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DENSE ORBITS FOR ABELIAN AFFINE GROUPS

ADLENE AYADI

ABSTRACT. In this paper, we give a characterization of existence of a dense
orbit for the action on C™ of an abelian affine subgroup G of GA(n,C). We
prove in particular that if G has a dense orbit then the closure G is an affine
space of dimension n. If G is finitely generated, this characterization is explicit.

1. Introduction

Let M,,(C) be the set of all square matrices of order n > 1 with entries in C and
GL(n, C) be the group of all invertible matrices of M,,(C). A map f: C* — C" is
called an affine map if there exist A € M,,(C) and a € C™ such that f(z) = Az +a,
x € C". We denote f = (A, a), we call A the linear part of f. Denote by M A(n, C)
the set of all affine maps and GA(n, C) the set of all invertible affine maps of
MA(n,C). MA(n,C) is a vector space and for composition of maps, GA(n, C) is
a group.

Let G be an abelian affine subgroup of GA(n, C). For a vector v € C", we
consider the orbit of G through v: G(v) = {f(v): f € G} CC". A subset E C C"
is called G-invariant if f(F) C E for any f € G; that is E is a union of orbits.
Before stating our main results, we introduce the following notions:

A subset H of C™ is called an affine subspace of C™ if there exist a vector subspace
H of C" and a € C" such that H = H +a. For a € C", denote by T, : C* — C™;
x — x + a the translation map by vector a, so H = T,(H). We say that H has
dimension p (0 < p < n), denoted dim(#) = p, if H has dimension p.

Denote by A the closure of a subset A C C". A subset E of C" is called a
minimal set of G if E is closed in C™, non empty, G-invariant and has no proper
subset with these properties. It is equivalent to say that F is a G-invariant set such
that every orbit contained in F is dense in it.

If V is a G-invariant open set in C™, we say that F is a minimal set in V if it is
a minimal set of the restriction G,y of G to V.

Define the map

® : GA(n, C) — ®(GA(n,C)) CcGL(n+1, C)
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1 0
f=(4a) — Ll A]
We have the following composition formula
1 0|1 0] _ 1 0
a Al|b B| |Ab+a AB|’
Then @ is a homomorphism of groups.

Let G be an abelian affine subgroup of GA(n, C). Then ®(G) is an abelian sub-
group of GL(n+1,C).

Let m : C* — {1} x C" be the map defined by n(y) = (1,y). Clearly 7 is
an invertible affine maps and we have for every z € C",

m(G(z)) = ®(G)(1,2) = {1} x G(z) C {1} x C".

Let n € Ny be fixed. For each m =1,2,...,n + 1, denote by:

e C* =C\{0} and Ny = N\{0}.

e By =(e1,...,ens1) the canonical basis of C*"*! and I, the identity matrix of
GL(n+1,C).

e T,,(C) the set of matrices over C of the form

o 0
a2 1 M
(1)
am71 e am7m71 H

e T% (C) the group of matrices of the form (1) with u # 0.

Let » € N and n = (n1,...,n,) be a sequence of positive integers such that
ny+---+n, =n+ 1. In particular, r <n + 1.

Write

e K,,(C):=T,, (C)®---®T,, (C). In particular if r = 1, then I, ; (C) = T\,41(C)
and n = (n+1).

e K . (C) =K, (C)NnGL(n+1, C).

Define the map

U : MA(n, C) — Y(GA(n,C)) C M,4+1(C)

f=Aa) — |00

We have ¥ is an isomorphism. Remark that ®(f) = U(f) + Dy, where Dy =

[ (1) 8 ] € M, +1(C), f € GA(n,C), so ® is an affine map.

Denote by:

]

o> O

. ] € Mps1(C), Be My(C),be cn} — U(MA(n,C)).
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o exp: M,41(C) — GL(n + 1,C) is the matrix exponential map; set exp(M) =
eM.

There always exists a P € ®(GA(n,C)) and a partition n of n 4+ 1 such that
G' = P7'GP c K} ,(C)N®(GA(n,C)) (see Proposition B-3). For such a choice of
matrix P, we let

e g = exp H(G) N (P(K,y(C)P') N Fuyr. If G C K;,(C), we have g =
exp H(G) N Ky (C) N Frgr.

eg,={Bu: Beg}, ueCrtl.

o g=""g).

eg,={f(v), feg} velCn

Let 7 : C* — {0} x C" be the map defined by 7(y) = (0,y). Clearly 7 is
an isomorphism.

Denote by:

o uy=ler1,...,er1]7 € C"! where ex 1 = [1,0,...,0]7 € C™, for k= 1,...,7.
One has ug € {1} x C™.

e wy = 7 1(Pug) € C". As P € ®(GA(n,C)), Pug € {1} x C". So w(wp) =
(1,’[1)0) = P’U,().

o e® =M eMT ccntl where
k) | 0eC™ if j#k il <
€; { - it =k for every 1 <4, k<.
e po: C"*1 — C™ the projection defined by pa(z1,...,Tni1) = (T2, .., Tpi1).

Notice that 7=! is the restriction of ps to {1} x C".
e M7 is the transpose of any M € M,,(C), m <n + 1.
e G is the closure of G in M A(n,C), which is considered as a vector space with the

norm defined by ||f]| = max(||A4||, ||a||) the maximum of ||A|| and |a||, for every
f=(4,a) € MA(n,C).

For a finitely generated subgroup G C GA(n,R), let introduce the following
property. Consider the following rank condition on a collection of affine maps
fi,...,f» € GA(n,C), where fi,...,fs € g such that e¥U%) = ®(f), k =
1,...,p.

We say that fi,..., f, satisfy property D if for every (si1,...,8p; t1,...,tr) €
7P\ {0}:

Re(fi(wo)) ... Re(fy(wo)) 0 . 0
rank | Im(fi(wo)) ... Im(f,(wo)) o2me .. 27we™ | =n 1.
S1 e Sp fl e tr

For a vector v € C™, we write v = Re(v) +ilm(v) where Re(v) and I'm(v) € R™.
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For groups of affine maps on K™ (K = R or C), their dynamics were recently
initiated for some classes in different point of view, (see for instance, [{], [, [{,[H])-
The purpose here is to give analogous results of that theorem for linear abelian
subgroup of GL(n,C) proved in [[]. Our main results are the following:

Theorem 1.1. Let G be an abelian subgroup of GA(n,C). The following are equiv-
alent:

(i) G has a dense orbit in C"

(i) The orbit G(wy) is dense in C"

(#1) Gu, is an additive subgroup dense in C™

Corollary 1.2. If G has a dense orbit then G is an affine subspace of GA(n,C) of

dimension n.

For a finitely generated subgroup G, the Theorem can be stated as follows:

Theorem 1.3. Let G be an abelian subgroup of GA(n,C) generated by f1,..., fp
and let fi,...,f, € g such that e?UD = @(fl),...,eq'(ff/)) = O(f,). Then the
following are equivalent:

(i) G has a dense orbit in C"

(i1) the maps fi1,..., fp satisfy property D

P r
(11) Guwo = > Zfh(wo) + 2im S Z(pa o Pe¥)) is an additive group dense in C™.
k=1 k=1

Corollary 1.4. If G is of finite type p with p < 2n —r, then it has no dense orbit.

Corollary 1.5. If G is of finite type p with p < n, then it has no dense orbit.

2. Notations and Lemmas

Denote by Lg the set of the linear parts of all elements of G and vect(F) is the
vector space generated by a subset F ¢ C*+1,

Lemma 2.1. Let P € ®(GA(n,C)) and h : M, +1(C) — My41(C) the isomor-
phism defined by h(A) = PAP~Y. Then h(F,+1) = Fnt1 and h(®(GA(n,C))) =
P(GA(n,C)).

Proof. Let f = (A,a) € MA(n,C). As P € ®(GA(n,C)), write

10 .
P{d C},CEGL(n,C),deC.

om=[1 8110 8] e ]

0 0

Then

d+Ca—CAC~'d CAC™!
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so h(¥(f)) € Fni1. It follows that h(F,11) C Fpi1. Conversely, let b’ = h™1, so
h': My+1(C) — My11(C) is the isomorphism defined by h(B) = P~1BP. By
replacing h by h' in above, we have h/(F,,+1) C Fpt1. It follows that

]:n—i-l =ho h/(]:n+1) C h(]:n+1)

The same proof is used to show h(®(GA(n,C))) = ®(GA(n,C)). O

Proposition 2.2. ([[], Proposition 2.3) Let G be an abelian subgroup of GL(n,C).
Then there exists P € GL(n,C) such that P~*GP is a subgroup of K,y ,(C), for

’
somer’ <nandn' = (n},....n.,) e Nj.

Proposition 2.3. Let G be an abelian subgroup of GA(n,C) and G = ®(G).
Then there exists P € ®(GA(n,C)) such that P~'GP is a subgroup of K}, .(C) N
®(GA(n,C)), for somer < n+1 andn = (n1,...,n,) € Nj. In particular,
Pug € {1} x C™.

Proof. We have Lg is an abelian subgroup of GL(n,C). By Proposition @, there
exists P; € GL(n,C) such that P, 'GP, is a subgroup of K .(C) for some 7" <n
and ' = (n},...,nl,) € N7’ such that n} + ... ,nl, =n. Write for every A € Lg,

Pl_lAPl = diag(44,...,Al,) with A € T;; and 14, is the only eigenvalue of Ay,

T

k=1,...,7". Let J={ke{l,...,r"}, pa, =1,V A€ Lg}. There are two cases:

- Casel: Suppose that J = {kq,...,ks} for some s <r'. We can take J = {1,..., s},
otherwise, we replace P; by RP; for some permutation matrix R of GL(n,C). Let
P = diag(1, P,), so P € ®(GA(n,C)) and

_1 B 1 0
Po(f)P = [ Prla P7YAP |

Write P(By) = (e1,Ci,...,Cr), where Cp = (e;cﬁl,...,e;cﬁn;c) is a basis of C",
k=1,...,7. Then H = vect(ey,C,...,Cs) is G-invariant and the restriction
®(f),u has 1 as only eigenvalue for every f € G. Therefore for every f = (A,a) € G
we have
A 0
-1 _ 1
rragne=| g o |
where Ay € T;(C), ¢ = 1 +nj + -~ +n} and Ay € Ky s(C) with n” =
(nfyy,...,nl,). Aspa, = 1isthe only eigenvalue of A1, so P71®(f)P € ®(GA(n,C)).
It follows that P~'GP is a subgroup of K . (C)N®(GA(n,C)), where r = 7/ —s+1
and n= (Qan;+17 s ,TL;/).

- Case:2 Suppose that J = ), then 1 is the commune eigenvalue of all element of
G and let v be the commune eigenvector of all element of G associated to 1. Since
{0} x C™ is G-invariant, one has v € C* x C™, so we can take v = (1,v1), v; € C",
otherwise, if v = (A, v}) we replace v by Fv. As ®(f)(1,v1) = (1, f(v1)) = (1,v1)
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so f(v1) = 7= H(®(f)(1,v1)) = 7~ 1(1,v1) = v1, hence f(v1) = Avy +a = vy. Let

P= { Lo } € ®(GA(n,C)), so for every f = (A,a) €G
U1 P1

_ 1 0 1 0 1 0
P 1(1)(f)P: |: —Pfl’Ul Pfl :| |:0, A:| |:’Ul P1:|

1 0
o |: Pl_l(A’Ul—f—a—Ul) Pl_lApl :|

R

|0 PAP |
It follows that P~'GP is a subgroup of K7 (C) N ®(GA(n,C)), where r =1’ + 1
and n = (1,n},...,n.).

s Hopt

Since ug € {1} x C™ and P € ®(GA(n,C)), so Pug € {1} x C". O
Denote by:

e G =P GP.

e g =exp ' (G)NK,,(C)N Fpyi.

e C(G')={Bek,.(C), AAB=BA", A cG}.
¢ C(G) = PC(G")PL.

Proposition 2.4. (Under above notation), we have exp(g) = G. In particular,
eaple) = G-

The proof of Proposition @ uses the following Lemmas:

Lemma 2.5. ([[l], Lemma 4.2) Let G be an abelian subgroup of GL(n +1,C) and
P e GL(n+1,C) such that P~'GP is a subgroup of K, (C). If g1 = exp~'(G) N
(PKy(C)P™Y) then:

(i) exp(g1) = G.

(ii) g1 C C(G).

Lemma 2.6. ([[l], Proposition 3.2) exp(K,.,(C)) = K - (C).

Lemma 2.7. (i) If N € PK, ,(C)P~! such that eV € ®(GA(n,C)), so N —
2iknl,+1 € Fpy1, for some k € Z.

(”) exp(]:n-l-l) = (I)(GA(H’(C))

(tii) exp(Fns1 NIy (C)) = P(GA(n,C)) N IC;;,T(C).

Proof. (i) Let N’ = P7'NP € K, ,(C), M = e" and M’ = P~*MP. We have
eN' = M’ and by Lemma ., M’ € Ky - (C). Write M" = diag(Mj, ..., M;) and

N’ = diag(N{,...,N.), M}, N}, € T,,, (C), k=1,...,r. TheneN" = diag(eMi,... eNr),
so eNi = M]. As 1 is the only eigenvalue of M, N/ has an eigenvalue p € C such
that e# = 1. Thus u = 2ikn for some k € Z. Therefore, N’ = N’ — 2iknl,11 €
Fn+1 and satisfying eN' = e72ikmoN' — A/ Tt follows by Lemma @, that

N = 2iknlysy = PN"P~' € PF, P~' = Fpyq, since P € ®(GA(n, C)).
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0 0

kalb Bk

(ii)leth[b B

k € Ny, so

00 ] € Fpy1, we have N¥ = [ } € Fpy1 for every

1
eN = n+1+ ZEN]C

keNg
[ 1 0
S AEBY I+ Y 5B*
L k€eNo k€eNo
I 1 0
T T LBl
L keNo

Then eV € ®(GA(n,C)). It follows that exp(Fni1) C ®(GA(n,C)).
Conversely, let M = [ " 81 € ®(GA(n,C)). By applying Proposition .4
on the group generated by M, there exists P € ®(GA(n,C)) such that M’ =
PIMP € K ,.(C) N ®(GA(n,C)). By Lemma P.d, there exists N’ € K,,.(C)
such that eV = M’ By (i), N” = N’ — 2iknl,41 € F,y1 for some k € Z
and satisfying e¥" = M’. Hence , N = PN'P~! € PF,;1P~" and satisfying
eN = peN' Pl = PM'P~' = M. By Lemma R, N € F,,. It follows that
(I)(GA(nv(C)) C €$p(fn+1)-

(iii) By Lemma P.q and (ii) we have exp(Fp 411K, (C)) C ®(GA(n,C)) NK; - (C).

1(4)1 } € ®(GA(n,C))NK; .(C). By Lemma B.q, there ex-
ists N’ € K,,(C) such that e¥" = M. By (i), N = N’ — 2iknl, 41 € F,11 for some
k € Z and satisfying " = e"2*7eN" = M. Tt follows that ®(GA(n, C))NK} .(C) C
exp(Fnt1). The proof is complete. O

Conversely, let M = [ i

Proof of Proposition . By Lemma E.(i), we have exp(g;) = G. Since g =
g1 N Fp41 then

erp(g) C exp(g1) = G.

Conversely, let M € G. By lemma P.3.(i) we have exp(g;) = G then there exists
N € g1 C K,,(C) such that eV = M. By Lemma P.7.(1), there exists k € Z
such that N’ = N — 2iknl,+1 € Foq1. Since N and 2ikwl,41 € PK, ,(C)P~!,
N’ € g1 N Fpp1 =g It follows that M = N € exp(g). The proof is complete.

In particular if P = I,,+1, we have exp(g') = G'. O
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3. Parametrization

Let G be an abelian subgroup of GA(n,C) and G = ®(G). In all the following,
P denotes the matrix defined in Proposition R.d (i.e. P € ®(GA(n,C)) such that
P~'GP is a subgroup of K} .(C) N ®(GA(n,C))). Recall that G’ = P™'GP and
g =exp Y (G') N K, (C) N Frtr, so every A’ € G’ is in the form

A" = diag(4,...,A;) € Ky (C), AL eT, (C), k=1,...,r
and every B’ € g’ is in the form
B’ = diag(Bj,...,B,) € K,,(C), B, €T, (C), k=1,...,r

For every kK =1,...,r, denote by:

o G ={4, A ecd}.

° g% = {B,’C, B eg¢'}.

L[] FG;c = {(A;C — ,LLA;I’nk)ek,iv A/ € G/, 1 S ) S ng — 1}

° Fg; = {(B]/c 7,LLB;€IH)€)€]€,1-7 B' e g/, 1< <np — 1}

where 114, (vesp. pp;) is the only eigenvalue of Aj. (resp. By) and (ex,1,. .., €xn,)
is the canonical basis of C™*.

eLet h: M,11(C) — M,+1(C) be the isomorphism defined by h(B) = PBP~1.
one has h(G') = G.

See that 7 is an affine map, because m = (D, e1), where Dy = diag(0, I,,). Remark
that m ¢ GA(n,C), however 7 : C* — {1} x C" is invertible.
Denote by :
o U= J]C* x C™~1 we have U is a G'-invariant open set.
k=1
o V=mloP(UN({1}xC")).
We have V is an open subset of C", because V = =1 (P(U) N P({1} x C")), 7 is
continuous and P(U)NP({1} xC") = P(U)N ({1} x C™) is an open set of {1} x C"
(since P € ®(GA(n,C)) and so P({1} x C™) = {1} x C™).
e C(g')={BeKk,,(C), AB=BA', A eg'}.
e C(g) = PC(g")P~" (ie. C(g) =h(C(g))).
e C(G) = 1C(G)N®(GA(n,C))).
* C(g) = TH(C(g) N Ftr)-

Notice that by construct, C(G) is an affine subspace of M A(n,C), since ® is
affine map. However, C(g) is a vector subspace of M A(n,C), since V¥ is a linear
map.

Recall the following results proved in [[[] for an abelian subgroup G’ of K. (C).

Lemma 3.1. ([l], Lemma 4.2) We have C(G') = C(g').

By Lemma we have C(G') = C(g') and so C(G) = C(g). By construct,
this identification can not be true in the affine case (i.e. C(G) # C(g)). Because
fo=1(0,0) ¢ C(G) and C(g) is a vector space.
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Proposition 3.2. ([, Theorem 5.2 and Corollary 5.4) Let G' be an abelian
subgroup of K .(C). If rank(Fg;) = ny — 1 (resp. rank(Fg ) = ny — 1),
k=1,...,r, then there exists a linear injective map ¢ : C"* — K, .(C) (resp.
Y C"Tt — K, (C)) such that:

(i) C(G") C p(C"F1), (resp. C(G') C $(C™)).

(i) For everyv € C" 1 o(v)ug = v, (resp. Y(v)ug = v). In particular p(G'(ug)) =
G’ and o(gl,) = & (resp. H(G'(uo)) = G' and (gl,) = &)

Lemma 3.3. ([[l], Corollaries 2.7 and 3.2.(ii)) The linear injective map ¢ : C"+1 —s
K.+ (C)) defined in Proposition 7.9 satisfies exp(C(g')) = C(G") N K. (C).

Corollary 3.4. ([ll, Proposition 6.2) If G'(ug) = C"+*(resp. gl,, = C"*1) then ¢
(resp. 1) is an isomorphism of C"*1 on C(G").

Corollary 3.5. ([l], Corollary 3.7 and Propositions 3.6, 3.2) The restriction exp/K, . (C)
Knr(C) — K .(C) is a local diffeomorphism.

Lemma 3.6. The restriction exp;ic, (©)nFoi1) * Knr(C)NFpy1 — @(GA(n,C))N
K, -(C) is a local diffeomorphism.

Proof. The proof results from Corollary B.5 and Lemma P.7.(iii). O

Recall the following Proposition:

Proposition 3.7. ([, Proposition 6.6) U is G’-invariant dense open set in C"+?
and all orbits of G' in U are minimal in U.

Lemma 3.8. Under notation of Proposition @, we have:

(i) h(g") = g and P~ (g(1,u)) = 8-

(ii) (C"TY N ®(GA(n,C)) C ¢ ({1} x C") and o(C" )N Fi1 C o ({0} x C™).
(7i1) h(C(G")) =C(G).

() T(f'(w)) = U(f)(1,u), for every f' € g and u € C™. In particular, T(g,) =
g(l,u)'

Proof. (i) Let B’ € g = exp™'(G)N K,y (C)NFpi1, so e"B) = h(eP) € h(G') =G
and since h(F,+1) = Fpt1 so h(B) € Fni1, then

h(B) € exp™ (G) N (K, (C)) N Fri1 = g.
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Conversely, we use the same proof by replacing h by h~*.
Since h(g') =g, so g =h~1(g') = P~'g’P. Then
P7Hg(1,up) = {P7'B(l,w) : Beg}
={P 'BPuy: Beg}
= {B/UQ : B’ S g'}

o
_g’u.o

(i) Let v = [z1,...,2n11]T € C™"*! such that ¢(v) € ®(GA(n,C)), so by Proposi-
tion B.2.(ii), ¢(v)ug = v. Tt follows that z; = 1 and so v € {1} x C™.

(iii) Since h(G') = G and AB = BA if and only if h(A)h(B) = h(B)h(A), for
every A, B € M,4+1(C), it follows that h(C(G")) = C(G).

(iv) Let f' = (B,b) € g and u € C", then

=y ][] =0re =
7(0.) = U(@)1.0) = 81y = {0} X g, € {0} x ",
O

Proposition 3.9. Let G be an abelian subgroup of GA(n,C), G = ®(G) and P €
®(GA(n,C)) so that G' = P~'GP is a subgroup of K; ,(C) N ®(GA(n,C)). If
rank(Fg;ﬂ) =ny —1 (resp. mnkz(Fg;C) =np—1), k=1,...,7—1, then there exists
two injective affine maps v : C" — GA(n, C) andy : C* — MA(n, C)
(resp. § : C" — GA(n, C) andd : C* —s MA(n, C)) such that :

(i) C(G) C ¥(C") and C(g) € F(C™) (resp. C(G) C 6(C™) and C(g) C 5(C™)).

(11) ¥(G(wo)) = G and Y(guw,) = g- (resp. 6(G(wo)) =G and 5(guw,) = 9)-

Proof. Let’s prove the Proposition for rank(Fg, ) = nip—1. The proof for rank(Fg, ) =
ng —1, k=1,...,r is analogous.
(il) As G(1,wp) = {1} x G(wp) we have 7(G(wo)) = G(1,wp). Then

P lo ﬂ(g(’wo)) = P_lG(l, ’LU()) = P_IGP(uO) = GI(UO) (2)

By proposition @, there exists a linear injective map ¢ : C"*' — K, ,.(C) such
that ¢(G'(up)) = G’. Then by (2) we have

ho (P~ o m(G(wn))) = h o p(G(uo)) = h(G) = G. 3)
Since ®71(G) = G then by (3), we have
G=d"tohopoP ton(G(wp)).

It follows that v = ®~lohowo P~tor is an injective affine map from C" to GA(n, C)
and satisfying v(G(wp)) = G. (Because 7 and ® are invertible affine maps; h, P are
isomorphisms and ¢ is an injective linear map)
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Let y=V¥"lohogpo P lo7, so7 is an injective affine map from C" to M A(n,C)
and satisfying:

F(Guw,) = g1 ohogpoP_1 o7 (Guwe)

=0 ohowoP " (g1,u)) (by Lemma B.§.(iv))
=0 ohoy(g,) (by Lemma B.§.(7))
=0~ o h(g)

=¥ '(g) (by Lemma B.§.(i))
=49

By analogous proof, we replace ¢ by 1 in the construction of v and 4 and we find

§=®'ohoyoP lon and d=U"lohotpoP loF (4)

(i) By Lemma B.§.(iii), h(C(G")) = C(G) and by proposition .4, C(G') C ¢(C"*1).
Then we have:

C(G) =2 HC(G) N ®(GA(n,C)))
=371 (W(C(G") N®(GA(n,C)))
C @ 'oh(pC)NA Y P(GA(n,C))))

C Ol oh (p(C") N®(GA(R,T))) (by Lemma P.1))
Ccdtohop({1} xC") (by Lemma B.§.(i1)) (5)

On the other hand, we have P~1({1} xC") = {1} xC", because P € ®(GA(n, C)).
As {1} x C" = 7(C"), so {1} x C* = P7}({1} x C") = P~ o 7r(C"). By (5), we
have

C(G)Ccd tohopoP ton(C") =~(C").

By Lemma .1 and Proposition .9, C(g') = C(G") C ¢(C"*'). By Lemma B.§(iii),
h(C(g')) = C(g), then we have:

C(g) = ¥~H(C(g) N Fur1)

=07 (R(C(g") N h(Fns1)) (by Lemma P.1)
C U oh (o(C) N Fryr)
CU lohop({0} xC") (by Lemma B.g.(1))  (6)

On the other hand, we have P=({0}xC") = {0} xC", because P € ®(GA(n, C)).
As {0} x C" = 7(C"), so {0} x C* = P71({0} x C") = P~1 o #(C™). By (6), we
have

Clg) T ohopo P lomr(C") =7(C).
This completes the proof. U
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Corollary 3.10. If G(wo) = C" (resp. Gu, = C") then v : C" — C(G) and
7 :C" — C(g) (resp. 6 : C* — C(G) and § : C* — C(g)) are homeomorphisms.

Proof. Suppose that G(wg) = C™. Then by Proposition @ there exists an injective
affine map v : C" — GA(n,C) such that C(G) C v(C™). Let’s prove that
V(C") CC(9):

By proposition .(17), we have v(G(wo)) = G. Then since v is continuous, we
have:

Y(C") = (G (wo)) C¥(G(wo)) = G.

By construction, C(G) is an affine subspace of C" then it is closed and so G C C(G).
Hence v(C™) C C(G). We conclude that + is an homeomorphism of C™ on C(G).

The same proof is given for 7, § and 5. O

Corollary 3.11. If G(wy) = C™ then the map o : C* — C" defined by
a=~7"tod loho (exp/lcn,r((:)mfnﬂ) oh~to W o7 satisfies:
(i) a is an open map

(it) &= (G(wo)) = Guy-

Proof. If G(wg) = C™ then ¢ is invertible so are v and 7. Hence « is well defined.
(i) Since exp/i, . (c) is a local diffeomorphism (Corollary B.J) then « is open.

(ii) By Proposmon B.9.(ii), we have 371(g) = gu, and 7(G(wo)) = G. Then

1

a_l(g(wo)) 2= Loho (exp/(lcn’r((c)m}‘nﬂ ) odory (g( 0))
- B L
=3 1toUloho (ewp/(ic,,,T(c)an,+1)) g)
. - L
=5 oW oho (exp/ic, . (©)nFuir))
o B 1
=5 oW oho (exp/c, (©)nFuir))
_ 571 oW lo h(g /) (by definition of g/)
5 loul(g) (by Lemma B3(7)
=70
Yuwo

Lemma 3.12. Let v € C""1. Then v € U N ({1} x C") if and only if ¥(v) €
K (C) N ®(GA(n,C)). Moreover, v~ (K; ,.(C) N ®(GA(n,C)) = U N ({1} x C").

Proof. Let = [T11,. -, 10y Trds- - Trm, ]’ € C"TL By Proposition E.(i),
P(x) = diag(Bl, .. ., B,) € K,,»(C) with B, € T,,(C), k= 1,...,r. By Proposi-

tlon@ (ii), x = Y(z)ug = [Biei, ... Brey1)T. Therefore Bier1 = [1, 219, ,%1.0,)7

and Brep1 = [ack’l, coosTeng ]ty k= 2,...,r. The proof of Lemma follows,
since By has xy1 as only eigenvalue, for every k=1,...,r. (I
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Lemma 3.13. ([, Proposition 2.3) If A, B € K. (C) satisfy eeP = ePe? then
AB = BA.

Lemma 3.14. Under notation of Proposition @ If Guw, = C" then:
(i) UN ({1} x C") =4~ H(C(G") N ®(GA(n,C)) N K (C)).

(ii) V=0"1(C(G)n® ' oh(K; , (C))).

(i) exp (C(g') N Fnt1) = C(G") N K .(C) N @(GA(n,C)).

Proof. (i) By Lemma , we have
¢~ (C(G")NP(GA(n,C))NK;, . (C) C =" (K} .(C) N @(GA(n,C))) = UN({1}xC").
Conversely, let z € UN ({1} x C™), s0 21 # 0, k =2,...,r. Then ¢)(x) € (C") =

C(G") (Corollary B4). By Lemma B.13, v (z) € K} ,.(C) N ®(GA(n,C)). It follows
that ¢(z) € C(G') N ®(GA(n,C)) N K} .(C).

(i) Recall that C(G) = ®~1(C(G)NP(GA(n,C))), by Lemma R.1], h(®(GA(n, C))) =
®(GA(n,C)) and by (4), 6 =@ Lohoto P Lonr. Then we have
V =rtoP(UN {1} xC"))
=7 o Py (C(G") N @(GA(n,C)) N K (C))] (by (2))
=ntoPoy toh™C(G)N®(GA(n,C))N h(K;, . (C))] (by Lemma B.§.(iii))
=(rtoPoyp Tt oh T 0®) (@71 [C(G) NP(GA(R,C)) N® " o h(K .(C)))
=071(C(G) N @ o h(K ()

(ifi) By Lemma B.3.(i), exp(C(g')) = C(G') N K;,.(C) and by Lemma P.7.(i),
exp(Fni1) = ®(GA(n,C)). Soexp (C(g) N Fni1) C C(G)NK; (C)NP(GA(n, C)).
Conversely, let M € C(G") N K}, .(C) N ®(GA(n,C)). By Lemma 7. (iii). there ex-
ists N € Fry1 MK, (C) such that e¥N = M. As M € C(G") = C(g) (Lemma B.1)),
so MA = AM for every A € g’ thus Me? = e M then eNe? = e?eN. Since
A N € K, ,(C), then by Lemma B1d, NA = AN, so N € C(g/). It follows that
M = eV € exp(C(g) N Fpi1)- O

Corollary 3.15. If gy, = C" then the map §: C" — C" defined by
B=6tod toho (exp/,cnyr((c)) oh™loWod satisfies:

(i) B(gw,) = G (wo).

(i) B(C™) = V.

Proof. If Gu, = C" then by Corollary B.1, 6 : C* — C(G) and 5:C" — C(g)
are homeomorphisms, so 6(C") = C(g).
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(i) By proposition .4, we have exp(g’) = G'. By Proposition B.9, we have 5(guy) =
g and §(G(wp)) = G. As § is invertible, then §71(G) = G(wp). Therefore :
Blguw,) =0 to® toho (exp/k, () © if1 oWo g(gwo)

=6to <I>71 oho (exp/lgn T )

=d"to®  oho (expsk,, c)) o h

=6 tod tohno (exp/,gm )
=5tod o n(@)
=010 d (@)
=679
= G(wo).

(ii) By Lemma P}, h(Fny1) = Fnsr and h(®(GA(n,C))) = ®(GA(n,C)) and
by Lemma B.14), we have:

B(C") =46~ Lot oho(exp/;c ) O‘I’Oé(cn>
— 5! Loho (exp/,cn T(@)) oh C(g))
=6 10@ oho(exp/;gnr((c))Oh ﬂfn+1)
=6t Yoho (exp/k, () (C(g) N Fut1))
=" 10@ oho(e:cp/,Q7 “(©) (C(g) ﬁfnJrl)
=010 ® 1o h(C(G") N K} (C) NB(GA(n,T)))
=5 lod™ (C(G) N&(GA(n,C)) N h(K] ,(C))))
=071 (C(g) @~ o h(KE ,.(C)))
=V

O

Proposition 3.16. V is G-invariant dense open set of C"™ and every orbit of G,
contained in V is minimal in V.

Proof. Let x € V and f = (A,a) € G. Then 7(z) = (1,2) € P(U) and ®(f) € G.
By Proposition B4, U is G'-invariant so P(U) is G-invariant. Then ®(f)(1,z) =
(1, f(z)) € P(U), so f(z) = 711, f(z)) € m=1 o P(U) = V. It follows that V is
G-invariant.

By proposition E, we have all orbits of G/ = P~!GP and contained in U are
minimal in U. Let x € V and y € G(x) NV, so P~ ton(z) = P~(1,2) € U and
also P=1(1,y) € U. We have

{1} % §@@) = G(L,a) = P (G'(PT(1,2))). (7)
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As P7(1,z), P~(1,y) € U, then
G'(P~1(1,2))NU = G'(P~1(1,y)) NU.
Therefore

({1} x %) NPU) = G, z) N P(U)

= (11} x9)) nPW) (by (7))

Thus

(11} x 96@)) NP N ({1} xC") = ({1} x §{y)) N PUN ({1} x C"))

Then

G)N [ to PUN{L}xC")] =Gy)N[r o P(UN ({1} xC")].

So

The proof is complete. O

Lemma 3.17. C™"\V is union of at most n, G-invariant affine spaces with dimen-
sion less ton — 1.

Proof. We have C"*1\U = |J Hj,, where
k=1

Hy ={u=(u,...,u,) €C"™: uyp € {0}xC™ 1 u; € C*xCV 1 1<i<r i#k}

is a vector space G'-invariant with dimension n, k = 1,...,r. Since r < n + 1,
C"*\U is a union of at most n + 1, G’-invariant vector spaces with dimension
n. Then C"™\P(U) is a union of at most n + 1, G-invariant vector spaces with
dimension n. As H; N ({1} x C™*) =0, so

{1} x C"N\U N ({1} x C™) = (C*\U) n ({1} x C")

(He 0 ({1} x C")) (8)-

k=2
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Since P({1} x C™) = {1} x C™, then by (8), we have
C"\V=71"'{1} xC")V\7 Lo P(UN ({1} xC"))
=71 o P(({1} x CY\(U N ({1} x C™)))

=1 loP <U (Hyp N ({1} x <C">>>

k=2
r
= U Ek7
k=2

where Ej, = 7~ 1o P(HpN ({1} x C")) is G-invariant affine space for every 2 < k < r.
As Hy, # {1} x C", then dim(H N ({1} x C")) <n —1, so dim(E;) <n-—1. It
follows that C™\V is union of at most n spaces Ej, since r < n + 1. O

Corollary 3.18. If G has a dense orbit in C™ then all orbits of V are dense in C™.

Proof. Let u € C™ such that G(u) = C". By Lemma .17, C™\V is union of at most
n, G-invariant affine spaces with dimension less to n — 1, sou € V. Let v € V.

Since V = G(u) NV then by Proposition B.1q, G(v) NV = Gu) NV = V. As
V =C", one has G(v) = C". O

4. Proof of Theorem EI and corollary

4.1. Proof of Theorem [I.1. Let G be an abelian affine subgroup of GA(n, C)
and let P € ®(GA(n,C)) defined in Proposition R.J. Recall that G = ®(G) and
g=exp ' (G) N (PKy,(C)P™) N Frs1.

ii) = 1) is clear.

i) = ii) This follows from CorollaryB.1q, since ug € U and so wo = 7~ o P(ug) €
V.

iii) = ii) : Suppose that g, = C". Then by Corollary there exists a continu-
ous map (3 : C" — C" such that 8(gw,) = G(wp) and S(C™) = V. By continuity,
one has:

V =p(C") = B @u,) C B(guy) = G(wo)

Since V' is a dense open set in C™ then G(wy) = C™.
ii) = iii) : Suppose that G(wg) = C™.

By Corollary , there exists an open map o : C" — C™ such that g,, =
a~1(G(wp)). Then:

C"=a(C") = a Y (G(wo)) C a=H(G(wo)) = Fug
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4.2. Proof of Corollary E Let G be an abelian subgroup of GA(n,C) hav-
ing a dense orbit. By Theorem , G(wg) = C™. Then by Proposition @ and
corollary , there exists an invertible affine map v : C* — C(G) such that
v(G(wo)) = G. Therefore:

Y(C") = (G (wo)) = v(G(wo)) = G.

It follows that G is an affine space of dimension n.

5. Finitely generated subgroups
5.1. Proof of Theorem @
Denote by vg = Pug = (1,wq). So wg = pa(vo).

Lemma 5.1. We have p2(¥(f")vg) = f'(wo), for every f' € g. In particular,
Buwo = P2(8wo)-

Proof. Let f' = (B,b) € g, then

So pQ(\IJ(f/)’Uo) =b+ B’UO = f/(’wo). [l

Proposition 5.2. ([Iil], Proposition 8.1) Let G be a subgroup of GL(n + 1,C)
generated by A1,...,A,. Let Bi,...,B, € g such that Ay, = eP*, k = 1,...,p.
Then:

p r
o = ZZBkUO + ZQiWZPe(k).
k=1 k=1

Proposition 5.3. (Under notations of Proposition @) Let G be an abelian sub-
group of GA(n,C) generated by fi1,..., f, and let fi,..., f, € g such that ®(fy) =
ell'(fflﬂ), k=1,..,p. Then:

P T
Juwo = ZZf,;(wo) + ZQZ’WZ(pQ o Pe®)),
k=1 k=1

Proof. Let G = ®(G). Then G is generated by ®(f1), ..., ®(fp) and g is the additive
group generated by W(fi),...,¥(f,). By proposition b.9 we have

P r
8oy = »_ZU(fi)vo + Y 2inZPe™).
k=1 k=1
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By Lemma @, we have g, = P2 (8v,) and pa(¥(fr)vo) = fi.(wo). then

p T
Gy = D2 (ZZ\I/( fi)vo + mezzﬂe(k)) :

k=1 k=1

p s
= Zfi(wo) + > 2inZ(ps 0 Pe®).
k=1

k=1

Recall the following Proposition which was proven in [E]

Proposition 5.4. (cf. [E], page 35). Let H = Zuy + -+ + Zu, with u, =
(Uk,1s-- s Ukn) € C" and up,; = Re(ug;) +ilm(ug,), k=1,...,p, i =1,...,n.
Then H is dense in C™ if and only if for every (si,...,sp) € ZP\{0} :

[ Re(ui1) ... ... Re(upi) ]
Re(urn) ... ... Re(upn)
rank | Im(ui1) ... ... Im(upi) | = 2n+1.
Im(uipn) oo oo Im(upy)
L S1 e e Sp i

Proof of Theorem |1.9: This follows directly from Theorem E, Propositions @
and

5.2. Proof of Corollaries B and @

Proof of Corollary .' We show first that if H = Zuy + - - - + Zuyy,, ux, € C" with
m < 2n, then H can not be dense: Write ur € C", up = Re(ux) + iIm(ug) and
v = [Re(ug); Im(ug); sg]t € R 1 < k < m. Since m < 2n, it follows that
rank(vi,...,vm) < 2n, and so H is not dense in C™ by Proposition @

Now, by applying Theorem and the fact that m = p+r < 2n, the Corollary D
follows. O

Proof of Corollary @ Since p < n and r < n then p 4+ r < 2n. Corollary E
follows from Corollary m O

5.3. The case: n = 1.

Let G be a subgroup of GA(1,C), generated by fi = (a1, M),..., fp = (ap, A\p),
where aj = pkei‘gk, Ao = e, pp,rp > 0, Op,a € R, 1 < k < p. Therefore
G = ®(G) is an abelian subgroup of GL(2,C). Let fi,..., f, € g such that eVUi) =
D (fx), 1 <k <p. Since G is abelian then there are two cases:

o Case 1: G is a group of translations.
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P
In this case G(z) = T, <Z /\kZ). Then G has a dense orbit if and only if G(0) =
k=1

P
> AkZ has a dense orbit, which is equivalent, by Proposition @, to:
k=1

For every (s1,...,sp,t) € ZPTI\{0}:

log(ry) ... log(r,) O
rank aq Qy, 2 | = 3.
S1 e Sp t

o Case 2 : G contains no translation:
In this case up = (1,1), ar, # 1 for every k = 1,...,p and f; = (B, bi,) is defined
by:

A (log(ry) + i0)
(ar — 1) '

0 0 .
B, = [ b } ,  where by =log(ry) +i0x and i, =

Since wgp = 1 then

Guwo = f1(W0)Z + -+ + fi(wo)Z + 2inZ
= (b1 + m1)Z+ - + (by + pip)Z + 2i7Z

Moreover, the property D in this cases is as follow:
fi,. .., [ satisfy property D if and only if for every (si,...,s,,t) € ZPT1 —{0}:

loglby + pa| ... loglbp+ppl 0O
rank | arg(by +p1) ... arg(bp+pp) 27 | = 3.
S1 Sp t

where arg(z) = 0 € [0,2x] for every z = re’® € C, r > 0. Therefore, from
Theorem E, we obtain:

Proposition 5.5. If G is a subgroup of GA(1,C) generated by f1 = (a1, M), ..., fp =
(ap, Ap), where a, = €% £ 1, A\ = e, pr,re > 0, O o €R, 1 < k < p.
Then the following are equivalent:

(i) G is minimal (i.e. every orbit of G is dense in C).

(i) G has a dense orbit

P
(i) > (br + ur)Z + 2inZ is dense in C, where by, = log(ry) + 16k and p, =
k=1

(logpy, + i0x) (1 n ajgl).
(iv) for every (si,...,sp,t) € ZPT\{0}:

loglby + pa| ... loglb, +ppl 0O
rank | arg(bi+pm) ... arg(bp+pp) 27 | =3.
S1 Sp t
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6. Examples

Example 6.1. Let aj, = e+ +i) 5, ¢, € Q, 1 < k < p and let G be the subgroup
of translations of C generated by Ty,,...,T,,. Then G has no dense orbit.

Proof. We can write s = ﬂq& and t; = %’“, q € N* and my, pr € Z for every
1 <k <p. One has: g, = T.(go), where
P

go = g (Z(mk +ipp)Z + 21'qZ> C

k=1

(Z +iZ).

213

So go # C. By Theorem D, G(0) # C. Tt follows by Proposition @, that

G(z) # C. O

Example 6.2. Let G the group generated by fi = (A41,a1), fo = (As,a2) and
f3 = (A3, a3), where:

Ay = diag(e’, 1), a; = (i(1—¢),0), Ay =diag(l,e’), az = (0, 2i (e”" —1)).

S (4-5)

V3, (VE_ VT
. =2 (L
As = diag (e 2 ), e ™ Z(

= 2)) and a3z = (0,0).

Then every orbit in V = C* x C* is dense in C2.

Proof. Denote by G = ®(G). Then G generated by

1 00 1 0 0
Al =d(f1)=| i(1—¢) € 0|, A, =d(f)= 0 10|,
0 0 1 2i(e™"—1) 0 ¢

and

Ay = 0(fs) = diag (1, AR H(F-F) egﬂ-(ggg)) |

Let f{ = (B1,b1), f5 = (Ba,b2) and fj = (Bg,by) such that e?Ui) = A}
k=1,2,3. We have
B, = diag(i,0), By = diag(0,1),

N (@@) _ﬂﬂ.(@_ﬁ))

B e [ Y3
3 1ag<27r A - o 2

bl = (1,0), b2 = (0, 72), and bg = (0,0)

Here, we have:
-P= 135 U= ((C*)Bv ug = (15 17 1)
-V =C*xC* wy = (1,1).

The additive group g = exp™*(G) N (K(1,1,1)3(C)) N F3 is generated by Ny, Ny
and N3, where

0 O
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In the other hand, for every (s, s2,s3,t1,t2) € Z°\{0}, one has the determinant:

Re(Blwo + bl) Re(BQ'LUO + bg) Re(ngo + bg) 0 0
A= Im(B1w0 + b1> Im(B2w0 + b2) Im(ngo + bg) 27T€1 27’(62

51 S2 s3 3] l2
-¥5 1 0 0 0
—2 0 -2 0 0
=S¥ 1 0 2t 0
YT o0 1 0 27
s1 Sy 83 11 12

= —2r ((481)7T — (253)V2 + (252)V3 + t1V5 + tz\/?) :

Since 7, v/2, v/3, v/5 and /7 are rationally independent then A # 0 for every
(s1,82,83,t1,t2) € Z5\{0}. It follows that:

V3

-¥5 1 0 0 0
—¥2 9 2 0 0

rank | M5 _¥3 1 0 27 0 | =5
Y2V o0 1 0 27
s1 s2 83 t1 1o

and by Theorem E, G has a dense orbit and every orbit of V is dense in C2. [
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