N
N

N

HAL

open science

Joint source-channel coding/decoding of 3D-ESCOT
bitstreams
Manel Abid, Michel Kieffer, Beatrice Pesquet-Popescu

» To cite this version:

Manel Abid, Michel Kieffer, Beatrice Pesquet-Popescu. Joint source-channel coding/decoding of 3D-
ESCOT bitstreams. International Workshop on Multimedia Signal Processing, Oct 2010, Saint Malo,

France. pp.4. hal-00549230

HAL Id: hal-00549230
https://hal.science/hal-00549230
Submitted on 21 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00549230
https://hal.archives-ouvertes.fr

Joint source-channel coding/decoding

of 3D-ESCOT bitstreams

M. Abid', and M. Kieffer!:?, and B. Pesquet-Popescu’

L Institut Télécom, Télécom ParisTech and CNRS LTCI
Signal and Image Processing Department,
46 rue Barrault, 75634 Paris Cedex 13, France

L on sabbatical leave from L2S - CNRS - SUPELEC - Univ Paris-Sud

3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France.

Abstract—Joint source-channel decoding (JSCD) exploits resid-
ual redundancy in compressed bitstreams to improve the ro-
bustness to transmission errors of multimedia coding schemes.
This paper proposes an architecture to introduce some additional
side information in compressed streams to help JSCD. This
architecture exploits a reference decoder already present or
introduced at the encoder side. An application to the robust
decoding of 3D-ESCOT encoded bitstreams generated within
the Vidwav video coder is presented. The layered bitstream
generated by this encoder allows SNR scalability, and moreover,
when processed by a JSCD, provides increased robustness to
transmission errors compared with a single layered bitstream.

I. INTRODUCTION

To transmit multimedia contents over mixed wired and
wireless channels, two main problems have to be solved.
First, due to the scarcity of bandwidth on the wireless
channels, data generated by multimedia sources have to be
efficiently compressed [1]. Second, the compressed bitstreams
have to be made robust to transmission impairments, which
are unavoidable on wireless channels. Compression standards
like JPEG2000 [2], H.264/AVC [3], or Vidwav [4] achieve
high compression ratio. They are however very sensitive to
transmission errors. Indeed, a single bit error affecting the
compressed bitstream may lead to a loss in synchronization
at the decoder side, which can significantly affect the quality
of the reconstructed multimedia content.

Forward Error Correction (FEC) [5], [6] is the classical
approach to increase the robustness of compressed bitstreams.
However, when the channel conditions are good, redundancy
introduced by FECs may be oversized, and when the channel
conditions are bad, residual errors may be present. FECs with
adaptive level of protection, see, e.g., [7] are available, but
they require a good evaluation of the channel conditions, and
thus a feedback channel, which is very difficult to put at
work in multi/broadcasting scenarios [8]. Error concealment
techniques [9], [10] may be used to mitigate the effect of
damaged parts of the transmitted bitstream exploiting the
spatial and/or temporal redundancy of the data to decode, but
this remains a last-resort solution.

In situations where retransmission of damaged data is diffi-
cult, joint source-channel decoding (JSCD) techniques may be
very useful, since these techniques exploit residual redundancy

left by the source encoder to detect and correct transmission
errors remaining after FEC done at lower layers of the protocol
stack [11]. Contents of data packets which would be rejected,
since they are corrupted by errors, may be processed by JSCD
techniques. For that purpose, protocol layers permeable to
transmission errors have to be implemented at the receiver
side [12], [13], [14].

JSCD techniques may be helped when some side infor-
mation or redundancy has been deliberately introduced via
joint source-channel coding (JSC) in the generated bitstream.
This redundancy may take various forms. In some cases, its
introduction requires some modifications of the compression
standard, as with reversible variable-length codes [15], with
the introduction of synchronization markers [16], or error-
detecting arithmetic codes [17]. In other situations, oppor-
tunistic use of existing features in standards allows to embed
side information in packets which will only be processed by
JSCD-compliant decoders and will remain transparent to other
decoders, see, e.g., additional packets which may be generated
in the context of H.264/AVC [3].

JSCD techniques have been successfully applied to several
multimedia coders including JPEG2000 [18], MPEG4 [19],
H.263+ [20], H.264/AVC [21], or MPEG4/AAC . Preliminary
results have been obtained recently [22] for state-of-art DWT-
based video coders such as Vidwav [4]. Recent entropy coders
such as 3D-ESCOT [23] used in Vidwav leave only very little
redundancy in the bitstream. Trellis-based decoding technique
such as that used in [24] cannot be applied here, since 3D-
ESCOT cannot be easily represented by an automaton (from
which the trellis is derived) with a manageable number of
states. Thus, a sequential decoding approach [25] exploiting
some coarse synchronization markers already present in the
bitstream generated by the 3D-ESCOT has been used in [22].
Some improvements of the robustness to transmission errors of
a single-layer version of the Vidwav coder have been observed.

The aim of this paper is, first, to introduce (in Section II)
a generic JSC architecture, able to provide additional side
information, if required, to JSCD tools. The main idea is to
consider a reference decoder at the encoder side. This decoder
is already present in the H.26X architectures [3], but not in
DWT-based coders. The purpose of the reference decoder is

to provide some information at encoder side on the nominal
behavior of the decoder when no noise affects the compressed
bitstream. Side information reflecting the nominal behavior
(number of bits processed by the entropy decoders, CRCs
evaluated on some decoded blocks, as in [26], etc.) that may
used to detect and correct transmission errors may then be
introduced in the compressed bitstream, in some headers or in
some additional packets.

Then, this generic architecture is applied to the Vidwav
video coder, described in Section III. Finally, the robustness
to transmission errors provided by the JSCD of the layered
bitstream generated by the Vidwav coder is illustrated in
Section IV. The performance improvements compared to a
single-layer JSCD bitstream (see [22]) and to a classically
decoded bitstream are illustrated in Section IV.

II. JOINT SOURCE-CHANNEL CODER/DECODER

Figure 1 sketches a conventional multimedia transmission
system. A source encoder delivers a compressed bitstream.
Usually, the last operation performed by the source coder
is entropy coding using Huffman-like codes or arithmetic
codes [1]. The bitstream is packetized to be transmitted
over a packet-switched network [27], which is here part of
the transmission channel. Each packet consists of a header
and a payload containing the encoded data. Packets may be
corrupted by noise introduced mainly by the wireless part of
the transmission channel.

Packetization

v
1
2 Side

Information

Reference Decoder

Transmission
channel

Parser

Side Information

Figure 1: Representation of a multimedia transmission system,
with optional joint source-channel coding/decoding devices in

gray.

At the receiver side, the content of packets is parsed
before source decoding. Parsing may be useful, e.g., to detect
packets which are affected by transmission errors after channel
decoding using CRCs or checksums at intermediate protocol
layers. In this case, conventional transmission systems involve
retransmission mechanisms [27], when possible, or use error
concealment of lost data [9], [10].

A. Joint source-channel decoder

Before resorting to error concealment, JSCD techniques
may be used to correct noisy packets. JSCD is performed at
the decoder side, as illustrated in Figure 1. It involves some
residual redundancy present (¢) in the compressed bitstream

and (¢2) due to the packetization process: Packet headers
may provide very useful information on the content of the
payload, and sometimes on the decoded data [20], [11], see
also Section III. Only corrupted packets are processed by
JSCD, which significantly reduces the computational overhead
of these techniques in practical situations.

In what follows, packet headers are assumed to be correctly
received. They may have been protected using FECs and/or
reliably decoded using joint protocol-channel decoding tech-
niques [14]. Moreover, we assume that the packet payloads
consist of base units which may be independently decoded.

For each base unit detected as erroneous (when this de-
tection is possible) in a corrupted packet, JSCD techniques
involve usually in a maximum-likelihood (ML) or a maximum
a posteriori (MAP) estimator. The aim is to provide the base
unit which is the most likely to have been generated by the
source coder. For that purpose, confidence information (soft
information) on the bits at the channel output or at the output
of channel decoders is used, see Section II-C.

B. Optional joint source-channel coder

JSCD may be helped by some additional side information
generated by a reference decoder at the encoder side. To
generate such side information, we introduce a reference
decoder at the encoder side. Some parts of this encoder are
already present in classical video coding structures like H.26X
video coders [28]. However, the entropy decoder is usually
not considered. The aim of the reference decoder, which is
exactly a copy of the decoder at receiver side, is to provide
some information on the nominal behavior of the decoder at
receiver side in absence of transmission errors.

The reference decoder allows thus to get, e.g., the number
of processed bits by the entropy decoder for each base unit
of encoded data, the number of non-zero coefficients within a
temporal or spatial subband, or some checksum evaluated on
the pixels of a decoded picture or a part of it, etc. This side
information may be more or less costly to transmit. In some
standards, it may be incorporated in some fields of the headers,
as in MPEG4/AAC [29], or in some additional packets as in
H.264/AVC [3].

C. Estimation module

Assume that a transmission error has been detected within
some base unit s of Ny bits. One may, for example, determine
the MAP estimate Syap of s from noisy measurements y*.
Here, we assume that y*® contains only noisy versions of the
bits in s and no additional bits from the previous or the next
base units. This requires the location of each base unit within
a payload to known to the decoder. This information may be
extracted from the packet header. It may also be done by robust
segmentation of the base units within a payload, see [20].

The MAP estimate has to be compliant with the syntax
of the source coder, i.e., Syap should be one of its possible
outcome. It should also be compliant with side information
introduced during the packetization process with the help of

the reference decoder. Thus
Swap = argmaxp (s|y”). (1)
seC

where C is the set of all the sequences of N bits compliant
with the syntax of the source coder and with additional side
information. Since all the sequences belonging to C have the
same length of bits, one may assume that they have the same
a priori probability, which leads to :

Smap = argmaxp(y°ls), 2)
seC
= SwML,

the maximum-likelihood estimate. Obtaining the solution for
(2) with a reasonable complexity is not trivial in general
since the search space C is usually not well structured. Trellis
descriptions of all possible sequences in C may be obtained
when the entropy code is a Huffman-like code [30] or a quasi
arithmetic code [31]. For more sophisticated entropy codes,
such as context-based adaptive arithmetic codes [32] or 3D-
EBCOT, one has to resort to sequential decoding schemes.

D. Sequential decoding scheme

An approximate solution of (2) may be obtained with a
manageable complexity with the help of sequential decoding
algorithms such as the M-Algorithm (MA) [25]. All sequences
of N, bits may be represented by a binary tree 7 of 2=
leaves. A given node at depth n in 7 correspond to a partially
processed sequence of n bits. This sequence is represented by
a path of length n in 7 stemming from the root of 7 and
leading to the considered node. Due to the redundancy of the
source coder or provided by the side information, only a subset
of leaves in 7 correspond to sequences belonging to C.

The aim of the MA is to efficiently explore only a part of
the tree 7. At each iteration, a list £ containing at most M
sequences is kept for the next iteration. These sequences are
those with the largest metric derived from (2) and given by

M(Sl:ru ylzn) = - Ing (yl:n|sl:n) 5 3)

where s;.,, denotes the bits indexed from 1 to n of s. Moreover,
all partially processed sequences which may be proved not to
be prefixes of sequences in C are discarded.

The steps of the MA are
1. Start with the empty sequence in £ corresponding to the
root of 7, to which the null metric is assigned.

2. Extend all the paths in £ to the following nodes in 7 and
calculate their metric.

3. Discard all path which are detected not being prefixes of
sequences in C.

4. Keep at most the M paths with the largest metric (3).

5. Go to Step 2 until all paths reach N; bits or £ = ().

The parameter M of the MA helps to trade-off complexity
and decoding efficiency. At the end of the MA, if £ is not
empty, it contains only sequences which are have not been
detected not to be compliant with the syntax of the source

coder and some additional side information'. The sequence
with the largest metric is then fed to the decoder. When L
is empty at the end of the MA, a path corresponding to the
prefix of the actually generated base unit has been discarded
due to its too low metric. The MA may be started again with
a larger M, increasing then the decoding complexity, but also
the probability of finding the solution of (2).

Step 3 requires to detect sequences which are not prefixes
of sequences in C. Usually, this operation requires the most
computational efforts. To reduce decoding complexity, it may
be performed, e.g., only every K iterations of the MA, or at
some appropriate iterations.

III. APPLICATION TO THE VIDWAV VIDEO CODEC

A. Overview

Vidwav [4] is a 3D wavelet video codec with motion
compensated temporal filtering (MCTF), see Figure 2. The

i)
P

Video E @@@@
Frames
—>

]l

Be56

Entropy
Coding

Temporal
Wavelet
Decomposition

£

Motion
Estimation

2D Spatial
Wavelet
Decomposition

MV & mode
Coding

Figure 2: Vidwav coding scheme

subbands generated by the temporal and spatial modules
are divided into several 3D blocks which are independently
entropy coded. The compressed bitstream associated to each
3D block may then be decoded independently from the other
bitstreams and are considered are the base units defined in
Section II. For each 3D block, a bit-plane coding based on
3D-ESCOT (involving several coding passes) is followed by
a context-based arithmetic coding.

The 3D-ESCOT entropy coder generates an embedded bit-
stream for each 3D block. The bitstream is then packetized and
the final output compressed sequence is generated. It consists
thus of many embedded bitstreams, each of which corresponds
to one 3D coding block.

1) Layered bitstream generation: The Vidwav encoder may
produce a fully embedded and scalable output by generating
a multiple-layer bitstream. To each layer is assigned a given
target bit rate. To build the bitstream of a layer at some target
bit rate, it is necessary to determine, for each coding block,
how many bytes of its embedded bitstream have to be included.
This is done with a rate-distortion optimization, determining
for each 3D block the number of coding passes that have to
be included. This repartition of the bitstream of 3D blocks
between layers is illustrated in Figure 3. Here, only three layers
are considered.

IThe double negation is important, since some sequences may not be
compliant with the various constraint, but this may not be detectable.

2) Packetisation process: The packetisation process is
started once the entropy coding of all 3D blocks is done. It is
illustrated in Figure 3. The bitstream of Layer k consists of a
header and of several packets Py ;, each of which corresponds
to one component (Y, U, or V) and to one temporal subband
included in Layer k. The i-th packet Py, ; of Layer k consists of
a packet header Hj ; and a packet body By ;. Hy; contains
motion information and the set Bj; of 3D blocks that are
included (or eventually partially included in the multi-layer
case) in Py ;. For each 3D block with index j € By ;, Hy;
also stores the number of coding passes py ; ; included in the
layer as well as the number of corresponding bytes ny ;
included in the packet body. The packet body By ; consists
thus of |By ;| sequences of bits each one corresponding to a
substream extracted from an embedded 3D block.

3D coding 3D Escot

Embedded block
entropy

block bitstream

-7 ’y N
/

// /
ook N 1 O R |
bitstream s
. N
, <

Number
of bytes
Number

of coding passes

I Layer Header

= I:I Packet Header

Packet

|:| Packet Body

Figure 3: Packetisation Process

B. Robust decoding scheme

This section describes the way the JSCD scheme presented
in Section II has been adapted to the Vidwav video codec.

Assume that K,y layers have been generated. Since all
headers have been considered to be received without error, it
is possible to recover at decoder side for a given 3D block
J, the number of coding passes py ; and the corresponding
number of bytes ny, ; stored in the bitstream of Layer £, k =
1,..., Kmax. One may also obtain the observation y* of the
whole bitstream s corresponding to the 3D block j, since the
number of bytes of each 3D block has been stored in the packet
header.

A simple test to verify the compliance of the decoded
bitstream with the information provided by the packet headers
may then be constructed. This test is based on the fact that an
entropy coder may be desynchronized in presence of some
corrupted bits, see [33]. The number of bits processed by
the decoder may then not be equal to the number of bits
generated by the encoder. Thus, if for some candidate estimate
s, decoding of Zle De,; coding passes requires strictly more
or strictly less than 25:1 nyg ; bytes of the coded bitstream
to be processed, then s # s. This test may be done for each
layer k =1,..., Kpax-

This test may be used in the MA of Section II to eliminate
sequence which do not belong to C. For that purpose, at
each iteration of the MA, and for each partially processed
sequences, the number of coding passes already decoded has
to be kept in memory. Once for some sequence 212:1 De.j
coding passes have been decoded, the number of processed
bytes has to be compared to Z];:l nyg,; to determine whether
the sequence has to be kept or dropped. This test allows to
detect errors which desynchronize significantly the entropy
decoder.

A more reliable test may be obtained by determining the
number of bits 7 ; required to decode Z;f:l pe¢,; coding
passes for the j-th 3D block. This information, provided by
the reference decoder (see Section II-B), is not stored in the
headers but could easily be introduced with a little additional
cost. Errors leading to a single bit desynchronisation may the
be detected. Nevertheless, in some situations, successive errors
may lead to resynchronization, leading to undetectable errors
if no other source of redundancy is exploited.

IV. EXPERIMENTAL RESULTS

Experiments have been performed using the transmission
scheme presented in Section 1. A single layer bitstream has
been considered first, before analyzing the performance of the
proposed approaches on a three-layer bitstream.

The first 32 frames of foreman.gcif have been encoded
with a spatial transform and a temporal transform, each
one involving 3 levels of decomposition. In the first set of
experiments, Vidwav generates a compressed bitstream formed
by a single layer encoded at 128 kbps. In the second set
of experiments, three layers are generated, corresponding to
cumulated bitrates of 32 kbps (1 layer), 64 kbps (2 layers),
and 128 kbps (3 layers).

These bitstreams are then sent to an Additive White Gaus-
sian Noise channel (AWGN) with an SNR level going from
10 dB to 13 dB. Data in headers, which represent about 18%
of the bitstream, are assumed to be received without error. All
results have been averaged over 100 noise realizations.

A reference decoder is used at encoder side, as indicated
in Section III-B to determine the nominal behavior of the
entropy decoder in absence of transmission errors. For each
3D block, and for each layer (in the multi-layer case), the
number of processed bits is written as side information. This
information is already partly present in each packet header.
In average, only three additional bits have to be supplemented
for each encoded block. The amount of redundancy introduced
in the bitstream is about 0.40% in the case of a single-layer
bitstream and about 1.3% in the three-layer case. In both cases,
this redundancy is negligible compared to the redundancy
that could be introduced by any channel code. The amount
of introduced redundancy is larger in the three-layer case,
since the compressed stream for each block is partitionned
into various layers, for each of which side information has to
be provided.

A. One layer

Table I compares the proposed JSCD schemes (with and
without side information) and a standard decoder. The gain
in PSNR observed with the informed JSCD is always more
important than the one obtained with the non-informed JSCD,
when compared to the standard decoder.

Table II illustrates the evolution of the proportion of er-
roneous blocks and of blocks detected as erroneous (BDE)
as a function of the channel SNR for different values of
M and for various decoders. When a block is detected as
erroneous, it is actually corrupted by transmission errors. Some
errors, however may not be detected. The results with M =1
indicate the proportion of BDE without having performed
any correction. Those with M = 10 indicate the residual
proportion of BDE after correction, and represent thus a
lower bound on the proportion of blocks still erroneous in
the decoded stream.

Channel SNR 10 10.5 11 11.5 12

SD 19.0449 22.0745 25.0485 29.3347 31.2268
JDRR M =2 19.5972 229858 27.4965 31.7263 32.9001
JIDRSI M =2 19.7546 23.0609 27.5170 31.7271 32.9029
JDRR M =6 20.3220 259533 30.7641 33.5468 33.4892
JIDRSI M =6 20.3436 26.0417 30.8123 33.5491 33.4989
JDRR M =10 20.3236 26.8208 31.9860 33.8753 33.8940
JDRSI M =10 20.4424 26.8531 32.0196 33.8857 33.9015

Table I: Average PSNR of the standard decoder (SD) and
the proposed joint decoders (JD) when only the residual
redundancy (RR) is used and when some side information
(RSD) is used in addition, for M = 2,6 and 10 and for a
single-layer bitstream.

When only residual source redundancy is used, 89.97%
of erroneous blocks are detected in average. This proportion
increases to 94.60% when the side information is used as well.

When M = 10, side information still allows more erroneous
blocks to be detected compared to a JSCD without side
information. One may increase M to reduce the amount
of corrected blocks, the price to be paid is an increased
complexity.

Channel SNR 10 10.5 11 11.5 12

EB 223189 13.0720 7.0906 3.2618 1.5153
BDERR M =1 20.7214 121045 6.3259 29499 1.2841
BDERR M =10 2.6727 0.7911 03050 0.1783 0.1295
BDERSI M =1 21.7772 12.6908 6.6518 3.1086 1.3524
BDE RSI M =10 3.0669 0.8914 03468 0.2173 0.1504

Table II: Percentage of erroneous blocks (EB) and blocks
detected as erroneous (BDE) as a function of the SNR for the
robust decoder using only the residual redundancy (RR) and
for the JSCD scheme exploiting both the residual redundancy
and the side information (RSI), for a single layer bitstream.

B. Three layers

In this part, the output bitstream is organized in three
layers. Side information is generated for each layer. Figure 4
compares the average PSNR obtained at the output of a
JSCD and at the output of a standard decoder using the side
information to detect whether a block is erroneous (informed
standard decoder). This decoder performs more efficiently than
a classical (non-informed) decoder, since it is able to remove
blocks deemed as erroneous and belonging to refinement
layers. The decoding of one, two, and three layers has been
performed.

Noiseless sequence, 3 layers

Joint decoder, M=10, 3 layers

PSNR (dB)

— Joint decoder, M=6, 3 layers

—#— Noiseless sequence, 2 lay
—#— Joint decoder, M=10, 2 layers
—#— Joint decoder, M=6, 2 layers
—#— Standard decoder informed, 2 layers | |

----- - Noiseless sequence, 1 layer

------ Joint decoder, M=10, 1 layer

Joint decoder, M=6, 1 layer
""" Standard decoder informed, 1 layer

Il L
10 105 11 5 12 25 13
SNR (dB)

Figure 4: Average PSNR of the decoded sequence produced
by an informed standard decoder and by the proposed JSCD
as a function the channel SNR when 1, 2, and 3 layers are
decoded.

When M = 10, and when all layers are decoded, the gain
in PSNR is more than 8.5 dB at an SNR of 11 dB, when
one compares the JSCD with the standard informed decoder.
In terms of SNR, the gain is about 1.2 dB. Using M = 10
instead of M = 6 in the JSCD provides some improvement in
terms of PSNR, especially at low SNRs, mainly for Layer 1
and Layer 2. The improvement becomes negligible for Layer 3.
This is mainly due to the fact that blocks which are erroneous
in Layers 1 and 2 and were not detected as erroneous do not
allow blocks at Layer 3 to be corrected. Even blocks at Layer 3
which were error-free may be deemed as erroneous. Thus, the
JSCD scheme is less efficient for higher (low-priority) layers.

Table I and Figure 4 allow also to compare the results
provided by the JSCD on the single-layer bitstream and those
for the multiple-layer bitstream. One sees that at equivalent bi-
trates, the decoding schemes working on three-layer bitstreams
provide improved PSNRs. The gain is about 3 dB at an SNR
of 10 dB and 1.5 dB at an SNR of 11 dB.

Figure 5 shows the qualitative improvement brought by the
proposed technique on a frame of the decoded sequence for the
3-layered bitstream when compared to the standard informed
decoder.

Figure 5: Frame 16 of foreman.qgcif sent over an AWGN
with SNR = 11 dB decoded with the standard decoder (left)
and with the proposed robust decoder using the side informa-
tion (right), M=10.

V. CONCLUSIONS

This paper introduces a JSCD scheme able to detect and
correct many transmission errors affecting a Vidwav encoded
scalable bitstream. This decoder uses soft information on the
bits to decode, combined with residual source redundancy and
information linked to the packetization of compressed data.

Additional information provided by a reference decoder at
the encoder, providing the nominal bahavior of the decoder in
absence of transmission errors is also very useful. In this paper,
the reference decoder introduces some information on the
bahavior of the entropy decoder, which leads to a redundancy
of about 1% of the length of the original compressed bitstream.

Significant performance improvements of more than 8.5 dB
in PSNR and 1.2 dB in SNR have been observed thanks to the
proposed JSCD scheme. Experiments have also illustrated that
considering several layers provides an improved robustness
compared to the single-layer scheme, even if combined with
JSCD. Moreover, this JSCD techniques introduces a reason-
able computationnal overhead, especially at high channel SNR,
since only packets with error are robustly decoded.

An optimization of the decoding effort depending on the
considered layer may probably be helpful, since when errors
are remaining at lower layers, upper layers are lost, even if
they are error-free. Other source of redundancies introduced
by the reference decoder may also be investigated. Finally,
other transmission channels have to be considered.

REFERENCES

[11 K. Sayood, Introduction to Data Compression, Second Edition. San
Francisco: Morgan Kaufmann, 2000.

[2] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG-2000 still
image compression standard,” IEEE Signal Proc. Mag., pp. 36-58, 2001.

[3] ITU-T and ISO/IEC JTC 1, “Advanced video coding for generic audio-
visual services,” ITU-T Rec. H.264, and ISO/IEC 14496-10 AVC, Tech.
Rep., nov. 2003.

[4] R. Xiong, X. Ji, D. Zhang, J. Xu, G. Pau, M. Trocan, S. Brangoulo,
and V. Bottreau, “Vidwav wavelet video coding specifications,” MPEG
document, Tech. Rep., Poznan, July 2005.

[5]1 S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
applications. Englewood Cliffs: Prentice-Hall, 1983.

[6] T. Richardson and U. Urbanke, Modern Coding Theory. ~Cambridge
University Press, 2008.

[7] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC
codes) and their applications,” IEEE Trans. Communications, vol. 36,
no. 4, pp. 389-400, 1988.

[13]

[14]

[15]
[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

(271

(28]

[29]

[30]
(31]

(32]

[33]

ETSI, “Digital video broadcasting (DVB); transmission system for
handheld terminals (DVB-h),” ETSI EN 302 304 vl1.1.1, Tech. Rep.,
nov. 2004.

Y. Wang and Q. Zhu, “Error control and concealment for video com-
munication: A review,” Proc. of the IEEE, vol. 86, pp. 974-997, 1998.
M. C. Hong, H. Schwab, L. P. Kondi, and A. K. Katsaggelos, “Error
concealment algorithms for compressed video,” Signal Processing: Im-
age Communication, vol. 14, pp. 473-492, 1999.

P. Duhamel and M. Kieffer, Joint source-channel decoding: A cross-
layer perspective with applications in video broadcasting. Academic
Press, 2009.

G. Panza, E. Balatti, G. Vavassori, C. Lamy-Bergot, and F. Sidoti,
“Supporting network transparency in 4G networks.” in Proc. IST Mobile
and Wireless Communication Summit, 2005.

H. Jenkac, T. Stockhammer, and W. Xu, “Permeable-layer receiver for
reliable multicast transmission in wireless systems,” in Proc. IEEE
Wireless Communications and Networking Conference, vol. 3, 13-17
March 2005, pp. 1805-1811.

C. Marin, Y. Leprovost, M. Kieffer, and P. Duhamel, “Robust mac-lite
and soft header recovery for packetized multimedia transmission,” IEEE
Trans. on Communications, 2010, to appear.

Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length
codes,” IEEE Trans. Comm., vol. 43, no. 2-4, pp. 158-162, 1995.

Z. W. A. Bilgin and M. Marcellin, “Decompression of corrupt jpeg2000
codestreams,” in Data Compression Conference, 2003.

D. Bi, W. Hoffman, and K. Sayood, “State machine interpretation of
arithmetic codes for joint source and channel coding,” Proc. of DCC,
Snowbird, Utah, USA., pp. 143-152, 2006.

M. Grangetto, E. Magli, and G. Olmo, “Reliable JPEG 2000 wireless
imaging by means of error-correcting MQ coder,” in Proc. ICME, vol. 1,
pp- 9-12, 2004.

A. Kopansky and M. Bystrom, “Sequential decoding of MPEG-4 coded
bitstreams for error resilience,” in Proc. 33rd Annual Conference on
Information Sciences and Systems, 1999.

C. Lee, M. Kieffer, and P. Duhamel, “Soft decoding of VLC encoded
data for robust transmission of packetized video,” in Proceedings of
ICASSP, 2005, pp. 737-740.

G. Sabeva, S. Ben-Jamaa, M. . Kieffer, and P. Duhamel, “Robust
decoding of h.264 encoded video transmitted over wireless channels,”
in Proceedings of MMSP, Victoria, Canada, 2006.

M. Abid, M. Kieffer, M. Cagnazzo, and B. Pesquet-Popescu, “Robust
decoding of a 3D-ESCOT bitstream transmitted over noisy channels,”
in Proc. IEEE Int. Conf. on Image Proc., 2010, submitted.

S. L. J. Xu, Z.Xiong and Y. Zhang, 3-D embedded subband coding with
optimal truncation (3-D ESCOT). J. Appl. Comput Harmon Analysis,
vol. 10, pp.290-315, May 2001.

S. Malinowski, H. Jegou, and C. Guillemot, “Error recovery properties
and soft decoding of quasi-arithmetic codes,” EURASIP Journal on
Advances in Signal Processing, 2008, to appear.

J. B. Anderson and S. Mohan, Source and Channel Coding: An Algo-
rithmic Approach. Kluwer, 1991.

R. Puri and K. Ramchandran, “PRISM: A video coding paradigm based
on motion-compensated prediction at the decoder,” IEEE Transactions
on Image Processing, 2005, submitted.

J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet, 3rd ed. Boston: Addison Wesley,
2005.

L. Hanzo, P. Cherriman, and J. Streit, Video Compression and Commu-
nications: From Basics to H.261, H.263, H.264, Mpeg4 for DVB and
HSDPA-Style Adaptive Turbo-Transceivers, 2nd ed. John Wiley & Sons
Ltd, 2007.

ISO/IEC, “MPEG-4 advanced audio coding, AAC,” International Orga-
nization for Standardization, Tech. Rep. 14496-3, 2005.

V. Buttigieg and P. Farrell, “Variable-length error-correcting codes,” IEE
Proc. on Com., vol. 147, no. 4, pp. 211-215, 2000.

T. Guionnet and C. Guillemot, “Soft and joint source-channel decoding
of quasi-arithmetic codes,” EURASIP journal on Applied Signal
Processing, vol. 2004, no. 3, pp. 393-411, March 2004.

D. Marpe, H. Schwarz, and T. Weigand, “Context based adaptative
binary arithmetic coding in the H.264/AVC video compression
standard,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 13(7), pp. 620-636, 2003.

S. Malinowski, H. Jegou, and C. Guillemot, “Synchronization recovery
and state model reduction for soft decoding of variable length codes,”
IEEE Trans. on Information Theory, vol. 53, no. 1, pp. 368-377, Jan.
2007.

