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Efficient computation and optimization of the

free distance of variable-length finite-state joint

source-channel codes

A. Diallo, C. Weidmann,Member, IEEE, and M. Kieffer,Senior Member, IEEE

Abstract

This paper considers the optimization of a class of joint source-channel codes described by finite-

state encoders (FSEs) generating variable-length codes. It focuses on FSEs associated to joint-source

channel integer arithmetic codes, which are uniquely decodable codes by design. An efficient method

for computing the free distance of such codes using Dijkstra’s algorithm is proposed. To facilitate the

search for codes with good distance properties, FSEs are organized within a tree structure which allows

the use of efficient branch-and-prune techniques avoiding asearch of the whole tree.

Index Terms

Variable length codes, finite state machines, source coding, channel coding, arithmetic codes.

I. I NTRODUCTION

Today, most communication systems are based on Shannon’s separation principle [1], which

states that source and channel coding may be optimized separately, without loss of optimality

compared to a joint design. However, this result has been obtained under the hypothesis of a sta-

tionary channel, which is seldom the case in wireless communication systems. As a consequence,

channel codes are usually difficult to adapt to time-varyingchannel conditions. Moreover, source

codes are suboptimal due to complexity constraints.
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These issues have prompted the development of joint source-channel (JSC) coding techniques,

which aim at designing low-complexity codes simultaneously providing data compression and

error correction capabilities. The hope is to get joint codes outperforming separate codes when

the length of the codes is constrained, see [2]. Compression efficiency is measured by the ratio

of the average code length to the source entropy [3], while the error-correction performance may

be predicted with an union bound using thedistance propertiesof the code,i.e., its free distance

and distance spectrum, see [4]. JSC coding using error-correcting variable-length codes (JSC-

VLC) was introduced in [5], while design techniques aiming atoptimizing distance properties

of such codes were reported in [6] and later for a small subclass of JSC integer arithmetic codes

(JSC-IAC) in [7].

This paper focuses on the optimization of codes generated byfinite-state encoders(FSEs),

which can be used to describe many JSC codes, including JSC-VLC and JSC-IAC. More

precisely, our aim is to efficiently explore the (already very large) subclass offinite-state codes

(FSCs) corresponding to JSC-IAC. One prerequisite for such optimization is the availability of

efficient tools to evaluate distance properties of FSCs, which constitutes the first contribution of

this paper, see Section III.

The first tools for evaluating distance properties considered linear FSCs, such as convolutional

codes (CCs) [8]. In [9], Viterbi computed transfer functions on the state diagram of CCs to obtain

their distance spectra and deduced their free distance. In [10], a variant of Dijkstra’s shortest path

algorithm is applied on the CC state diagram to compute the free distance without generating

the spectrum. Later, [11] proposed a fast tree search algorithm for computing the CC distance

spectrum. All these techniques have a complexity that is linear in the number of encoder states,

due to the linearity of CCs.

For nonlinear FSCs, all pairs of codewords have to be comparedto compute the free distance.

For Euclidean-distance codes generated by trellis-coded modulation (TCM) [12], [13] used the

product graph derived from the graph associated to the FSE. This allows to compute the distance

spectrum of TCM in the code (signal) domain and to infer the free distance. For a FSC with

2ν states, a product trellis with(2ν)2 states is required for these evaluations [13]. For the class

of geometrically uniformFSCs [14], which includes certain TCM codes, a modified generating

function on a state diagram with only2ν states is sufficient to compute the spectrum [15].

All the above-described techniques are for fixed-rate codes, more precisely for FSEs defined
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by graphs where all transitions have input labels of the samelengthk, as well as output labels

of the same lengthn, as is the case,e.g., for ratek/n CCs. Distance properties for JSC-VLCs

were first evaluated in [6], [16], where a lower bound for their free distance and exhaustive

(exponential complexity) algorithms for their distance spectrum were proposed. Graphs that are

similar to those used for distance properties of fixed-rate trellis codes have also been used in

the context of JSC-VLCs, but to evaluate other figures of merit.For example, [17] defined a

testing graph, consisting of the product graph that represents only pairsof paths at null Hamming

distance to define a test for synchronizability of VLCs. Theerror-state diagramintroduced by

[18] for VLCs is the product graph that represents the pairs ofpaths at Hamming distance one

to study the resynchronization properties of the decoder after a single bit error in the encoded

sequence. In [19], these results were extended to JSC-IACs.

Evaluating the distance properties of nonlinear FSCs corresponding to JSC-IACs is slightly

more complex than for JSC-VLCs. This is due to the fact that the FSE of a JSC-VLC has only

one state in which paths can diverge and converge, while there may be many such states for

a JSC-IAC. First analytical tools for JSC-IACs were proposed in [7], where the free distance

is evaluated with polynomial complexity, whereas approximated distance spectra are obtained

with exponential complexity as in [16]. More recently, [20]explicitly defined variable-length

finite-state codes (VL-FSCs) generated by variable-length finite state encoders (VL-FSEs) and

proposed a matrix method with polynomial complexity to compute the exact distance spectrum

in the code domain or some upper bound on it. The definitions ofVL-FSEs and VL-FSCs will

be recalled in Section II.

In Section III, we first generalize the methods proposed in [13] and [10] to all FSCs, in order

to be able to evaluate distance properties. A product graph inspired by that in [13] is proposed

for general FSEs and is simplified to get two graphs: themodified product graph(MPG), which

allows to compute the code domain distance spectrum using a transfer function approach, and

thepairwise distance graph(PDG). The PDG allows to compute the free distance of the FSC by

applying Dijkstra’s algorithm as in [10], without computing the entire distance spectrum. This

approach is much less complex than the technique for computing the free distance of a JSC-IAC

proposed in [7].

Our aim is then to apply these free distance evaluation toolsto the efficient optimization of

JSC-IACs.
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Arithmetic coding (AC) [21] is an efficient source coding method whose variants have been

used in recent still image and video coders [22], [23]. Nevertheless, AC is particularly vulnerable

to transmission errors. To overcome this, the most common form of JSC-AC introduces some

redundancy in the compressed bitstream by means of a forbidden symbol (FS), to which a

non-zero probability is given during the partition of thecode interval[24]. The larger the FS

probability, the higher the redundancy and the robustness against errors. This idea is extended

in [25], which proposes the introduction of multiple FSs (MFS). All these FS techniques can be

applied to IAC [26] leading to JSC-IAC. Optimization of JSC-IAChas been considered in [7],

assuming that the total probability allotted to the (M)FS and the probability of each individual

FS are independent of the states of the FSE representing the JSC-IAC. However, the class of

JSC-IAC with state-independent probability allocation forthe FSs is significantly smaller than

that with state-dependent allocation. For a fixed amount of redundancy, more robust JSC-IACs

than those obtained by [7] may be obtained.

The second contribution of this paper, described in SectionIV, consists in presenting some

algorithms to globally optimize the free distance of some FSE by adjusting the introduction of

MFS with in binary input JSC-IAC.

A JSC-IAC (and its corresponding FSE) may be described by itscharacteristic parameters

(source probabilities, arithmetic precision, design rate) and by the way MFS are introduced.

The set of all JSC-IACs for fixed parameter values and with state-dependent MFS is generally

huge, but Section IV-B shows that it may be structured with a tree, where all JSC-IAC codes

correspond to leaves of the tree. An efficient branch-and-prune algorithm is then used to explore

this tree and discard large parts of it as soon as it can be shown that all JSC-IACs stemming

from a given node of the tree cannot have good performances interms of free distance. An

extension to non-binary input JSC-IACs is then presented in Section IV-C. Experimental results

for both binary input and non-binary input JSC-IACs are then provided in Section V.

II. JOINT SOURCE-CHANNEL FINITE-STATE ENCODERS

We briefly recall and extend some definitions from [20]. A binary-output FSE may be repre-

sented with a directed graphΓ(S, T ), whereS is the set of states (vertices) andT is the set

of transitions (directed edges). Each transition is labeled with a sequence of input symbols and

a sequence of output bits. Letσ(t) be the originating state of a transitiont ∈ T and τ(t) its
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target state, whileI(t) denotes its input label andO(t) its output label. LetP (t), t ∈ T , be the

probability thatI(t) is emitted by the source, which for simplicity we assume to bememoryless.

A path t = (t1 ◦ t2 ◦ · · · ◦ tk) ∈ T k on the graph is a concatenation of transitions that satisfy

σ(ti+1) = τ(ti) for 1 ≤ i < k (this corresponds to awalk of length k on the encoder graph).

By extension, we defineσ(t) = σ(t1) and τ(t) = τ(tk), as well asI(t) and O(t), which are

the concatenations of the input, respectively output, labels of t. The probability of a path is

P (t) =
∏k

i=1 P (ti). Finally, ℓ(x) is the length (in symbols or bits) of the sequencex.

We assume that the FSE graph is irreducible,i.e., that any state can be reached from any other

in a finite number of transitions, and that it is aperiodic,i.e., that the state recurrence times,

measured in output bits, are not multiples of an integer period m > 1. These assumptions imply

that the FSE together with the source being encoded forms an ergodic Markov chain, which has

a unique stationary state distribution. LetP ∗(s), s ∈ S, be the stationary probability of the state

s, which is computed taking into account the output label lengths as outlined in [20].

For a FSE to be a proper source encoder, for every state, the input labels of the outgoing

transitions have to form a complete prefix set, which impliesthat their transition probabilities

sum to one [20].

Given an initial states0, the succession of states of the FSE for all possible (semi-)infinite

input sequences can be displayed with a trellis, which can beviewed as a description of the

temporal evolution of the FSE. The output labels of all pathsthrough the trellis form a FSC,

whose performance is determined by itscoding rateand itserror correcting capability. The error

correcting capability is primarily characterized by thefree distancedfree (a finer characterization

is possible through thedistance spectrum). Under the assumption that the FSE is an irreducible

graph, the free distance will be the same for every possible initial states.

Definition 1: The coding rateRc, in bits per symbol, is the ratio between the average length

of the output labels and the average length of the input labels of the transitions inT ,

Rc =

∑

t∈T P ∗(σ(t))P (t)ℓ(O(t))
∑

t∈T P ∗(σ(t))P (t)ℓ(I(t))
. (1)

Definition 2: Let Pk
s0

be the set of all paths withk transitions starting ins0. The FSCC (Γ, s0)

is the set of all infinite-length output sequences generatedby the FSE froms0, C (Γ, s0) = {O(t) :

t ∈ P∞
s0
}.

The Hamming distancedH between two equal-length sequencesx,y is equal to the Hamming
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weight wH, i.e., the number of non-zero entries of their elementwise difference,dH(x,y) =

wH(x−y). If two paths(t1, t2) ∈ T k1 × T k2 are such thatℓ(O(t1)) = ℓ(O(t2)), then we will

write dH(t1, t2) = dH(O(t1), O(t2)).

Definition 3: The free distance,dfree, of the FSCC (Γ, s0) is the minimum Hamming dis-

tance between any pair of distinct code sequences. LetP be the set of all pairs of paths in
(

T k1 × T k2
)

1≤k1,k2<∞
diverging in some state and converging for the first time in the same or

another state and with the same length of output labels. Consequently,dfree is also the minimum

Hamming distance inP

dfree = min
(t1,t2)∈P

dH (t1, t2) . (2)

Definition 4: The distance spectrum [9] in the code domain can be represented with a gener-

ating function

G (D) =
∞

∑

d=dfree

AdD
d, (3)

whereAd is the average number of paths at Hamming distanced from a given path. In the most

general case,Ad can be defined as [7], [20],

Ad =
∑

(t1,t2)∈P
dH(t1,t2)=d

P ∗(σ(t1))P (t1) (4)

By the above definitions we see that the codeC (Γ, s0) and its free distance are independent of

the source (provided all source letters have nonzero probability), while the joint source-channel

nature shows that the rate and the spectrum coefficientsAd depend on the source statistics.

Finally, we introduce two notions which may help searching codes with a computer. Acomplete

automaton(CA) is an FSE that can encode any source sequence. Anincomplete automaton(IA)

is an FSE having one or more terminal states without outgoingtransitions, in which encoding

stops, see Figure 1. Such terminal states are calledstopping statesor unexplored states. An

IA Γ0 generates finite-length prefixes of code sequences and possibly some infinite-length code

sequences. Let theincomplete codeC0 = C(Γ0, s0) contains these (finite and infinite) sequences.

Definition 5: The free distance associated to an incomplete FSE is the minimum Hamming

distance between any pair of distinct output sequences, which are either infinite, or of equal

length and associated to paths ending in the same state (all paths begin ins0). If there is no

pair of (finite-length) paths ending in the same state or (infinite-length) path converging at some

time instant in the same state, the free distance is infinite.
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An IA or CA Γ1 is derived from an IA Γ0 if it has been obtained by exploring (adding the

successor states of) one or more terminal states ofΓ0 (hence the graphΓ0 is a subgraph ofΓ1)

[27]. Let C0 andC1 be two codes generated byΓ0 andΓ1, respectively, with free distanced(0)
free and

d
(1)
free, respectively. We define the relationC0 � C1, meaning that all elements inC0 are prefixes

of elements inC1. If C0 � C1, an important property following directly from Definitions3 and 5

is thatd(0)
free is an upper bound ond(1)

free.

Lemma 1:Let C0 and C1 be two (incomplete) codes such thatC0 � C1. Then dfree(C0) >

dfree(C1).

In [7], three types of FSE describing the coding operations were considered: a symbol-clock

FSE (S-FSE) suited for encoding, where each transition is labeled with exactly one input symbol;

a reduced FSE (R-FSE), with variable-length non-empty inputand output labels, leading to a

compact trellis better suited for decoding, and a bit-clockFSE (B-FSE) suited for the evaluation

of distance spectra, where each transition is labeled with exactly one output bit, see Figure 1.

Details on how these FSEs are obtained can be found in [7]. In the sequel,Sr andTr are the

set of states and transitions in R-FSE andSb andTb the set of states and transitions in B-FSE.

Mr andMb are the number of states in a R-FSE and a B-FSE, respectively.

III. C HARACTERIZATION OF THE ERROR CORRECTING PERFORMANCE

From here on, we consider B-FSE. To evaluate the free distanceand the distance spectrum of

some JSC-IAC described by a B-FSEΓb(Sb, Tb), techniques inspired from [13] are applied to

track the distances between pairs of paths in the B-FSE. The product graphΓ2
b = Γb×Γb labeled

with Hamming distances (which would yield the product trellis considered in [13]) is considered

for that purpose. The main difference with [13] is that for VL-FSE, states may have a different

number of outgoing transitions. Then we show how this product graph may be simplified.

A. Efficient free distance computation

This section describes the generation of the product graph associated to a B-FSE and its

simplification to efficiently compute the free distance of the FSC generated by the B-FSE.

Consider the set of statesSb = {si : 0 6 i < Mb} and the set of transitionsTb of the directed

graph Γb(Sb, Tb) representing some B-FSE. The product graph associated toΓb(Sb, Tb) is the

directed graphΓ2
b(Sb ×Sb, Tb ×Tb) with M2

b statessi,j defined assi,j = (si, sj), 0 6 i, j < Mb.
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For any pair of transitions(u, v) in the original graph,Γ2
b contains a directed edgee with

e = (u, v), σ(e) = sσ(u),σ(v), andτ(e) = sτ(u),τ(v). The weight of the edgee, wH(e) is defined as

the Hamming distance between the output of the two transitions,u andv, i.e., wH(e) = dH (u, v).

A directed pathe in Γ2
b from the state si,j to the state sm,n, is a sequence of edgese =

(e1 ◦ e2 ◦ · · · ◦ eN) such thatσ(eµ+1) = τ(eµ) for 1 6 µ < N . The weight of this directed path,

wH(e) is defined as

wH(e) =
N

∑

µ=1

wH(eµ). (5)

SinceΓb is output bit clock, one haswH(e) 6 N .

Thus, the weight of a directed path inΓ2
b from a state si,j to a state sm,n, is the Hamming

distance between the output bits of two paths(t1, t2) ∈ T k
b × T k

b . Hence, when we exploreΓ2
b

from the initial states0,0, the weights of the obtained directed paths represent all the Hamming

distances of all possible pairs of codewords inC (Γb, s0) × C (Γb, s0), including dfree according

to Definition 3. Figure 1 (b) gives an example of a graph for a B-FSE (wheres0 and s2 are

the states where paths diverge). Figure 2 shows the product graph derived from the B-FSE in

Figure 1 (b). The edges in Figure 2 are labeled with their weight.

Since, for the evaluation ofdfree one is only concerned with paths inΓ2
b belonging toP, we

can derive fromΓ2
b a modified product graph (MPG) that represents only these paths. Consider

the two sets of statesSdiv ⊂ S2
b andSconv ⊂ S2

b such that

Sdiv =
{

si,i ∈ S2
b : ∃ (u, v) ∈ T 2

b , u 6= v, such thatσ(u) = σ (v) = si

}

, (6)

Sconv =
{

si,i ∈ S2
b : ∃ (u, v) ∈ T 2

b , u 6= v, such thatτ(u) = τ(v) = si

}

. (7)

Sdiv is the set of states ofΓ2
b in which the outgoing edges consist of pairs of diverging transitions

in T 2
b having the same originating state inSb. We merge the states inSdiv into a single statesin

with only outgoing edges.Sconv is the set of states ofΓ2
b in which the incoming edges consist of

pairs of distinct transitions inT 2
b converging in the same target state inSb. We merge the states

in Sconv into a single statesout with only incoming edges. In Figure 2,Sdiv = {s0,0, s2,2} and

Sconv = {s0,0, s2,2}. In Γ2
b , the set of edges{e = (u, u) : u ∈ Tb} corresponds to pairs of paths

which have not diverged, therefore, according to Definition3, this set will be not useful to find

dfree. If we replace inΓ2
b the setsSdiv andSconv by respectivelysin and sout, and we remove

the set{e = (u, u) : u ∈ Tb}, we obtain a modified product graph (MPG), in whichsin is the
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initial state andsout is the final state, and which still contains all paths needed for the evaluation

of dfree. The MPG derived from the product graph in Figure 2 is represented in Figure 3. When

we explore the MPG from the initial state to the final state theweights of the paths give the

Hamming distances inP. Thus findingdfree amounts to determining the directed path(s) from

sin to sout with smallest weight.

It can be seen that in the MPG, ife1 is a directed path fromsin to si,j, i 6= j, then, there is

also a directed pathe2 from sin to sj,i such that

ℓ(e1) = ℓ(e2) and wH(e1) = wH(e2). (8)

This is so sincedH is symmetric in its arguments. Here, we say that the pathse1 ande2 in the

MPG are equivalent. Thus the complexity can be further reduced by defining a pairwise distance

graph (PDG) that contains a single path for each pair of equivalent paths in the MPG. For this

end, the two statessi,j and sj,i in the MPG are merged and replaced with a single statesν,γ

(ν = min(i, j), γ = max(i, j)) in the PDG, and the two directed edges(u, v) and (v, u) (with

u ∈ Tb andv ∈ Tb) in MPG are replaced by a single edge in the PDG. The PDG derived from

the MPG in Figure 3 is represented in Figure 4.

Finding dfree with this PDG is again the same as finding the directed path(s)from sin to sout

with the smallest weight. This is known as the shortest weighted path problem in graph theory

and can be solved efficiently using Dijkstra’s algorithm [27], since all weights are non-negative.

The number of states in PDG,MPDG, is

MPDG =
Mb × (Mb − 1)

2
+ 2. (9)

MPDG is the maximum number of states explored when Dijkstra’s algorithm is applied on PDG

to computedfree.

An alternative method to compute the free distance of a JSC-IAC was presented in [7]. It

uses a three-dimensional array defined as△n = (ak,i,j)0≤k,i,j<Mb
, whereak,i,j is the minimum

Hamming distance between all pairs of paths of lengthn (in code domain) starting from the

statesk and ending respectively in the statessi andsj and not having converged. This method

is an iterative method over the path lengthn. The algorithm needs to compare the paths up to

nfree, which is the path length for which no unmerged pairs of pathswith distance less thandfree

exist. In practical implementations, some upper boundnmax for n has to be given to perform the
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algorithm in [7] in finite time. Ifnmax is too small, no guarantee may be provided that the actual

value of dfree has been found. This may occur for some codes like catastrophic codes, since

such codes contain pairs of codewords with a finite Hamming distance that correspond to never-

converging paths. The computational complexity of this method isO (nmax × |Tb|
2 × Mr), while

the worse complexity of applying Dijkstra’s algorithm on a PDG is O(M2
PDG). With a better

implementation of Dijkstra’s algorithm using Fibonacci heaps, the complexity may be reduced

to O(|TPDG| + MPDG × log(MPDG)), whereTPDG is the set of edges in PDG. The existence of

catastrophic pairs of paths implies a zero-weight (directed) loop in the PDG and vice-versa. For

instance in Figure 5 (a) the codewords obtained by(s0, s1, s3, · · · , s3) and (s0, s2, s4, · · · , s4)

have Hamming distance one. Dijkstras algorithm has no problems with such codes, since during

the process, each edge of the PDG is explored at most once.

B. Distance spectra in the code domain

This section briefly describes the way an MPG could be labeledsuch that the distance spectrum

in code domain is obtained from a generating function, whichmay be computed by evaluating

a symbolic transfer function,e.g., using Mason’s gain formula [28]. For this end, we assign to

every edgee = (u, v) a gaing(e) defined as

g(e) =











P ∗(σ(u))P (u)DwH(e) : σ(u) = σ(v),

P (u)DwH(e) : σ(u) 6= σ(v),
(10)

whereD is a symbolic variable used to track the path weight. Then, applying Mason’s gain

formula betweensin and sout in the MPG allows to obtain a transfer functionG(D), which

represents the distance spectrum according to (4). In [20] amethod to compute the distance

spectrum (in code domain) directly using matrices instead of generating functions is proposed.

In this method, the coefficientsAd (for 0 ≤ d < ∞) of G(D) are computed one by one. The

index of the first non null coefficient gives the value of the free distance. The method in [20]

uses a matrix inversion with matrices of sizeM2
b ×M2

b to compute the coefficients. This is more

complex than using Dijkstra’s algorithm.

The method described above cannot be applied in the information (source) domain for general

variable-length FSCs, since the distances between information sequences need to be expressed

using the Levenshtein distance [29], which is not additive.
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IV. OPTIMIZING FINITE-STATE JSCCODES BASED ON ARITHMETIC CODING

This section describes a method to search for error-correcting codes with large free distance.

Our approach is to explore a subset of the setF of all FSEs.F contains the setFu of FSEs

which generates uniquely decodable FSCs, which in turn contains the setFJSC-IAC of all FSEs

corresponding to JSC-IAC. The latter contains the setFT
JSC-IAC of all FSEs representing an IAC

followed by an error-correcting code (i.e. classical separatetandemencoding). It also contains

the setFM
JSC-IAC of all memorylessJSC-IAC, i.e., JSC-IAC whose encoding behavior depends

only on the current arithmetic encoder state. For such codes, the encoder behavior can depend

on the previously encoded symbols or on the previously generated output bits only indirectly

through the state. Some IAC followed by block codes belong tothe setFM
JSC-IAC, but more general

tandem schemes consisting of an IAC followed by a CC do not belong toFM
JSC-IAC. For the sake

of simplicity, we restrict our exploration to the setFM
JSC-IAC.

As the setFM
JSC-IAC still remains large, it will be interesting to structure it in a way that allows

to promptly explore it for the largestdfree. This may be done with a tree in which the leaves

correspond to complete JSC-IACs (CAs) and internal nodes correspond to incomplete JSC-

IACs (IAs). From the root which is the initial IA determined bythe values of the characteristic

parameters, the tree is generated by successively extending all intermediate IAs as described in

Sections IV-B and IV-C. Using Lemma 1 in a branch-and-prune algorithm substantially reduces

the time needed to find the best JSC-IAC. The idea of the branch-and-prune algorithm is to

successively eliminate large parts of the tree which cannotlead to the optimumdfree. This is

done by iteratively updating a lower bounddfree, of the largest free distance which may be

obtained for given values of the characteristic parameters. When exploring the tree, if an IA is

reached, itsdfree is compared todfree. If it is larger, the IA is extended, in the other case, the

IA is no more explored, since according to Lemma 1 all IAs and CAs derived from it will have

a dfree smaller or equal todfree. If a CA is reached and itsdfree is larger thandfree, thendfree

is updated. Three ways for exploring the tree are considered: depth first exploration, breadth

first exploration, and asort methodwhich extends the IA with the largestdfree. Their respective

efficiency is compared in Section V. Section IV-A recalls some bases of AC which may be

helpful for understanding the tree construction methods. Sections IV-B and IV-C describe the

tree construction method for binary input and non-binary input JSC-IAC respectively.
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A. Finite-state integer arithmetic coding

The basic idea of binary AC is to assign to every sequence of source symbols a unique

subinterval of the unit interval[0, 1). A subinterval of widthw is represented by a binary

fraction of length at least⌈log2 w⌉ bits. The source entropy can be approached by iteratively

partitioning the code interval[0, 1) according to the probabilities of the source symbols. Let

K be the size of the source alphabet{a1, a2, . . . , aK}. At the end of some iteration, assume

that the code interval is[l, h). At the next iteration,[l, h) is partitioned intoK non-overlapping

subintervals{I1, I2, . . . , IK}, the width ofIi being proportional to the probability of the symbol

ai. The subinterval corresponding to the symbol to encode is then selected as the new code

interval. Partitions and selections continue until the last symbol has been processed. The encoder

chooses a value in the current code interval, and its binary representation is associated to

the sequence of encoded symbols. For sources with skewed probabilities or for long source

sequences, subintervals may however get too small to be accurately handled by a finite-precision

computer. This problem is solved by IAC.

Binary IAC, also called quasi-arithmetic coding (QAC) [30], [26] works as the scheme

presented above, but the initial interval is replaced by theinteger interval[0, T ), whereT = 2P

and P is the binary precision (register size) of the encoding device. All interval boundaries

are rounded to integers. During the encoding process, the bounds of the interval[l, h) are

renormalized as follows

• If h 6 T/2, l andh are doubled.

• If T/2 6 l, l andh are doubled after subtractingT/2.

• If T/4 6 l andh 6 3T/4, l andh are doubled after subtractingT/4.

If the current interval before renormalization overlaps the midpoint of [0, T ), no bit is output.

The number of consecutive times this occurs is stored in a variable f (for follow). If the current

interval before renormalization lies in the upper or lower half of [0, T ), the encoder emits the

leading bit ofl (0 or 1) andf opposite bits (1 or 0). This is calledfollow-on [21].

Since the IAC encoding process can be characterized by[l, h) andf (and the source probabili-

ties), the state of the automaton representing the encoder may be defined as(l, h, f). If the value

of f is bounded, it is possible to precompute all the reachable states and the transitions between

them, thus yielding a FSE. In general,f may grow without bounds, but it can be easily limited
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to f 6 fmax, as in [31]. The present work takes the approach of [7]: whenever f = fmax and

the current source interval is such thatf could be further incremented, the symbol probabilities

are temporarily modified to force a follow-on after encodingthe current symbol.

B. A tree of binary input JSC-IAC automata

Consider a sourceX with alphabetA = {a0, a1} and pr(X = a0) = p0 and pr(X = a1) = p1.

Let (l, h, f) be the current state of the encoder andw = h − l be the width of the current code

interval. During encoding,[li, hi) is the subinterval of widthwi = hi− li assigned toai, i = 0, 1.

As mentioned in Section I, a JSC-IAC may be derived from an IAC by considering FSs. In the

case of a single FS, letpε be the “probability” of the FS andwε be the width of the subinterval

assigned to it. Givenpε and p0, the widths of the subintervals of the code interval[l, h) are

computed as follows

wε = 〈pε × w〉 , (11)

w0 = 〈p0 × (h − l − wε)〉 , (12)

w1 = h − l − w0 − wε, (13)

where〈·〉 means rounding towards the nearest integer. In a more general case, the probability

of the FS may be split among up to three FSs{ε0, ε1, ε2}, with corresponding probabilities

{pε0 , pε1 , pε2} such thatpε0 + pε1 + pε2 = pε. Figure 6 shows how the code interval may be

partitioned during the coding process in the case of a JSC-IACwith 3 FSs. The waypε is

distributed among{ε0, ε1, ε2} may bestate-independent, i.e., independent of the values ofl,

h, and f , or it may bestate-dependent, in which case, the order of the subintervals assigned

to source symbols may also change. Considering a state-dependent FS probability assignment

provides a large design freedom allowing to build automata potentially leading to better codes

than those obtained with a state-independent design, already considered in [7]. However, to

the best of our knowledge, no analytical method is known to find the optimal state-dependent

probability assignment.

The set of all encoders can be obtained by iteratively exploring the successors of all states,

starting from the IA with state(l = 0, h = T, f = 0), for every admissible configuration of the

subintervals[l0, h0) (associated toa0) and [l1, h1) (associated toa1) of [l, h). This may be done
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by letting bothl0 and l1 vary from l to h− 1 in steps of one. Then one may check whether one

of the following conditions is satisfied.

l 6 l0 < (h0 = l0 + w0) 6 l1 < (h1 = l1 + w1) 6 h, (14)

l 6 l1 < (h1 = l1 + w1) 6 l0 < (h0 = l0 + w0) 6 h. (15)

Each time ( 14) or ( 15) are satisfied, a new IA or CA is derived from the previous IA by supple-

menting it with two states (obtained from[l0, h0) and [l1, h1) after appropriate renormalizations)

if they do not already exist. The resulting IAs are then explored in turn. From the initial IA

with state(l = 0, h = T, f = 0), the expansion of IAs gives a tree of automata in which all

internal nodes corresponds to IAs and leaves correspond to CAs and each edge corresponds to

the exploration of an unexplored state.

Figure 7 shows how all possible automata for a given value of the characteristic parameters

and with a state-dependent FS probability assignment may bedescribed by a tree. The initial IA

consists of the unexplored state(0, T, 0) shared by all automata. It forms the root of the tree.

Each node in the first layer of internal nodes represents an IAfor which a given configuration

of the subintervals of the initial code interval have been considered.

Figure 8 shows an example of a tree of automata for the characteristic parametersT = 8,

fmax = 1, p0 = 1
4
, andpε = 1

2
. The circles labeleds0, s1, . . . represent the states of the IA or

CA. They are shaded for unexplored states. The initial incomplete automaton IA0 consists of the

initial states0 = (0, 8, 0). One possible manner to extend the initial state is to assignto a0 the

interval [0, 1) and toa1 the interval[1, 4) leading to the second incomplete automaton IA1. The

last possible extension of the initial state assigns toa0 the interval[7, 8) and toa1 the interval

[4, 7) yielding the incomplete automaton IAN . Iterating this approach, one may get CAs such as

the one shown shaded on the bottom left side of the tree.

C. Extension to non-binary input JSC-IAC

For sources withK > 2 symbols, extending the interval subdivision presented in Section IV-B

would require to consider at mostK + 1 FSs. Allowing state-dependent assignment of the

probabilities of the FSs may lead to a very high number of automata for given values of the

characteristic parameters. Nevertheless, in practice most (if not all) source coding standards

involving arithmetic codes introduce a binarization step of the non-binary symbols to encode
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before binary input arithmetic coding [32]. This allows theuse IAC with reduced precision, com-

pared to non-binary input ACs. Instead of a single source probability model, several (adaptive)

probability models are considered and chosen depending on somecontext, corresponding here to

the index of the bit to encode in a binarized symbol. The methods described in Section IV-B are

thus extended for binarized sources withK > 2 symbols, accounting for some simple context,

with non-adaptive probability model.

Let X be a memoryless source with alphabetAK = {a1, . . . , aK} and corresponding set of

symbol probabilitiesPa = {pa1 , . . . , paK
}. Without loss of generality, assume thatpai

≥ pai+1
,

i = 1, . . . , K.

A binarization ofAK may be done as follows. Consider first somex ∈ N andL ∈ N
∗ such

that L ≥ ⌈log2(x)⌉. Let BL(x) be the binary representation of the integerx on L digits. For

instanceB3(1) = 001. Now considerLK ∈ N
∗ such thatLK ≥ ⌈log2(K)⌉. For each symbol

ai ∈ AK , BLK
(i − 1) is a possible binary representation.

Example 1:Consider the 26 letters of the English alphabetA26. ThenK = 26 andLK = 5

bits. Table I shows the probability of occurrence [16] and the bit assignment for each symbol in

A26. The entropy of a memoryless sourceX generating symbols according to the probabilities

given in Table I isH(X) = 4.175 bits/symbol.

Now denoteaj
i , i = 1, . . . , K andj = 1, . . . , LK be thej-th bit in the binary representation of

ai. To avoid confusion with the output bits of the AC,aj
i is called a symbol. Letpj

b for b ∈ {0, 1}

andj = 1, . . . , LK be the probability thataj
i = b. One haspj

b =
∑K

i=1 pai
δ(aj

i −b), whereδ(x) is

the indicator function (δ(x) = 1 if x = 0 andδ(x) = 0 else). One has of coursepj
0 +pj

1 = 1. The

entropy of a memoryless binary sourceXj
2 generating thej-th bit of a binarized symbol with

probability model
{

pj
0, p

j
1

}

may easily be evaluated. The entropy of the source after binarization

is then
∑L(K)

1 H(Xj
2).

Example 2:For A26, p1
0 = 0.0963; p2

0 = 0.269; p3
0 = 0.379; p4

0 = 0.432; p5
0 = 0.455 and

∑5
1 H(Xj

2) = 4.237 bits/non-binarized symbol, which is greater thanH(X). Using an AC

involving five independent probability models for memoryless binary sources leads thus to some

loss in efficiency compared to an AC directly handling aK-valued source.

With a context corresponding to the index of the bit to encodein the binarized source symbol,

the symbolaj
i will be arithmetic coded with the probability model

{

pj
0, p

j
1

}

. In the FSE, this

requires keeping track of the context by supplementing the state{l, h, f} with the value of the
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context to get the new state{l, h, f, j}, with j = 1, . . . , LK . As a consequence, the number

of states of the FSE is multiplied byLK when considering such context. When designing an

JSC-IAC, one usually tries to reach some target source-channel coding rateRc. For that purpose,

a “probability”

pj
ǫ = 1 − 2−(Rc−H(Xj

2)) (16)

is assigned to each contextj. The characteristic parameters of a JSC-IAC are thenT , fmax, Pa,

andRc. As in Section IV-B, the set of all encoders which may be obtained by a state-dependent

assignment of the FS probabilities may be obtained by iteratively exploring the successors of

all states of IAs, starting with the IA having the single state (l = 0, h = T, f = 0, j = 1), for

every admissible configurations of the subintervals of a unexplored state.

D. Complexity issues

It would be useful for the branch-and-prune algorithm to finda relation between the charac-

teristic parameters and the computational time for finding the best automaton. However, this is

very difficult, since the number of automata generated depends on these parameters in intricate

ways. One may compute an upper bound on the number of states per automaton and thus on

the number of distinct automata, but this upper bound will likely be too loose to be useful. An

additional difficulty resides in estimating the time required by the algorithm for computing the

free distance of an automaton. Again, this is extremely difficult to estimate from the parameters

without building the actual FSE.

V. EXPERIMENTAL RESULTS

Two sets of experiments are conducted. First, simple binarysources are considered, allowing

an easy evaluation of the efficiency of the branch-and-prunealgorithm compared to an exhaustive

search for the best FSE. Dijkstra’s algorithm-based free distance evaluation is compared to the

method proposed in [7]. Various tree traversal algorithms are then compared. Second, a JSC-IAC

for the binarized English alphabet is provided.

A. JSC-IAC for binary sources

A first binary-input JSC-IAC with characteristic parametersT = 8, fmax = 1, p0 = 0.1, and

a designRc = 0.62 bits/symbol (pε = 0.1) is considered first. The time needed to generate
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all possible automata with a state-dependent assignment ofthe FS probabilities, to compute

their free distance and select the best one is 6300 s. Using the branch-and-prune algorithm with

breadth-first exploration, the time needed to find the largest dfree is only 25 s, resulting in a time

saving of 99.6%. In both cases, free distances are evaluatedwith the technique of [7]. This first

experiment has been done on an Intel Core 2 Duo at 2.66 Ghz with 1Gb memory.

A second binary-input JSC-IAC with characteristic parameters T = 16, fmax = 1, p0 = 0.1,

and a designRc = 0.91 bits/symbol (pε = 0.27) is now considered. An exhaustive exploration

for such JSC-IAC would be unreasonably time-consuming. Table II shows the time (in seconds)

needed with a depth-first exploration, a breadth-first exploration, and the sort method described

in Section IV to find the best automaton. The free distance evaluation method of [7] is compared

to that presented in Section III.|Sr| and |Tr| denote the number of states and the number of

transitions of the corresponding R-FSE. These numbers depend on the exploration method, since

several FSCs may have the samedfree, without necessarily having the same number of states or

transitions. The coding rate is expressed in bits/symbol. The sort method is the best in terms of

computing time. This is mainly due to the fact that this method explores first the IA with the

highest potential to have a largedfree, so thatdfree may rapidly increase. Having a large value of

dfree at the beginning of the algorithm facilitates pruning largeparts of the tree without exploring

them. It can also be seen that using Dijkstra’s algorithm to computedfree is much more efficient

than using the method in [7].

Compared to an equivalent tandem scheme (IAC followed by a Convolutional Code (CC))

with the same coding rate, the free distance of the obtained JSC-IAC remains suboptimal. For

the example of Table II, consider aRc = 91 bits/symbol equivalent tandem scheme with an IAC

with T = 16, p0 = 0.1, pε = 0, followed by a rate 1/2 CC. The free distance of the tandem

scheme depends on the constraint length of the CC. For constraint length 2 (respectively 3), the

bestdfree of a rate 1/2 CC is 4 (respectively 5) [33, Chapter 8]. The weakness of the JSC-IAC

is mainly due to its small effective memory (which is relatedto the set of states), that is more

geared towards good compression than towards largedfree. The minimum number of states for

the best obtained FSE in the JSC-IAC case is2 (Table II), while in the tandem scheme, the total

number of states is the product of the number of states of the IAC and the number of states

of the CC(at least 2). Hence, the joint scheme will be less complex than the tandem scheme.

In Table II one notes a slight variation of the effective coding rate, which are due to rounding
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effects in finite-precision IAC. This second experiment and the followings have been done on

an Intel Xeon E5420 at 2.50GHz with 64 Gb memory.

B. JSC-IAC for non-binary sources

Now, our aim is to optimize a JSC-IAC for the binarized EnglishalphabetA26 given in

Table I. To reduce the number of IAs and CAs to build in the tree of automata, only two values

of the context are considered. The first corresponds to the first bit index and the second to the

remaining bit indexes. Two probability models are then considered, namely{p1
0, p

1
1} and

p2:5
0 =

∑5
j=2 pj

0

4
and p2:5

1 = 1 − p2:5
0 . (17)

The probabilityp2:5
ε assigned to the context2 : 5 can be obtained with (16). To further simplify

the search for a good code, the FS probability assignment is state-dependent, but is not allowed

to vary for a given value of the context. This significantly reduces the amount of different

automaton which may be built for a given value of the characteristic parameters taken now as

T = 32, fmax = 1, {p1
0, p

1
1} , {p2:5

0 , p2:5
1 }, and a designRc = 14 bits/symbols.

Dijkstra’s algorithm is used to computedfree and thesort methodis used in the branch-and-

prune algorithm. The best code hasdfree = 6 andRc = 13.9 bits/symbols. The time needed to

find this code is 1425 s. JSC-IAC code design is thus possible even for large alphabet sizes,

provided that a binarization process is considered. However, the reduced number of contexts and

the constraints imposed on the FSs lead to a JSC-IAC which is less efficient than that proposed

in [16], where a JSC-VLC forA26 with dfree = 5 andRc = 10.41 bits/symbols is obtained.

Improvements may be obtained by considering more contexts and by allowing more variations

of the state-dependent assignments of the FS probabilities. However, the price to be paid is a

higher computational complexity. The considered branch-and-prune algorithm may be strongly

parallelized, which may help addressing this issue.

VI. CONCLUSION

This paper has shown how established graph transfer function methods for fixed-rate channel

codes can be generalized to compute the free distance and thedistance spectrum of VL-FSC.

The resulting method for computing the free distance is muchmore efficient than the method

for JSC-IAC presented in [7] and does not have problems dealing with catastrophic codes.
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It also shows that the proposed branch-and-prune algorithm(using the Sort Method) is a fast

way to find the JSC-IAC with largestdfree for binary sources. Using an appropriate binarization

process prior to AC and using several probability models, this method may be extended to the

design of JSC-IAC for non-binary sources.

Nevertheless, at fixed code rate, the codes obtained for the time being remain less efficient

than equivalent tandem schemes. Future work will consider the extension of JSC-IAC with an

m-bit memory which may improvedfree by separating paths that would lead to small distances.

The memory holds an integer0 ≤ λ ≤ 2m − 1, so that the FSE state can be represented as

(l, h, f, λ). The set of FSEs of JSC-IAC with memorym contains the set of tandem schemes

with CC with constraint lengthm + 1. Therefore one may expect to find at least FSEs with

performance (compression,dfree) equivalent to the tandem schemes, but hopefully less complex

(regarding the number of states and transitions).
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Fig. 8. Part of the tree of automata for the characteristic parameter values T = 8, fmax = 1, p0 = 1
4
, Pε = 1

2
; the conventions

of Figure 7 are used, the labels on the dotted arrows represent the intervals allotted((l0, h0), (l1, h1)) to the symbolsa0 and

a1.
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Symbols Probabilities Bits assignment

a1 = E pa1
= 0.1270 0 0 0 0 0

a2 = T pa2
= 0.0906 0 0 0 0 1

a3 = A pa3
= 0.0817 0 0 0 1 0

a4 = O pa4
= 0.0751 0 0 0 1 1

a5 = I pa5
= 0.0697 0 0 1 0 0

a6 = N pa6
= 0.0674 0 0 1 0 1

a7 = S pa7
= 0.0633 0 0 1 1 0

a8 = H pa8
= 0.0609 0 0 1 1 1

a9 = R pa9
= 0.0599 0 1 0 0 0

a10 = D pa10
= 0.0425 0 1 0 0 1

a11 = L pa11
= 0.0403 0 1 0 1 0

a12 = C pa12
= 0.0278 0 1 0 1 1

a13 = U pa13
= 0.0276 0 1 1 0 0

a14 = M pa14
= 0.0241 0 1 1 0 1

a15 = W pa15
= 0.0236 0 1 1 1 0

a16 = F pa16
= 0.0223 0 1 1 1 1

a17 = G pa17
= 0.0202 1 0 0 0 0

a18 = Y pa18
= 0.0197 1 0 0 0 1

a19 = P pa19
= 0.0193 1 0 0 1 0

a20 = B pa20
= 0.0149 1 0 0 1 1

a21 = V pa21
= 0.0098 1 0 1 0 0

a22 = K pa22
= 0.0077 1 0 1 0 1

a23 = J pa23
= 0.0015 1 0 1 1 0

a24 = X pa24
= 0.0015 1 0 1 1 1

a25 = Q pa25
= 0.001 1 1 0 0 0

a26 = Z pa26
= 0.0007 1 1 0 0 1

TABLE I

PROBABILITY OF OCCURENCE OF EACH LETTER INENGLISH ALPHABET TAKEN FROM [16] AND EXAMPLE OF

BINARIZATION

Methods depth-first breadth-first sort method

|Sr| 8 2 3

|Tr| 28 9 12

dfree 3 3 3

Rc 0.93 0.92 0.92

Time with [7] 451266 s 31338 s 12431 s

Time with PDG 734 s 219 s 45 s

TABLE II

COMPARISON BETWEEN THE THREE METHODS TO EXPLORE THE TREE FORT = 16, P0 = 0.1, Pε = 0.26


