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Efficient computation and optimization of the
free distance of variable-length finite-state joint

source-channel codes

A. Diallo, C. WeidmannMember, IEEE and M. Kieffer, Senior Member, IEEE

Abstract

This paper considers the optimization of a class of jointrsewhannel codes described by finite-
state encoders (FSEs) generating variable-length cotéscuses on FSEs associated to joint-source
channel integer arithmetic codes, which are uniquely dalledcodes by design. An efficient method
for computing the free distance of such codes using Dijlssiorithm is proposed. To facilitate the
search for codes with good distance properties, FSEs aamiaagl within a tree structure which allows

the use of efficient branch-and-prune techniques avoidiagaach of the whole tree.

Index Terms

Variable length codes, finite state machines, source codimgnnel coding, arithmetic codes.

. INTRODUCTION

Today, most communication systems are based on Shannguasasien principle [1], which
states that source and channel coding may be optimizedatelyamwithout loss of optimality
compared to a joint design. However, this result has beeairedd under the hypothesis of a sta-
tionary channel, which is seldom the case in wireless conitation systems. As a consequence,
channel codes are usually difficult to adapt to time-varyghgnnel conditions. Moreover, source

codes are suboptimal due to complexity constraints.
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These issues have prompted the development of joint saaenel (JSC) coding techniques,
which aim at designing low-complexity codes simultanepysioviding data compression and
error correction capabilities. The hope is to get joint ®datperforming separate codes when
the length of the codes is constrained, see [2]. Compreséiiciercy is measured by the ratio
of the average code length to the source entropy [3], whéeetinor-correction performance may
be predicted with an union bound using ttistance propertiesf the codej.e,, its free distance
and distance spectrumsee [4]. JSC coding using error-correcting variabledlengpdes (JSC-
VLC) was introduced in [5], while design techniques aimingoptimizing distance properties
of such codes were reported in [6] and later for a small sslatd JSC integer arithmetic codes
(JSC-IAC) in [7].

This paper focuses on the optimization of codes generatefinlig-state encoder§~SES),
which can be used to describe many JSC codes, including JSC-aid JSC-IAC. More
precisely, our aim is to efficiently explore the (alreadyykarge) subclass dinite-state codes
(FSCs) corresponding to JSC-IAC. One prerequisite for sucimgattion is the availability of
efficient tools to evaluate distance properties of FSCs, hvbanstitutes the first contribution of
this paper, see Section IlI.

The first tools for evaluating distance properties congiddinear FSCs, such as convolutional
codes (CCs) [8]. In [9], Viterbi computed transfer functiomstbe state diagram of CCs to obtain
their distance spectra and deduced their free distanc&0lnd variant of Dijkstra’s shortest path
algorithm is applied on the CC state diagram to compute the distance without generating
the spectrum. Later, [11] proposed a fast tree search #igorior computing the CC distance
spectrum. All these techniques have a complexity that esalinn the number of encoder states,
due to the linearity of CCs.

For nonlinear FSCs, all pairs of codewords have to be compgaredmpute the free distance.
For Euclidean-distance codes generated by trellis-codedutation (TCM) [12], [13] used the
product graph derived from the graph associated to the FBi&.allows to compute the distance
spectrum of TCM in the code (signal) domain and to infer the fiéstance. For a FSC with
2 states, a product trellis witf2”)?* states is required for these evaluations [13]. For the class
of geometrically unifornrFSCs [14], which includes certain TCM codes, a modified geimgyat
function on a state diagram with onf)y states is sufficient to compute the spectrum [15].

All the above-described techniques are for fixed-rate coahese precisely for FSEs defined



by graphs where all transitions have input labels of the skemgth %, as well as output labels
of the same length, as is the cases.g, for ratek/n CCs. Distance properties for JSC-VLCs
were first evaluated in [6], [16], where a lower bound for thieee distance and exhaustive
(exponential complexity) algorithms for their distancespum were proposed. Graphs that are
similar to those used for distance properties of fixed-reglis codes have also been used in
the context of JSC-VLCs, but to evaluate other figures of mEot. example, [17] defined a
testing graphconsisting of the product graph that represents only mdipaths at null Hamming
distance to define a test for synchronizability of VLCs. Tdreor-state diagramintroduced by
[18] for VLCs is the product graph that represents the pairpaths at Hamming distance one
to study the resynchronization properties of the decoder af single bit error in the encoded
sequence. In [19], these results were extended to JSC-IACs.

Evaluating the distance properties of nonlinear FSCs qoorating to JSC-IACs is slightly
more complex than for JSC-VLCs. This is due to the fact that tBE Bf a JSC-VLC has only
one state in which paths can diverge and converge, whilee thexy be many such states for
a JSC-IAC. First analytical tools for JSC-IACs were proposed7ih Where the free distance
is evaluated with polynomial complexity, whereas appratea distance spectra are obtained
with exponential complexity as in [16]. More recently, [28%plicitly defined variable-length
finite-state codes (VL-FSCs) generated by variable-lengiltefistate encoders (VL-FSESs) and
proposed a matrix method with polynomial complexity to canepthe exact distance spectrum
in the code domain or some upper bound on it. The definitiongloFSEs and VL-FSCs will
be recalled in Section II.

In Section Ill, we first generalize the methods proposed 8] find [10] to all FSCs, in order
to be able to evaluate distance properties. A product gragpired by that in [13] is proposed
for general FSEs and is simplified to get two graphs:riagified product graptMPG), which
allows to compute the code domain distance spectrum usimgnaféer function approach, and
the pairwise distance grap(PDG). The PDG allows to compute the free distance of the REC b
applying Dijkstra’s algorithm as in [10], without computirthe entire distance spectrum. This
approach is much less complex than the technique for compthe free distance of a JSC-IAC
proposed in [7].

Our aim is then to apply these free distance evaluation tmotbe efficient optimization of
JSC-IACs.



Arithmetic coding (AC) [21] is an efficient source coding madhwhose variants have been
used in recent still image and video coders [22], [23]. N#hadess, AC is particularly vulnerable
to transmission errors. To overcome this, the most commam faf JSC-AC introduces some
redundancy in the compressed bitstream by means of a fabidgmbol (FS), to which a
non-zero probability is given during the partition of thede interval[24]. The larger the FS
probability, the higher the redundancy and the robustngamst errors. This idea is extended
in [25], which proposes the introduction of multiple FSs (B)FAll these FS techniques can be
applied to IAC [26] leading to JSC-IAC. Optimization of JSC-IA@s been considered in [7],
assuming that the total probability allotted to the (M)FSi dne probability of each individual
FS are independent of the states of the FSE representingStDdAC. However, the class of
JSC-IAC with state-independent probability allocation foe FSs is significantly smaller than
that with state-dependent allocation. For a fixed amounedtindancy, more robust JSC-IACs
than those obtained by [7] may be obtained.

The second contribution of this paper, described in SedNgrconsists in presenting some
algorithms to globally optimize the free distance of somé&Hfy adjusting the introduction of
MFS with in binary input JSC-IAC.

A JSC-IAC (and its corresponding FSE) may be described bghtgacteristic parameters
(source probabilities, arithmetic precision, design yated by the way MFS are introduced.
The set of all JSC-IACs for fixed parameter values and with stapendent MFS is generally
huge, but Section IV-B shows that it may be structured withea,twhere all JSC-IAC codes
correspond to leaves of the tree. An efficient branch-andgrlgorithm is then used to explore
this tree and discard large parts of it as soon as it can berstioat all JSC-IACs stemming
from a given node of the tree cannot have good performancesrins of free distance. An
extension to non-binary input JSC-IACs is then presented ati®GelV-C. Experimental results

for both binary input and non-binary input JSC-IACs are theovigled in Section V.

[1. JOINT SOURCECHANNEL FINITE-STATE ENCODERS

We briefly recall and extend some definitions from [20]. A bjrautput FSE may be repre-
sented with a directed gragh(S,7), whereS is the set of states (vertices) afddis the set
of transitions (directed edges). Each transition is labegh a sequence of input symbols and

a sequence of output bits. Le{t) be the originating state of a transitiane 7 and 7(¢) its



target state, whild (¢) denotes its input label an@(¢) its output label. LetP(¢), t € 7, be the
probability that/(t) is emitted by the source, which for simplicity we assume tort@mnoryless.

A patht = (t;ot,0---0t;) € TF on the graph is a concatenation of transitions that satisfy
o(tiv1) = 7(t;) for 1 < i < k (this corresponds to walk of length & on the encoder graph).
By extension, we define(t) = o(t,) and7(t) = 7(tx), as well asI(t) and O(t), which are
the concatenations of the input, respectively output, |tabét. The probability of a path is
P(t) = Hle P(t;). Finally, {(x) is the length (in symbols or bits) of the sequence

We assume that the FSE graph is irreducibke, that any state can be reached from any other
in a finite number of transitions, and that it is aperiodie,, that the state recurrence times,
measured in output bits, are not multiples of an integerogeri > 1. These assumptions imply
that the FSE together with the source being encoded formsgarie Markov chain, which has
a unique stationary state distribution. Lt(s), s € S, be the stationary probability of the state
s, which is computed taking into account the output label tea@s outlined in [20].

For a FSE to be a proper source encoder, for every state, pthe abels of the outgoing
transitions have to form a complete prefix set, which imptlest their transition probabilities
sum to one [20].

Given an initial statesy, the succession of states of the FSE for all possible (skrinni}e
input sequences can be displayed with a trellis, which caniéeed as a description of the
temporal evolution of the FSE. The output labels of all patireugh the trellis form a FSC,
whose performance is determined bydtsling rateand itserror correcting capability The error
correcting capability is primarily characterized by tinee distancel,.. (a finer characterization
is possible through thdistance spectrujnUnder the assumption that the FSE is an irreducible
graph, the free distance will be the same for every possititali states.

Definition 1: The coding rateR., in bits per symbol, is the ratio between the average length
of the output labels and the average length of the input $abkthe transitions iy,
S PPe() POUO®)

Y er Pr(a () PO)LI(L))

Definition 2: Let P% be the set of all paths with transitions starting in,. The FSCC (T, s¢)

R. (1)

is the set of all infinite-length output sequences genetlayatie FSE froms,, C (', s¢) = {O(¢) :
te Pyl

The Hamming distancé, between two equal-length sequenaeg is equal to the Hamming



weight wy, i.e, the number of non-zero entries of their elementwise difiee,dy(x,y) =
wn(z—1y). If two paths(t;,t,) € 7" x T* are such that(O(t;)) = ¢(O(t,)), then we will
write dy(t1,t2) = du(O(t1), O(ts)).

Definition 3: The free distancedy.., of the FSCC (T, sq) is the minimum Hamming dis-
tance between any pair of distinct code sequences.Lée the set of all pairs of paths in
(7" x Tk2)1gk1,k2<oo

another state and with the same length of output labels. Qaesdly, ds... is also the minimum

diverging in some state and converging for the first time m shme or

Hamming distance irP
dfree = min dH (tl, tg) . (2)

(tl,tg)E’P
Definition 4: The distance spectrum [9] in the code domain can be repexsevith a gener-

ating function

¢(o)= 3 A" 3

d:dfree
where A, is the average number of paths at Hamming distahfrem a given path. In the most

general cased,; can be defined as [7], [20],
Aj= Y Po(t))P(t) (@)

(t1 ,tz)EP
dy (t1,t2)=d

By the above definitions we see that the cddé’, sy) and its free distance are independent of
the source (provided all source letters have nonzero pititiggbwhile the joint source-channel
nature shows that the rate and the spectrum coefficiéptdepend on the source statistics.

Finally, we introduce two notions which may help searchiadges with a computer. Bomplete
automaton(CA) is an FSE that can encode any source sequencédamplete automato(iA)
is an FSE having one or more terminal states without outgtiaugsitions, in which encoding
stops, see Figure 1. Such terminal states are calledping statesr unexplored statesAn
IA T'y generates finite-length prefixes of code sequences andoposeme infinite-length code
sequences. Let thacomplete cod€, = C(I'y, s¢) contains these (finite and infinite) sequences.

Definition 5: The free distance associated to an incomplete FSE is thenmmiHamming
distance between any pair of distinct output sequencesshnéuie either infinite, or of equal
length and associated to paths ending in the same stateat@ pegin insg). If there is no
pair of (finite-length) paths ending in the same state orritgilength) path converging at some

time instant in the same state, the free distance is infinite.



An 1A or CA T'; is derivedfrom an IA T if it has been obtained by exploring (adding the

successor states of) one or more terminal statd g¢hence the graph, is a subgraph of’;)

0)
ree

[27]. LetCy and(C; be two codes generated by andI';, respectively, with free distan and

d(l)

free?

respectively. We define the relatidl) < C;, meaning that all elements @y are prefixes
of elements irC;. If Cy < Cy, an important property following directly from Definitiorssand 5
is thatd\

free

Lemma 1:Let C, and C; be two (incomplete) codes such thét < C;. Then dge.(Co) >

dfree(cl)-
In [7], three types of FSE describing the coding operatioesewconsidered: a symbol-clock

is an upper bound ont”

free"

FSE (S-FSE) suited for encoding, where each transitiorbesléal with exactly one input symbol;
a reduced FSE (R-FSE), with variable-length non-empty ignd output labels, leading to a
compact trellis better suited for decoding, and a bit-clB&8E (B-FSE) suited for the evaluation
of distance spectra, where each transition is labeled wisittyy one output bit, see Figure 1.
Details on how these FSEs are obtained can be found in [7hdnséquelS, and 7, are the
set of states and transitions in R-FSE afdand 7, the set of states and transitions in B-FSE.

M, and M, are the number of states in a R-FSE and a B-FSE, respectively.

I1l. CHARACTERIZATION OF THE ERROR CORRECTING PERFORMANCE

From here on, we consider B-FSE. To evaluate the free distamde¢he distance spectrum of
some JSC-IAC described by a B-F3K(S,, 7,), techniques inspired from [13] are applied to
track the distances between pairs of paths in the B-FSE. Tduupt grapi? = I', x I';, labeled
with Hamming distances (which would yield the product tsetionsidered in [13]) is considered
for that purpose. The main difference with [13] is that for-¥SE, states may have a different

number of outgoing transitions. Then we show how this produaph may be simplified.

A. Efficient free distance computation

This section describes the generation of the product gragbceted to a B-FSE and its
simplification to efficiently compute the free distance of tRSC generated by the B-FSE.

Consider the set of statés = {s; : 0 <i < M,} and the set of transitior, of the directed
graphI'y(S,,7,) representing some B-FSE. The product graph associatéy(&),7,) is the
directed grapi'(S, x Sy, 7 x T,) with M7 statess; ; defined ass; j = (s4, s;), 0 < 4,5 < M.



For any pair of transitiongu,v) in the original graph,I' contains a directed edge with

e = (u,v), 0(€) = So(u)ow), aNdT(e) = s-(u),+v). The weight of the edge, wy(e) is defined as

the Hamming distance between the output of the two tramsitfioandov, i.e., wy(e) = dy (u, v).
A directed pathe in I'; from the state 5 to the state ,s,, is a sequence of edges=

(eqoego0---0ey) such thatr(e,+1) = 7(e,) for 1 < p < N. The weight of this directed path,

wy(e) is defined as

wile) = 3 wile,). (5)

SinceT’, is output bit clock, one hagy(e) < N.

Thus, the weight of a directed path Iff from a state s; to a state ., is the Hamming
distance between the output bits of two paths t,) € 7,* x 7,*. Hence, when we explorE;
from the initial states,, the weights of the obtained directed paths represent elHd@mming
distances of all possible pairs of codeword<Ci(I';, s¢) x C (I's, o), including d... according
to Definition 3. Figure 1 (b) gives an example of a graph for a®&EHwheres, and s, are
the states where paths diverge). Figure 2 shows the prodaphglerived from the B-FSE in
Figure 1 (b). The edges in Figure 2 are labeled with their wieig

Since, for the evaluation of;.. one is only concerned with paths It belonging toP, we
can derive froml'? a modified product graph (MPG) that represents only thedesp&tonsider

the two sets of stateSy;, C S and S,y C S7 such that
Saiv = {s1: €Sy + I (u,v) € T,7,u # v,such thatr (u) = o (v) = s; }, (6)
Seonv = {514 €S, + I (u,v) € T}, u # v,such thatr(u) = 7(v) = s;} . (7)

Saiv is the set of states df? in which the outgoing edges consist of pairs of divergingsitions
in 7;? having the same originating stated. We merge the states iy;, into a single stata;,
with only outgoing edgesS...., is the set of states df? in which the incoming edges consist of
pairs of distinct transitions iff;> converging in the same target stateSn We merge the states
in Scony INtO @ single state,,; with only incoming edges. In Figure &g, = {s00, S22} and
Seconv = {800, S22}. In T3, the set of edge$e = (u,u) : u € T,} corresponds to pairs of paths
which have not diverged, therefore, according to DefiniBorthis set will be not useful to find
diee- If we replace inl? the setsSg, and S.ony by respectivelys;, and s.,;, and we remove

the set{e = (u,u) : u € 7,}, we obtain a modified product graph (MPG), in whigh is the



initial state ands,; is the final state, and which still contains all paths neededHe evaluation
of die.. The MPG derived from the product graph in Figure 2 is represkin Figure 3. When
we explore the MPG from the initial state to the final state wedghts of the paths give the
Hamming distances ifP. Thus findingdg.. amounts to determining the directed path(s) from
Sin 10 soue With smallest weight.

It can be seen that in the MPG, df is a directed path from;, to s, ;, ¢ # j, then, there is

also a directed path, from s;, to s;; such that
l(e1) = l(ez) and wn(e) = wu(es). (8)

This is so sincely is symmetric in its arguments. Here, we say that the pathend e, in the
MPG are equivalent. Thus the complexity can be further reduny defining a pairwise distance
graph (PDG) that contains a single path for each pair of edemt paths in the MPG. For this
end, the two states,; ; ands,, in the MPG are merged and replaced with a single state
(v = min(i, j),y = max(i, 7)) in the PDG, and the two directed edgesv) and (v, u) (with

u € T, andv € 7,) in MPG are replaced by a single edge in the PDG. The PDG dEfigen
the MPG in Figure 3 is represented in Figure 4.

Finding dy... with this PDG is again the same as finding the directed pafhdB) s;, t0 sou
with the smallest weight. This is known as the shortest weigipath problem in graph theory
and can be solved efficiently using Dijkstra’s algorithm][25ince all weights are non-negative.
The number of states in PDQ@/ppc, IS

Mb X (Mb— 1)
2

Mppg is the maximum number of states explored when Dijkstra’sratigm is applied on PDG

Mppg = + 2. 9)

to computeds,cc.
An alternative method to compute the free distance of a JSTias presented in [7]. It

uses a three-dimensional array defined/as= (ay.; ;) wherea; ; is the minimum

0<k,i,j<Mp?
Hamming distance between all pairs of paths of Ier;gt(ijn cbode domain) starting from the
states;, and ending respectively in the statgsand s; and not having converged. This method
is an iterative method over the path lengthThe algorithm needs to compare the paths up to
ngee, Which is the path length for which no unmerged pairs of pattis distance less that,..

exist. In practical implementations, some upper boupg, for n has to be given to perform the
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algorithm in [7] in finite time. Ifn,,., IS too small, no guarantee may be provided that the actual
value of d.. has been found. This may occur for some codes like catastrapides, since
such codes contain pairs of codewords with a finite Hammistadce that correspond to never-
converging paths. The computational complexity of thishodtisO (1,4, x |7T5|* x M,), while

the worse complexity of applying Dijkstra’s algorithm on ®@®@ is O(M3). With a better
implementation of Dijkstra’s algorithm using Fibonacciaps, the complexity may be reduced
to O(|Zppc| + Mppa % log(Mppg)), WhereZppg is the set of edges in PDG. The existence of
catastrophic pairs of paths implies a zero-weight (dicteop in the PDG and vice-versa. For
instance in Figure 5 (a) the codewords obtained(fy si, s3, - - ,s3) and (so, S2, 84, , S4)
have Hamming distance one. Dijkstras algorithm has no problwith such codes, since during

the process, each edge of the PDG is explored at most once.

B. Distance spectra in the code domain

This section briefly describes the way an MPG could be labslet that the distance spectrum
in code domain is obtained from a generating function, whmeky be computed by evaluating
a symbolic transfer functiorg.g, using Mason’s gain formula [28]. For this end, we assign to
every edge: = (u,v) a gaing(e) defined as

o(e) = P*(o(u))P(u) D™ : o(u) = o(v), (10)

P(u)D*®  : o(u) # o(v),

where D is a symbolic variable used to track the path weight. Theplyapg Mason’s gain
formula betweens;, and s, in the MPG allows to obtain a transfer functi@®(D), which
represents the distance spectrum according to (4). In [2@jthod to compute the distance
spectrum (in code domain) directly using matrices instelagemerating functions is proposed.
In this method, the coefficientd, (for 0 < d < oc) of G(D) are computed one by one. The
index of the first non null coefficient gives the value of theefrdistance. The method in [20]
uses a matrix inversion with matrices of six& x M to compute the coefficients. This is more
complex than using Dijkstra’s algorithm.

The method described above cannot be applied in the infaymétource) domain for general
variable-length FSCs, since the distances between infamatquences need to be expressed

using the Levenshtein distance [29], which is not additive.
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IV. OPTIMIZING FINITE-STATE JSCCODES BASED ON ARITHMETIC CODING

This section describes a method to search for error-camgecbdes with large free distance.
Our approach is to explore a subset of the Beof all FSEs.F contains the sef, of FSEs
which generates uniquely decodable FSCs, which in turn oenthe setF;sc.ac of all FSEs
corresponding to JSC-IAC. The latter contains the Bt . Of all FSEs representing an IAC
followed by an error-correcting coded. classical separatendemencoding). It also contains
the setF)%. ac Of all memorylessISC-IAC, i.e, JSC-IAC whose encoding behavior depends
only on the current arithmetic encoder state. For such ¢datlesencoder behavior can depend
on the previously encoded symbols or on the previously ggedroutput bits only indirectly
through the state. Some IAC followed by block codes belonécsetF )L ., but more general
tandem schemes consisting of an IAC followed by a CC do notrigeto 7). .. For the sake
of simplicity, we restrict our exploration to the s&. e

As the setF) . A still remains large, it will be interesting to structurerita way that allows
to promptly explore it for the largesi;... This may be done with a tree in which the leaves
correspond to complete JSC-IACs (CAs) and internal nodes sqrel to incomplete JSC-
IACs (IAs). From the root which is the initial 1A determined liye values of the characteristic
parameters, the tree is generated by successively exteatlimtermediate IAs as described in
Sections IV-B and IV-C. Using Lemma 1 in a branch-and-prulgerdhm substantially reduces
the time needed to find the best JSC-IAC. The idea of the brandfpaune algorithm is to
successively eliminate large parts of the tree which cafead to the optimumig.... This is

done by iteratively updating a lower boundt ., of the largest free distance which may be

obtained for given values of the characteristic paramei#isen exploring the tree, if an 1A is
reached, itsis . iS compared tal;,... If it is larger, the IA is extended, in the other case, the
IA is no more explored, since according to Lemma 1 all IAs ancs@arived from it will have

a dge. Smaller or equal tai;... If a CA is reached and itdy.. is larger thand;,.,, thend..,

is updated. Three ways for exploring the tree are considetepth first explorationbreadth
first exploration and asort methodwhich extends the IA with the largest.... Their respective
efficiency is compared in Section V. Section IV-A recalls sotmases of AC which may be
helpful for understanding the tree construction metho@xtiSns IV-B and IV-C describe the

tree construction method for binary input and non-binaguinJSC-IAC respectively.
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A. Finite-state integer arithmetic coding

The basic idea of binary AC is to assign to every sequence wfceosymbols a unique
subinterval of the unit interval0,1). A subinterval of widthw is represented by a binary
fraction of length at leasflog, w] bits. The source entropy can be approached by iteratively
partitioning the code intervald, 1) according to the probabilities of the source symbols. Let
K be the size of the source alphalet;, as, ...,ax}. At the end of some iteration, assume
that the code interval i, i). At the next iteration[l, k) is partitioned intoX non-overlapping
subintervals{I,, I, ..., Ik}, the width of I; being proportional to the probability of the symbol
a;. The subinterval corresponding to the symbol to encode es #elected as the new code
interval. Partitions and selections continue until the $3snbol has been processed. The encoder
chooses a value in the current code interval, and its binapyresentation is associated to
the sequence of encoded symbols. For sources with skewdxhlplibes or for long source
sequences, subintervals may however get too small to beadelyuhandled by a finite-precision
computer. This problem is solved by IAC.

Binary IAC, also called quasi-arithmetic coding (QAC) [30],6]2works as the scheme
presented above, but the initial interval is replaced byitieger intervall0, T'), whereT = 2°
and P is the binary precision (register size) of the encoding dzvAll interval boundaries
are rounded to integers. During the encoding process, thdsoof the intervalll,h) are

renormalized as follows

« If h<T/2,1andh are doubled.
« If T/2 <, 1 andh are doubled after subtractirig/2.
« If T/4<landh < 37/4, 1 andh are doubled after subtractirig/4.

If the current interval before renormalization overlape thidpoint of [0, 7'), no bit is output.
The number of consecutive times this occurs is stored in iablarf (for follow). If the current
interval before renormalization lies in the upper or lowelffof [0,7"), the encoder emits the
leading bit of/ (0 or 1) and f opposite bits { or 0). This is calledfollow-on [21].

Since the IAC encoding process can be characterizgd byand f (and the source probabili-
ties), the state of the automaton representing the encodgibm defined a§, , f). If the value
of f is bounded, it is possible to precompute all the reachahlestnd the transitions between

them, thus yielding a FSE. In generdlmay grow without bounds, but it can be easily limited
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to f < fuax, @S in [31]. The present work takes the approach of [7]: whené = f,.. and
the current source interval is such thatould be further incremented, the symbol probabilities

are temporarily modified to force a follow-on after encodthg current symbol.

B. A tree of binary input JSC-IAC automata

Consider a sourc& with alphabetd = {ag,a;} and p{X = ag) = py and p{X = a;) = p;.
Let (I, h, f) be the current state of the encoder ang- 1 — [ be the width of the current code
interval. During encoding/;, h;) is the subinterval of widthv; = h; —[; assigned ta;,i = 0, 1.
As mentioned in Section I, a JSC-IAC may be derived from an IACbnsidering FSs. In the
case of a single FS, let be the “probability” of the FS and. be the width of the subinterval
assigned to it. Giverp. and py, the widths of the subintervals of the code inter{iakh) are

computed as follows

we = (pe X W), (11)
wo = (po X (h — 1 —w,)), (12)
wy =h—1—wy— w,, (13)

where (-) means rounding towards the nearest integer. In a more detase, the probability
of the FS may be split among up to three FSs, e}, with corresponding probabilities
{Pey, Pe1» Pen b SUCh thatp., + p., + p., = p.. Figure 6 shows how the code interval may be
partitioned during the coding process in the case of a JSCWHG 3 FSs. The wayp. is
distributed amongd{zy, 1,22} may bestate-independeni.e., independent of the values of
h, and f, or it may bestate-dependenin which case, the order of the subintervals assigned
to source symbols may also change. Considering a state-diepeRS probability assignment
provides a large design freedom allowing to build automateqtially leading to better codes
than those obtained with a state-independent design,dglreansidered in [7]. However, to
the best of our knowledge, no analytical method is known td fime optimal state-dependent
probability assignment.

The set of all encoders can be obtained by iteratively ekpdothe successors of all states,
starting from the 1A with stat¢/ = 0,h = T, f = 0), for every admissible configuration of the

subintervalgly, ho) (associated ta,) and[l;, ki) (associated ta;) of [/, #). This may be done
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by letting bothl, andi;, vary from![ to h — 1 in steps of one. Then one may check whether one

of the following conditions is satisfied.
l<10<(h0:l0+w0)<ll<(h1:l1+w1)<h, (14)
l<l1<(h1:ll+w1)<l0<(h0:l0+w0)<h (15)

Each time ( 14) or ( 15) are satisfied, a new IA or CA is derivedrfitbe previous IA by supple-
menting it with two states (obtained frofh, ko) and|l;, h;) after appropriate renormalizations)
if they do not already exist. The resulting 1As are then esgadoin turn. From the initial 1A
with state(l = 0,h = T, f = 0), the expansion of IAs gives a tree of automata in which all
internal nodes corresponds to IAs and leaves correspond ©a@A each edge corresponds to
the exploration of an unexplored state.

Figure 7 shows how all possible automata for a given valuéhefdharacteristic parameters
and with a state-dependent FS probability assignment maleberibed by a tree. The initial 1A
consists of the unexplored stafe, 7', 0) shared by all automata. It forms the root of the tree.
Each node in the first layer of internal nodes represents afodAvhich a given configuration
of the subintervals of the initial code interval have beensidered.

Figure 8 shows an example of a tree of automata for the cleaistat parameter§d’ = 8§,
foax = 1, po = }1 andp, = % The circles labeled,, s, ... represent the states of the 1A or
CA. They are shaded for unexplored states. The initial indeta@utomaton 14 consists of the
initial states, = (0,8,0). One possible manner to extend the initial state is to agsign the
interval [0, 1) and toa, the interval[l, 4) leading to the second incomplete automaton. [Ahe
last possible extension of the initial state assignsgteéhe interval[7,8) and toa; the interval
[4,7) yielding the incomplete automaton JA Iterating this approach, one may get CAs such as

the one shown shaded on the bottom left side of the tree.

C. Extension to non-binary input JSC-IAC

For sources withiX' > 2 symbols, extending the interval subdivision presentedeictisn 1V-B
would require to consider at most + 1 FSs. Allowing state-dependent assignment of the
probabilities of the FSs may lead to a very high number of mata for given values of the
characteristic parameters. Nevertheless, in practicet ifosot all) source coding standards

involving arithmetic codes introduce a binarization stéph® non-binary symbols to encode
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before binary input arithmetic coding [32]. This allows thee IAC with reduced precision, com-
pared to non-binary input ACs. Instead of a single source glitiby model, several (adaptive)
probability models are considered and chosen dependingrae contexi corresponding here to
the index of the bit to encode in a binarized symbol. The naghtescribed in Section IV-B are
thus extended for binarized sources with> 2 symbols, accounting for some simple context,
with non-adaptive probability model.

Let X be a memoryless source with alphab&t = {a1,...,ax} and corresponding set of
symbol probabilitiesP, = {p,,, ..., pa, }. Without loss of generality, assume that > p,, .,
i=1,...,K.

A binarization of Ax may be done as follows. Consider first some N and L € N* such
that L > [log,(x)|. Let B.(z) be the binary representation of the integeon L digits. For
instanceB;(1) = 001. Now considerL, € N* such thatLx > [log,(K)]. For each symbol
a; € Ak, Br,.(i — 1) is a possible binary representation.

Example 1:Consider the 26 letters of the English alphaldgt. Then K =26 and Lx =5
bits. Table | shows the probability of occurrence [16] anel liit assignment for each symbol in
Ass. The entropy of a memoryless sour&egenerating symbols according to the probabilities
given in Table | isH(X) = 4.175 bits/symbol.

Now denoter’, i = 1,..., K andj = 1,..., Lk be thej-th bit in the binary representation of
a;. To avoid confusion with the output bits of the A, is called a symbol. Let] for b € {0,1}
andj = 1,..., Lx be the probability that! = b. One hag] = S°%  p,.6(al —b), whered(z) is
the indicator functiond(z) = 1 if z = 0 andd(z) = 0 else). One has of courgg+p] = 1. The
entropy of a memoryless binary sourﬁ@ generating the/-th bit of a binarized symbol with
probability model{pg,p{} may easily be evaluated. The entropy of the source afteribateon
is then > X5) (X3).

Example 2:For Ay, pi = 0.0963; p2 = 0.269; p3 = 0.379; pg = 0.432; p5 = 0.455 and
S22 H(XJ) = 4.237 bits/non-binarized symbol, which is greater thahX). Using an AC
involving five independent probability models for memosgéinary sources leads thus to some
loss in efficiency compared to an AC directly handlind<avalued source.

With a context corresponding to the index of the bit to encodie binarized source symbol,
the symbola! will be arithmetic coded with the probability modépy,p}}. In the FSE, this
requires keeping track of the context by supplementing tate $/, /, f} with the value of the
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context to get the new statfd, h, f,j}, with j = 1,... Lix. As a consequence, the number
of states of the FSE is multiplied b¥; when considering such context. When designing an
JSC-IAC, one usually tries to reach some target source-chaading rateR.. For that purpose,
a “probability”

pl =1 — o~ (RemH(X3) (16)

is assigned to each context The characteristic parameters of a JSC-IAC are theffiax, Pa,
and R.. As in Section IV-B, the set of all encoders which may be olgdiby a state-dependent
assignment of the FS probabilities may be obtained by iveisit exploring the successors of
all states of 1As, starting with the 1A having the single stét=0,h =T, f =0,j = 1), for

every admissible configurations of the subintervals of axpluged state.

D. Complexity issues

It would be useful for the branch-and-prune algorithm to fancelation between the charac-
teristic parameters and the computational time for findimgy lhest automaton. However, this is
very difficult, since the number of automata generated dépem these parameters in intricate
ways. One may compute an upper bound on the number of statesufmmaton and thus on
the number of distinct automata, but this upper bound vkkly be too loose to be useful. An
additional difficulty resides in estimating the time reguairby the algorithm for computing the
free distance of an automaton. Again, this is extremelyaiiffito estimate from the parameters
without building the actual FSE.

V. EXPERIMENTAL RESULTS

Two sets of experiments are conducted. First, simple bisatyces are considered, allowing
an easy evaluation of the efficiency of the branch-and-palgerithm compared to an exhaustive
search for the best FSE. Dijkstra’s algorithm-based fretadce evaluation is compared to the
method proposed in [7]. Various tree traversal algorithnestiken compared. Second, a JSC-IAC
for the binarized English alphabet is provided.

A. JSC-IAC for binary sources

A first binary-input JSC-IAC with characteristic parametérs= 8, fu.. = 1, po = 0.1, and

a designR. = 0.62 bits/symbol f. = 0.1) is considered first. The time needed to generate
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all possible automata with a state-dependent assignmetiteoFS probabilities, to compute
their free distance and select the best one is 6300 s. Usingrinch-and-prune algorithm with
breadth-first exploration, the time needed to find the ldrdgs is only 25 s, resulting in a time
saving of 99.6%. In both cases, free distances are evaluwatedhe technique of [7]. This first
experiment has been done on an Intel Core 2 Duo at 2.66 Ghz w&h fnemory.

A second binary-input JSC-IAC with characteristic paramgeie = 16, fu.x = 1, po = 0.1,
and a designk. = 0.91 bits/symbol . = 0.27) is now considered. An exhaustive exploration
for such JSC-IAC would be unreasonably time-consuming.eldldhows the time (in seconds)
needed with a depth-first exploration, a breadth-first exgpion, and the sort method described
in Section IV to find the best automaton. The free distanc&atian method of [7] is compared
to that presented in Section ll|S,| and |7,.| denote the number of states and the number of
transitions of the corresponding R-FSE. These numbers depethe exploration method, since
several FSCs may have the samg., without necessarily having the same number of states or
transitions. The coding rate is expressed in bits/symbloé Jort method is the best in terms of
computing time. This is mainly due to the fact that this metlexplores first the IA with the
highest potential to have a largg.., So thatd;., may rapidly increase. Having a large value of
d;... at the beginning of the algorithm facilitates pruning lapgets of the tree without exploring
them. It can also be seen that using Dijkstra’s algorithmaimputed,.. is much more efficient
than using the method in [7].

Compared to an equivalent tandem scheme (IAC followed by a @otiwnal Code (CC))
with the same coding rate, the free distance of the obtaiS€tIAC remains suboptimal. For
the example of Table Il, consideria. = 91 bits/symbol equivalent tandem scheme with an IAC
with 7" = 16, po = 0.1, p. = 0, followed by a rate 1/2 CC. The free distance of the tandem
scheme depends on the constraint length of the CC. For cartdeagth 2 (respectively 3), the
bestd;.. of a rate 1/2 CC is 4 (respectively 5) [33, Chapter 8]. The weskrd the JSC-IAC
is mainly due to its small effective memory (which is relatedthe set of states), that is more
geared towards good compression than towards ldgge The minimum number of states for
the best obtained FSE in the JSC-IAC case (3able I1), while in the tandem scheme, the total
number of states is the product of the number of states of Akiednd the number of states
of the CC(at least 2). Hence, the joint scheme will be less cexnfilan the tandem scheme.

In Table Il one notes a slight variation of the effective ewgrate, which are due to rounding
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effects in finite-precision IAC. This second experiment ane followings have been done on
an Intel Xeon E5420 at 2.50GHz with 64 Gb memory.

B. JSC-IAC for non-binary sources

Now, our aim is to optimize a JSC-IAC for the binarized Englalphabet.A,s given in
Table I. To reduce the number of 1As and CAs to build in the treautomata, only two values
of the context are considered. The first corresponds to teebitr index and the second to the

remaining bit indexes. Two probability models are then @#red, namely{p}, pi} and

DYy . .
py° = =47 and pi® =1 - pp”. (17

The probabilityp?> assigned to the contet: 5 can be obtained with (16). To further simplify
the search for a good code, the FS probability assignmenatis-dependent, but is not allowed
to vary for a given value of the context. This significantlyduees the amount of different
automaton which may be built for a given value of the charatie parameters taken now as
T =32, fmax = 1, {pb, 01}, {p¥°, p?®}, and a desigz. = 14 bits/symbols.

Dijkstra’s algorithm is used to computg,... and thesort methodis used in the branch-and-
prune algorithm. The best code h&s. = 6 and R. = 13.9 bits/symbols. The time needed to
find this code is 1425 s. JSC-IAC code design is thus possilde & large alphabet sizes,
provided that a binarization process is considered. Howyéve reduced number of contexts and
the constraints imposed on the FSs lead to a JSC-IAC whiclsssd#icient than that proposed
in [16], where a JSC-VLC fordys with dg.. = 5 and R, = 10.41 bits/symbols is obtained.

Improvements may be obtained by considering more contextdg allowing more variations
of the state-dependent assignments of the FS probabiliiesever, the price to be paid is a
higher computational complexity. The considered branuitHarune algorithm may be strongly

parallelized, which may help addressing this issue.

VI. CONCLUSION

This paper has shown how established graph transfer funoithods for fixed-rate channel
codes can be generalized to compute the free distance ardistaece spectrum of VL-FSC.
The resulting method for computing the free distance is mmoe efficient than the method

for JSC-IAC presented in [7] and does not have problems dealith catastrophic codes.
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It also shows that the proposed branch-and-prune algof(tising the Sort Method) is a fast
way to find the JSC-IAC with largest,.. for binary sources. Using an appropriate binarization
process prior to AC and using several probability models, thethod may be extended to the
design of JSC-IAC for non-binary sources.

Nevertheless, at fixed code rate, the codes obtained forirttee lieing remain less efficient
than equivalent tandem schemes. Future work will considereixtension of JSC-IAC with an
m-bit memory which may improvéy,.. by separating paths that would lead to small distances.
The memory holds an integér < A\ < 2™ — 1, so that the FSE state can be represented as
(I,h, f,\). The set of FSEs of JSC-IAC with memory contains the set of tandem schemes
with CC with constraint lengthn + 1. Therefore one may expect to find at least FSEs with
performance (compressiot..) equivalent to the tandem schemes, but hopefully less aampl

(regarding the number of states and transitions).
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(a) Incomplete Automaton,sds a stopping state  (b) Complete Automaton

Fig. 1. Example of an incomplete automaton (a) and a complete automatder{zed from the automaton (a)

Fig. 2. Product graph derived from the B-FSE of Figure 1 (b)






23

Fig. 4. The Pairwise Distance Graph (PDG)

Fig. 5. Part of a bit clock finite state encoder (a) and the part of thegponding pairwise distance graph (b)

€0 Qo €1 ay €2

lo ho l1 hl

Fig. 6. Partitioning the coding interval in the more general binary inputlf$Ccase
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Fig. 7. All automata for given values of characteristic parameters oaea tr
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Initial Unexplored State

((0,1),(1,4))," 'u‘((7,8),(4,7)

0/000 @ 10575, 011 ‘ Uly'sy
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52
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((0.1),(L4YY S (7.8),47)
0/000 /010
(o))
Fig. 8. Part of the tree of automata for the characteristic parametersvAlee8, fumax = 1, po = i, P. = %; the conventions

of Figure 7 are used, the labels on the dotted arrows represent thealstatotted((lo, ho), (11, k1)) to the symbolszy and

ai.



Symbols Probabilities | Bits assignment
a1 =FE | pa, =0.1270 00000
as =T Pay = 0.0906 00001
a3=A | pas =0.0817 00010
ag =0 Pa, = 0.0751 00011
as =1 Pasz = 0.0697 00100
ag = N Pag = 0.0674 00101
a7 =S | pa, =0.0633 00110
ag = H Pag = 0.0609 00111
a9 =R | pay = 0.0599 01000
a10=D | paj, = 0.0425 01001
a11 =L | pay; = 0.0403 01010
a2 =C | pa;, = 0.0278 01011
a13=U | pays = 0.0276 01100
alg =M | pay, =0.0241 01101
a5 =W | pay5 = 0.0236 01110
a6 = F | pa;q = 0.0223 01111
a17 =G | pay, = 0.0202 10000
a18 =Y | pays = 0.0197 10001
a9 =P | paye = 0.0193 10010
a20 = B | pay, = 0.0149 10011
az1t =V | pay; = 0.0098 10100
a2 = K | Pagy = 0.0077 10101
a23 = J | Pay; = 0.0015 10110
azs = X | Pay, = 0.0015 10111
azs = Q Dass = 0.001 11000
a26 = Z | Pasg = 0.0007 11001
TABLE |

PROBABILITY OF OCCURENCE OF EACH LETTER INENGLISH ALPHABET TAKEN FROM [16] AND EXAMPLE OF

BINARIZATION

Methods depth-first | breadth-first| sort method

|Sr| 8 2 3

| 77| 28 9 12

dfree 3 3 3

Rc 0.93 0.92 0.92
Time with [7] 451266 s 31338 s 12431 s
Time with PDG 734 s 219 s 45s

TABLE I

COMPARISON BETWEEN THE THREE METHODS TO EXPLORE THE TREE FOCR= 16, P, = 0.1, P. = 0.26



