C(G′) = C(g′) (Lemma 3.1),
so MA = AM for every A ∈ g′ thus MeA = eAM then eNeA = eAeN . Since
A,N ∈ Kη,r(C), then by Lemma 3.13, NA = AN , so N ∈ C(g′). It follows that
M = eN ∈ exp(C(g′) ∩ Fn+1). �

Corollary 3.15. If gw0
= Cn then the map β : Cn −→ Cn defined by

β = δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
◦ h−1 ◦Ψ ◦ δ̃ satisfies:

(i) β(gw0
) = G(w0).

(ii) β(Cn) = V .

Proof. If gw0
= Cn then by Corollary 3.10, δ : Cn −→ C(G) and δ̃ : Cn −→ C(g)

are homeomorphisms, so δ̃(Cn) = C(g).
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(i) By proposition 2.4, we have exp(g′) = G′. By Proposition 3.9, we have δ̃(gw0
) =

g and δ(G(w0)) = G. As δ is invertible, then δ−1(G) = G(w0). Therefore :

β(gw0
) = δ−1 ◦ Φ−1 ◦ h ◦

(
exp/Kη,r(C)

)
◦ h−1 ◦Ψ ◦ δ̃(gw0

)

= δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
◦ h−1 ◦Ψ(g)

= δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
◦ h−1(g)

= δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
(g′)

= δ−1 ◦ Φ−1 ◦ h(G′)

= δ−1 ◦ Φ−1(G)

= δ−1(G)
= G(w0).

(ii) By Lemma 2.1, h(Fn+1) = Fn+1 and h(Φ(GA(n,C))) = Φ(GA(n,C)) and
by Lemma 3.14, we have:

β(Cn) = δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
◦ h−1 ◦Ψ ◦ δ̃(Cn)

= δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
◦ h−1 ◦Ψ(C(g))

= δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
◦ h−1(C(g) ∩ Fn+1)

= δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
(C(g′) ∩ h−1(Fn+1))

= δ−1 ◦ Φ−1 ◦ h ◦
(
exp/Kη,r(C)

)
(C(g′) ∩ Fn+1)

= δ−1 ◦ Φ−1 ◦ h(C(G′) ∩ K∗
η,r(C) ∩Φ(GA(n,C)))

= δ−1 ◦ Φ−1(C(G) ∩ Φ(GA(n,C)) ∩ h(K∗
η,r(C))))

= δ−1
(
C(G) ∩ Φ−1 ◦ h(K∗

η,r(C))
)

= V.

�

Proposition 3.16. V is G-invariant dense open set of Cn and every orbit of G,
contained in V is minimal in V .

Proof. Let x ∈ V and f = (A, a) ∈ G. Then π(x) = (1, x) ∈ P (U) and Φ(f) ∈ G.
By Proposition 3.7, U is G′-invariant so P (U) is G-invariant. Then Φ(f)(1, x) =
(1, f(x)) ∈ P (U), so f(x) = π−1(1, f(x)) ∈ π−1 ◦ P (U) = V. It follows that V is
G-invariant.
By proposition 3.7, we have all orbits of G′ = P−1GP and contained in U are

minimal in U . Let x ∈ V and y ∈ G(x) ∩ V , so P−1 ◦ π(x) = P−1(1, x) ∈ U and
also P−1(1, y) ∈ U . We have

{1} × G(x) = G(1, x) = P
(
G′(P−1(1, x))

)
. (7)
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As P−1(1, x), P−1(1, y) ∈ U , then

G′(P−1(1, x)) ∩ U = G′(P−1(1, y)) ∩ U.

Therefore
(
{1} × G(x)

)
∩ P (U) = G(1, x) ∩ P (U)

= P
(
G′ (P−1(1, x)) ∩ U

)

= P
(
G′ (P−1(1, y)) ∩ U

)

= G(1, y) ∩ P (U)

=
(
{1} × G(y)

)
∩ P (U) (by (7))

Thus
(
{1} × G(x)

)
∩ P (U ∩ ({1} × Cn)) =

(
{1} × G(y)

)
∩ P (U ∩ ({1} × Cn) )

Then

G(x) ∩
[
π−1 ◦ P (U ∩ ({1} × Cn))

]
= G(y) ∩

[
π−1 ◦ P (U ∩ ({1} × Cn))

]
.

So

G(x) ∩ V = G(y) ∩ V.
The proof is complete. �

Lemma 3.17. Cn\V is union of at most n, G-invariant affine spaces with dimen-
sion less to n− 1.

Proof. We have Cn+1\U =
r⋃

k=1

Hk, where

Hk = {u = (u1, . . . , ur) ∈ Cn+1 : uk ∈ {0}×Cnk−1, ui ∈ C∗×Cni−1, 1 ≤ i ≤ r, i 6= k}

is a vector space G′-invariant with dimension n, k = 1, . . . , r. Since r ≤ n + 1,
Cn+1\U is a union of at most n + 1, G′-invariant vector spaces with dimension
n. Then Cn+1\P (U) is a union of at most n + 1, G-invariant vector spaces with
dimension n. As H1 ∩ ({1} × Cn) = ∅, so

({1} × Cn)\(U ∩ ({1} × Cn)) =
(
Cn+1\U

)
∩ ({1} × Cn)

=
r⋃

k=2

(Hk ∩ ({1} × Cn)) (8).
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Since P ({1} × Cn) = {1} × Cn, then by (8), we have

Cn\V = π−1({1} × Cn)\π−1 ◦ P (U ∩ ({1} × Cn))

= π−1 ◦ P (({1} × Cn)\(U ∩ ({1} × Cn)))

= π−1 ◦ P
(

r⋃

k=2

(Hk ∩ ({1} × Cn))

)

=

r⋃

k=2

Ek,

where Ek = π−1◦P (Hk∩({1}×Cn)) is G-invariant affine space for every 2 ≤ k ≤ r.
As Hk 6= {1} × Cn, then dim(Hk ∩ ({1} × Cn)) ≤ n − 1, so dim(Ek) ≤ n − 1. It
follows that Cn\V is union of at most n spaces Ek, since r ≤ n+ 1. �

Corollary 3.18. If G has a dense orbit in Cn then all orbits of V are dense in Cn.

Proof. Let u ∈ Cn such that G(u) = Cn. By Lemma 3.17, Cn\V is union of at most
n, G-invariant affine spaces with dimension less to n − 1, so u ∈ V . Let v ∈ V .
Since V = G(u) ∩ V then by Proposition 3.16, G(v) ∩ V = G(u) ∩ V = V . As

V = Cn, one has G(v) = Cn. �

4. Proof of Theorem 1.1 and corollary 1.2

4.1. Proof of Theorem 1.1. Let G be an abelian affine subgroup of GA(n, C)
and let P ∈ Φ(GA(n,C)) defined in Proposition 2.3. Recall that G = Φ(G) and
g = exp−1(G) ∩

(
PKη,r(C)P

−1
)
∩ Fn+1.

ii) =⇒ i) is clear.
i) =⇒ ii) This follows from Corollary 3.18, since u0 ∈ U and so w0 = π−1◦P (u0) ∈
V .
iii) ⇒ ii) : Suppose that gw0

= Cn. Then by Corollary 3.15 there exists a continu-
ous map β : Cn −→ Cn such that β(gw0

) = G(w0) and β(C
n) = V . By continuity,

one has:

V = β(Cn) = β (gw0
) ⊂ β(gw0

) = G(w0)

Since V is a dense open set in Cn then G(w0) = Cn.

ii) ⇒ iii) : Suppose that G(w0) = Cn.
By Corollary 3.11, there exists an open map α : Cn −→ Cn such that gw0

=
α−1(G(w0)). Then:

Cn = α−1(Cn) = α−1(G(w0)) ⊂ α−1(G(w0)) = gw0

�
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4.2. Proof of Corollary 1.2. Let G be an abelian subgroup of GA(n,C) hav-

ing a dense orbit. By Theorem 1.1, G(w0) = Cn. Then by Proposition 3.2 and
corollary 3.10, there exists an invertible affine map γ : Cn −→ C(G) such that
γ(G(w0)) = G. Therefore:

γ(Cn) = γ(G(w0)) = γ(G(w0)) = G.
It follows that G is an affine space of dimension n.

5. Finitely generated subgroups

5.1. Proof of Theorem 1.3.

Denote by v0 = Pu0 = (1, w0). So w0 = p2(v0).

Lemma 5.1. We have p2(Ψ(f ′)v0) = f ′(w0), for every f ′ ∈ g. In particular,
gw0

= p2(gv0).

Proof. Let f ′ = (B, b) ∈ g, then

Ψ(f ′)v0 =

[
0 0
b B

] [
1
w0

]

=

[
0

b+Bv0

]
.

So p2(Ψ(f ′)v0) = b+Bv0 = f ′(w0). �

Proposition 5.2. ([1], Proposition 8.1) Let G be a subgroup of GL(n + 1,C)
generated by A1, . . . , Ap. Let B1, . . . , Bp ∈ g such that Ak = eBk , k = 1, . . . , p.
Then:

gv0 =

p∑

k=1

ZBkv0 +
r∑

k=1

2iπZPe(k).

Proposition 5.3. (Under notations of Proposition 2.3) Let G be an abelian sub-
group of GA(n,C) generated by f1, . . . , fp and let f ′

1, . . . , f
′
p ∈ g such that Φ(fk) =

eΨ(f ′
k), k = 1, .., p. Then:

gw0
=

p∑

k=1

Zf ′
k(w0) +

r∑

k=1

2iπZ(p2 ◦ Pe(k)).

Proof. Let G = Φ(G). Then G is generated by Φ(f1), . . . ,Φ(fp) and g is the additive
group generated by Ψ(f ′

1), . . . ,Ψ(f ′
p). By proposition 5.2 we have

gv0 =

p∑

k=1

ZΨ(f ′
k)v0 +

r∑

k=1

2iπZPe(k).
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By Lemma 5.1, we have gw0
= p2 (gv0) and p2(Ψ(f ′

k)v0) = f ′
k(w0). then

gw0
= p2

(
p∑

k=1

ZΨ(f ′
k)v0 +

r∑

k=1

2iπZPe(k)

)
.

=

p∑

k=1

Zf ′
k(w0) +

r∑

k=1

2iπZ(p2 ◦ Pe(k)).

�

Recall the following Proposition which was proven in [2]:

Proposition 5.4. (cf. [2], page 35). Let H = Zu1 + · · · + Zup with uk =
(uk,1, . . . , uk,n) ∈ Cn and uk,i = Re(uk,i) + iIm(uk,i), k = 1, . . . , p, i = 1, . . . , n.
Then H is dense in Cn if and only if for every (s1, . . . , sp) ∈ Zp\{0} :

rank




Re(u1,1) . . . . . . Re(up,1)
...

...
...

...
Re(u1,n) . . . . . . Re(up,n)
Im(u1,1) . . . . . . Im(up,1)

...
...

...
...

Im(u1,n) . . . . . . Im(up,n)
s1 . . . . . . sp




= 2n+ 1.

Proof of Theorem 1.3: This follows directly from Theorem 1.1, Propositions 5.3
and 5.4.

5.2. Proof of Corollaries 1.4 and 1.5.

Proof of Corollary 1.4: We show first that if H = Zu1 + · · ·+ Zum, uk ∈ Cn with
m ≤ 2n, then H can not be dense: Write uk ∈ Cn, uk = Re(uk) + iIm(uk) and
vk = [Re(uk); Im(uk); sk]

T ∈ R2n+1, 1 ≤ k ≤ m. Since m ≤ 2n, it follows that
rank(v1, . . . , vm) ≤ 2n, and so H is not dense in Cn by Proposition 5.4.
Now, by applying Theorem 1.3 and the fact that m = p+ r ≤ 2n, the Corollary 1.4
follows. �

Proof of Corollary 1.5: Since p ≤ n and r ≤ n then p + r ≤ 2n. Corollary 1.5
follows from Corollary 1.4. �

5.3. The case: n = 1.

Let G be a subgroup of GA(1,C), generated by f1 = (a1, λ1), . . . , fp = (ap, λp),
where ak = ρke

iθk , λk = rke
iαk , ρk, rk > 0, θk, αk ∈ R, 1 ≤ k ≤ p. Therefore

G = Φ(G) is an abelian subgroup of GL(2,C). Let f ′
1, . . . , f

′
p ∈ g such that eΨ(f ′

k) =
Φ(fk), 1 ≤ k ≤ p. Since G is abelian then there are two cases:

⋄ Case 1: G is a group of translations.
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In this case G(x) = Tx

(
p∑

k=1

λkZ

)
. Then G has a dense orbit if and only if G(0) =

p∑
k=1

λkZ has a dense orbit, which is equivalent, by Proposition 5.4, to:

For every (s1, . . . , sp, t) ∈ Zp+1\{0}:

rank



log(r1) . . . log(rp) 0
α1 . . . αp 2π
s1 . . . sp t


 = 3.

⋄ Case 2 : G contains no translation:
In this case u0 = (1, 1), ak 6= 1 for every k = 1, . . . , p and f ′

k = (Bk, bk) is defined
by:

Bk =

[
0 0
bk µk

]
, where bk = log(rk) + iθk and µk =

λk(log(rk) + iθk)

(ak − 1)
.

Since w0 = 1 then

gw0
= f ′

1(w0)Z+ · · ·+ f ′
p(w0)Z+ 2iπZ

= (b1 + µ1)Z+ · · ·+ (bp + µp)Z+ 2iπZ

Moreover, the property D in this cases is as follow:
f1, . . . , fp satisfy property D if and only if for every (s1, . . . , sp, t) ∈ Zp+1 − {0}:

rank




log|b1 + µ1| . . . log|bp + µp| 0
arg(b1 + µ1) . . . arg(bp + µp) 2π

s1 . . . sp t


 = 3.

where arg(z) = θ ∈ [0, 2π[ for every z = reiθ ∈ C, r > 0. Therefore, from
Theorem 1.3, we obtain:

Proposition 5.5. If G is a subgroup of GA(1,C) generated by f1 = (a1, λ1), . . . , fp =
(ap, λp), where ak = ρke

iθk 6= 1, λk = rke
iαk , ρk, rk > 0, θk, αk ∈ R, 1 ≤ k ≤ p.

Then the following are equivalent:
(i) G is minimal (i.e. every orbit of G is dense in C).
(ii) G has a dense orbit

(iii)
p∑

k=1

(bk + µk)Z + 2iπZ is dense in C, where bk = log(rk) + iθk and µk =

(logρk + iθk)
(
1 + λk

ak−1

)
.

(iv) for every (s1, . . . , sp, t) ∈ Zp+1\{0}:

rank




log|b1 + µ1| . . . log|bp + µp| 0
arg(b1 + µ1) . . . arg(bp + µp) 2π

s1 . . . sp t



 = 3.
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6. Examples

Example 6.1. Let ak = eπ(sk+itk), sk, tk ∈ Q, 1 ≤ k ≤ p and let G be the subgroup
of translations of C generated by Ta1

, . . . , Tap
. Then G has no dense orbit.

Proof. We can write sk = mk

q and tk = pk

q , q ∈ N∗ and mk, pk ∈ Z for every

1 ≤ k ≤ p. One has: gx = Tx(g0), where

g0 =
π

q

(
p∑

k=1

(mk + ipk)Z + 2iqZ

)
⊂ π

q
(Z+ iZ).

So g0 6= C. By Theorem 1.1, G(0) 6= C. It follows by Proposition 5.5, that

G(x) 6= C. �

Example 6.2. Let G the group generated by f1 = (A1, a1), f2 = (A2, a2) and
f3 = (A3, a3), where:

A1 = diag(ei, 1), a1 = (i(1− ei), 0), A2 = diag(1, ei), a2 =
(
0, 2i

(
e−i − 1

))
.

A3 = diag

(
e

−
√

3

2π
+i

(√
5

2
−

√
3

2π

)

, e
−

√
2

π
+i

(√
2

2π
−

√
7

2

)
)

and a3 = (0, 0) .

Then every orbit in V = C∗ × C∗ is dense in C2.

Proof. Denote by G = Φ(G). Then G generated by

A′
1 = Φ(f1) =




1 0 0

i(1− ei) ei 0
0 0 1



 , A′
2 = Φ(f2) =




1 0 0
0 1 0

2i(e−i − 1) 0 ei



 ,

and

A′
3 = Φ(f3) = diag

(
1, e

−
√

3

2π
+i

(√
5

2
−

√
3

2π

)

, e
−

√
2

π
+i

(√
2

2π
−

√
7

2

)
)
.

Let f ′
1 = (B1, b1), f

′
2 = (B2, b2) and f ′

2 = (B2, b2) such that eΨ(f ′
k) = A′

k,
k = 1, 2, 3. We have

B1 = diag(i, 0), B2 = diag(0, i),

B3 = diag

(
−
√
3

2π
+ i

(√
5

2
−

√
3

2π

)
,

−
√
2

π
+ i

(√
2

2π
−

√
7

2

))
,

b1 = (1, 0), b2 = (0,−2), and b3 = (0, 0).

Here, we have:
- P = I3, U = (C∗)3, u0 = (1, 1, 1).
- V = C∗ × C∗, w0 = (1, 1).

The additive group g = exp−1(G) ∩
(
K(1,1,1),3(C)

)
∩ F3 is generated by N1, N2

and N3, where

Nk = Ψ(f ′
k) =

[
0 0
bk Bk

]
, 1 ≤ k ≤ 3
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In the other hand, for every (s1, s2, s3, t1, t2) ∈ Z5\{0}, one has the determinant:

∆ =

∣∣∣∣∣∣∣∣∣∣

Re(B1w0 + b1) Re(B2w0 + b2) Re(B3w0 + b3) 0 0

Im(B1w0 + b1) Im(B2w0 + b2) Im(B3w0 + b3) 2πe1 2πe2

s1 s2 s3 t1 t2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

−
√
3

2π 1 0 0 0

−
√
2

π 0 −2 0 0√
5
2 −

√
3

2π 1 0 2π 0√
2

2π −
√
7
2 0 1 0 2π

s1 s2 s3 t1 t2

∣∣∣∣∣∣∣∣∣∣∣

= −2π
(
(4s1)π − (2s3)

√
2 + (2s2)

√
3 + t1

√
5 + t2

√
7
)
.

Since π,
√
2,

√
3,

√
5 and

√
7 are rationally independent then ∆ 6= 0 for every

(s1, s2, s3, t1, t2) ∈ Z5\{0}. It follows that:

rank




−
√
3

2π 1 0 0 0

−
√
2

π 0 −2 0 0√
5
2 −

√
3

2π 1 0 2π 0√
2

2π −
√
7
2 0 1 0 2π

s1 s2 s3 t1 t2




= 5

and by Theorem 1.3, G has a dense orbit and every orbit of V is dense in C2. �
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