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Equation (1.2) arises, in particular, in quantum mechanics, acoustics, electrodynamics; formally, it looks like the Schrödinger equation with potential v at zero energy. In addition, (1.2) comes up as a 2D-approximation for the 3D equation (see section 2).

The following inverse boundary value problem arises from this construction.

Problem 1. Given Φ, find v. This problem can be considered as the Gel'fand inverse boundary value problem for the multi-channel 2D Schrödinger equation at zero energy (see [START_REF] Gel'fand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]) and can also be seen as a generalization of the 2D Calderón problem for the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). In addition, the history of inverse problems for the two-dimensional Schrödinger equation at fixed energy goes back to [START_REF] Dubrovin | The Schrödinger equation in a periodic field and Riemann surfaces[END_REF] (see also [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, (Russian)[END_REF] and references therein). Note also that Problem 1 can be considered as a model problem for the monochromatic ocean tomography (e.g. see [START_REF] Baykov | Mode Tomography of Moving Ocean[END_REF] for similar problems arising in this tomography).

In the case of complex-valued potentials the global injectivity of the map v → Φ was firstly proved in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for D ⊂ R d with d ≥ 3 and in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] for d = 2 with v ∈ L p : in particular, these results were obtained by the use of global reconstructions developed in the same papers. This is the first paper which gives global (uniqueness and reconstruction) results for Problem 1 with M n (C)-valued potentials with n ≥ 2. Results in this direction were only known for potentials with many restrictions (e.g. see [START_REF] Xiaosheng | Inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials in two dimensions at fixed energy[END_REF]).

We emphasize that Problem 1 is not overdetermined, in the sense that we consider the reconstruction of a M n (C)-valued function v(x) of two variables, x ∈ D ⊂ R 2 , from a M n (C)-valued function Φ(θ, θ ′ ) of two variables, (θ, θ ′ ) ∈ ∂D × ∂D, where Φ(θ, θ ′ ) is the Schwartz kernel of the Dirichletto-Neumann operator Φ: this is one of the principal differences between Problem 1 and its analogue for D ⊂ R d with d ≥ 3. At present, very few global results are proved for non-overdetermined inverse problems for the Schrödinger equation on D ⊂ R d with d ≥ 2. Concerning these results, our paper develops the two-dimensional works [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF] and indicates 3D applications of the method. The non-overdetermined inverse problems, including multi-channel ones, are much more developed for the Schrödinger equation in dimension d = 1 (e.g. see [START_REF] Agranovich | The inverse problem of scattering theory, Translated from the Russian by[END_REF], [START_REF] Zakhariev | Direct and inverse problems[END_REF]).

We recall that in global results one does not assume that the potential v is small in some sense or is (piecewise) real analytic or is subject to some other serious restrictions.

Our global reconstruction procedure for Problem 1 follows the same scheme as in the scalar case given in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF], with some fundamental modifications inspired by [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF].

Let us identify R 2 with C and use the coordinates z = x 1 + ix 2 , z = x 1ix 2 , where (x 1 , x 2 ) ∈ R 2 . We define a special family of solutions of equation (1.2), which we call the Buckhgeim analogues of the Faddeev solutions: ψ z 0 (z, λ), for z, z 0 ∈ D, λ ∈ C, such that -∆ψ + v(x)ψ = 0 over D, where in particular ψ z 0 (z, λ) → e λ(z-z 0 ) 2 I for λ → ∞ (i.e. for |λ| → +∞) and I is the identity matrix.

More precisely, for a matrix valued potential v of size n, we define ψ z 0 (z, λ) as

(1.4) ψ z 0 (z, λ) = e λ(z-z 0 ) 2 µ z 0 (z, λ),
where µ z 0 (•, λ) solves the integral equation

(1.5) µ z 0 (z, λ) = I + D g z 0 (z, ζ, λ)v(ζ)µ z 0 (ζ, λ)dReζ dImζ, I is the identity matrix of size n ∈ N, z, z 0 ∈ D, λ ∈ C and (1.6) g z 0 (z, ζ, λ) = e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 4π 2 D e -λ(η-z 0 ) 2 + λ(η-z 0 ) 2 (z -η)(η -ζ) dReη dImη
is a Green function of the operator 4 ∂ ∂z + 2λ(zz 0 ) ∂ ∂ z in D, for z 0 ∈ D. We consider equation (1.5), at fixed z 0 and λ, as a linear integral equation for µ z 0 (•, λ) ∈ C 1 z ( D): we will see that it is uniquely solvable for |λ| > ρ 1 (D, N 1 , n), where v C 1 z ( D,Mn(C)) < N 1 (see Proposition 1.3). In order to state the reconstruction method we also define the Bukhgeim analogue of the Faddeev generalized scattering amplitude (1.7) and v| ∂D = 0. Consider, for z 0 ∈ D, the functions h z 0 , ψ z 0 , g z 0 defined above and Φ, Φ 0 the Dirichlet-to-Neumann maps associated to the potentials v and 0, respectively. Then the following reconstruction formulas and equation hold:

h z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)µ z 0 (z, λ)dRez dImz, for z 0 ∈ D, λ ∈ C.
v(z 0 ) = lim λ→∞ 2 π |λ|h z 0 (λ), (1.8) h z 0 (λ) = ∂D e -λ(z-z 0 ) (Φ -Φ 0 )ψ z 0 (z, λ)|dz|, (1.9) ψ z 0 (z, λ)| ∂D = e λ(z-z 0 ) 2 I + ∂D G z 0 (z, ζ, λ)(Φ -Φ 0 )ψ z 0 (ζ, λ)|dζ|, (1.10)
where

(1.11) G z 0 (z, ζ, λ) = e λ(z-z 0 ) 2 g z 0 (z, ζ, λ)e -λ(ζ-z 0 ) 2 , z 0 ∈ D, z, ζ ∈ ∂D, λ ∈ C, |λ| > ρ 1 (D, N 1 , n), where v C 1 z ( D,Mn(C)) < N 1 .
In addition, if v ∈ C 2 ( D, M n (C)) with v C 2 ( D,Mn(C)) < N 2 and ∂v ∂ν | ∂D = v| ∂D = 0 then the following estimates hold:

v(z 0 ) - 2 π |λ|h z 0 (λ) ≤ a(D, n) log(3|λ|) |λ| 1/2 N 2 (N 2 + 1), (1.12a) v(z 0 ) - 2 π |λ|h z 0 (λ) ≤ b(D, n) (log(3|λ|)) 2 |λ| 3/4 N 2 (N 2 2 + 1), (1.12b) for |λ| > ρ 2 (D, N 1 , n), z 0 ∈ D. Remark 1. Note that in Theorem 1.1, ρ j = ρ j (D, N 1 , n), j = 1, 2 (where v C 1 z ( D,Mn(C)) < N 1 ), are arbitrary fixed positive constants such that 2n c 2 (D) |λ| 1 2 v C 1 z ( D) < 1, |λ| ≥ 1, if |λ| > ρ 1 , 2n c 2 (D) |λ| 1 2 v C 1 z ( D) ≤ 1 2 , |λ| ≥ 1, if |λ| > ρ 2 , (1.13) 
where c 2 is the constant in Lemma 3.1.

Remark 2. Note that estimate (1.12b) is not strictly stronger than (1.12a) because of the presence of the N 3 2 factor.

In order to make use of the reconstruction given by Theorem 1.1, the following two propositions are necessary: Proposition 1.2. Under the assumptions of Theorem 1.1 (without the additional assumptions used for (1.12)), equation (1.10) is a Fredholm linear integral equation of the second kind for ψ z 0 ∈ C(∂D).

Proposition 1.3. Under the assumptions of Theorem 1.1 (without the additional assumptions used for (1.12)), for |λ| > ρ 1 (D, N 1 , n), where v C 1 z ( D,Mn(C)) < N 1 , equations (1.5) and (1.10) are uniquely solvable in the spaces of continuous functions on D and ∂D, respectively. Remark 3. Note that the assumption that v| ∂D = 0 is unnecessary for formula (1.9), equation (1.10) and Propositions 1.2, 1.3. In addition, formula (1.8) also holds without this assumption if

(1.14) ∂D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z)|dz| → 0 as |λ| → ∞,
for fixed z 0 ∈ D and each w ∈ C 1 (∂D). The class of domains D for which (1.14) holds for each z 0 ∈ D is large and includes, for example, all ellipses. Note also that if

v| ∂D = 0 but v ≡ Λ ∈ M n (C)
on some open neighborhood of ∂D in D, then estimates (1.12) hold with h z 0 (λ) replaced by The global reconstruction of Theorem 1.1 is fine in the sense that is consists in solving Fredholm linear integral equations of the second type and using explicit formulas; nevertheless this reconstruction is not optimal with respect to its stability properties: see [START_REF] Burov | Practical application possibilities of the functional approach to solving inverse scattering problems[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Bikowski | Direct numerical reconstruction of conductivities in three dimensions using scattering transforms[END_REF] for discussions and numerical implementations of the aforementioned similar (but overdetermined) reconstruction of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for d = 3 and n = 1. An approximate but more stable reconstruction method for Problem 1 will be published in another paper.

(1.15) h + z 0 (λ) = h z 0 (λ) + R 2 \D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 Λχ(z)dRez dImz, where χ ∈ C 2 (R 2 , R), χ ≡ 1 on D,
The present paper is focused on global uniqueness and reconstruction for Problem 1 for n ≥ 2. In addition, using the techniques developed in the present work and following the scheme of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF] it is also possible to obtain a global logarithmic stability estimate for Problem 1 in the multi-channel case. Following inverse problem traditions (e.g. see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]) this result will be published in another paper.

Approximation of the 3D equation

In this section we recall how the multi-channel two-dimensional Schrödinger equation can be seen as an approximation of the scalar 3D equation in a cylindrical domain; in this framework, three-dimensional inverse problems can be approximated by two-dimensional ones.

Let L = [a, b] for some a, b ∈ R and consider the complex-valued potential v(x, z) defined on the set D × L, where x = (x 1 , x 2 ) ∈ D ⊂ R 2 , z ∈ L. We consider the equation

(2.1) -∆ψ(x, z) + v(x, z)ψ(x, z) = 0 in D × L.
Now, for every x ∈ D we can write ψ(x, z) = ∞ j=1 ψ j (x)φ j (z), where {φ j } is the orthonormal basis of L 2 (L) given by the eigenfunctions of -d 2 dz 2 : more precisely

- d 2 dz 2 φ j (z) = λ j φ j (z) for z ∈ L, (2.2)
φ j | ∂L = 0 (for example) (2.3) L φi (z)φ j (z)dz = δ ij and ψ j (x) = L ψ(x, z) φj (z)dz. Now equation (2.1) reads ∞ j=1 (-∆ x ψ j (x)φ j (z) -ψ j (x)∆ z φ j (z)) + v(x, z) ∞ j=1 ψ j (x)φ j (z) = 0. (2.4)
Using (2.2)-(2.4) and the properties of {φ j (z)}, we obtain that equation (2.1) is equivalent to the following infinite-dimensional system

-∆ x ψ i (x) + λ i ψ i (x) + ∞ j=1 V ij (x)ψ j (x) = 0, for i = 1, . . . , (2.5) 
where

V ij (x) = L φi (z)v(x, z)φ j (z)dz.
Notice that if v = v then V * = V . Now, if we impose 1 ≤ i, j ≤ n for some n ∈ N, we find equation (1.2).

We also give here the relation between the Dirichlet-to-Neumann (D-t-N) operators of the 3D equation and that of the 2D multi-channel equation. If Φ(θ, z, θ ′ , z ′ ) is the Schwartz kernel of the D-t-N operator of the 3D problem, and (Φ ij (θ, θ ′ )) i,j≥1 that of the 2D infinity-channel problem, we have

(2.6) Φ ij (θ, θ ′ ) = L×L Φ(θ, z, θ ′ , z ′ ) φi (z)φ j (z ′ )dz dz ′ , where θ, θ ′ ∈ ∂D, z, z ′ ∈ L. This follows from ∂D×L Φ(θ, z, θ ′ , z ′ )f (θ ′ , z ′ )dθ ′ dz ′ = ∞ i=1   ∞ j=1 ∂D Φ ij (θ, θ ′ )f j (θ ′ )dθ ′   φ i (z), (2.7 
)

for every f ∈ C 1 (∂(D×L)) such that f | D×∂L = 0 and f (θ, z) = ∞ j=1 f j (θ)φ j (z).
Let us remark that reductions of 3D direct and inverse problems to multichannel 2D problems are well known in the physical literature for a long time (e.g. see [START_REF] Baykov | Mode Tomography of Moving Ocean[END_REF]). Nevertheless, we do not know a reference containing formula (2.6) in its precise form.

Preliminaries

In this section we introduce and give details about the above-mentioned family of solutions of equation (1.2), which will be used throughout all the paper.

Let us define the function spaces The functions

C 1 z ( D) = {u : u, ∂u ∂ z ∈ C( D, M n (C))} with the norm u C 1 z ( D) = max( u C( D) , ∂u ∂ z C( D) ), u C( D) =
G z 0 (z, ζ, λ), g z 0 (z, ζ, λ), ψ z 0 (z, λ), µ z 0 (z, λ) defined in Sec- tion 1, satisfy 4 ∂ 2 ∂z∂ z G z 0 (z, ζ, λ) = δ(z -ζ), (3.1) 4 ∂ 2 ∂ζ∂ ζ G z 0 (z, ζ, λ) = δ(ζ -z), (3.2) 4 ∂ ∂z + 2λ(z -z 0 ) ∂ ∂ z g z 0 (z, ζ, λ) = δ(z -ζ), (3.3) 4 ∂ ∂ ζ ∂ ∂ζ -2λ(ζ -z 0 ) g z 0 (z, ζ, λ) = δ(ζ -z), (3.4) -4 ∂ 2 ∂z∂ z ψ z 0 (z, λ) + v(z)ψ z 0 (z, λ) = 0, (3.5) -4 ∂ ∂z + 2λ(z -z 0 ) ∂ ∂ z µ z 0 (z, λ) + v(z)µ z 0 (z, λ) = 0, (3.6)
where z, z 0 , ζ ∈ D, λ ∈ C, δ is the Dirac's delta. (In addition, it is assumed that (1.5) is uniquely solvable for µ z 0 (•, λ) ∈ C 1 z ( D) at fixed z 0 and λ.) Formulas (3.1)-(3.6) follow from (1.5), (1.6), (1.11) and from

∂ ∂ z 1 π(z -ζ) = δ(z -ζ), ∂ ∂z + 2λ(z -z 0 ) e -λ(z-z 0 ) 2 + λ(z-z 0 ) 2 π(z -ζ) e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 = δ(z -ζ),
where z, ζ, z 0 , λ ∈ C. We say that the functions G z 0 , g z 0 , ψ z 0 , µ z 0 , h z 0 are the Bukhgeim-type analogues of the Faddeev functions (see [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]). We recall that the history of these functions goes back to [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF] and [START_REF] Beals | Multidimensional inverse scatterings and nonlinear partial differential equations, Pseudodifferential operators and applications[END_REF]. Now we state some fundamental lemmata. Let (3.7)

g z 0 ,λ u(z) = D g z 0 (z, ζ, λ)u(ζ)dReζ dImζ, z ∈ D, z 0 , λ ∈ C,
where g z 0 (z, ζ, λ) is defined by (1.6) and u is a test function.

Lemma 3.1 ([17]

). Let g z 0 ,λ u be defined by (3.7). Then, for z 0 , λ ∈ C, the following estimates hold:

g z 0 ,λ u ∈ C 1 z ( D), for u ∈ C( D), (3.8) g z 0 ,λ u C 1 ( D) ≤ c 1 (D, λ) u C( D) , for u ∈ C( D), (3.9) g z 0 ,λ u C 1 z ( D) ≤ c 2 (D) |λ| 1 2 u C 1 z ( D) , for u ∈ C 1 z ( D), |λ| ≥ 1. (3.10) Given a potential v ∈ C 1 z ( D) we define the operator g z 0 ,λ v simply as (g z 0 ,λ v)u(z) = g z 0 ,λ w(z), w = vu, for a test function u. If u ∈ C 1 z ( D), by Lemma 3.1 we have that g z 0 ,λ v : C 1 z ( D) → C 1 z ( D), (3.11) g z 0 ,λ v op C 1 z ( D) ≤ 2n g z 0 ,λ op C 1 z ( D) v C 1 z ( D) ,
where (3.11) and Lemma 3.1 implies existence and uniqueness of µ z 0 (z, λ) (and thus also

• op C 1 z ( D) denotes the operator norm in C 1 z ( D), z 0 , λ ∈ C. In addition, g z 0 ,λ op C 1 z ( D) is estimated in Lemma 3.1. Inequality
ψ z 0 (z, λ)) for |λ| > ρ 1 (D, N 1 , n). Let µ (k) z 0 (z, λ) = k j=0 (g z 0 ,λ v) j I, h (k) z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)µ (k) z 0 (z, λ)dRez dImz,
where z, z 0 ∈ D, λ ∈ C, k ∈ N ∪ {0}.

Lemma 3.2 ([17]

). For v ∈ C 1 z ( D) such that v| ∂D = 0 the following formula holds:

(3.12) v(z 0 ) = 2 π lim λ→∞ |λ|h (0) z 0 (λ), z 0 ∈ D. In addition, if v ∈ C 2 ( D), v| ∂D = 0 and ∂v ∂ν | ∂D = 0 then (3.13) v(z 0 ) - 2 π |λ|h (0) z 0 (λ) ≤ c 3 (D, n) log(3|λ|) |λ| v C 2 ( D) , for z 0 ∈ D, λ ∈ C, |λ| ≥ 1.
Following the proof of [17, Lemma 6.2] and assuming (1.14), we have that limit (3.12) is valid without the assumption that v| ∂D = 0. In addition, if 

v| ∂D = 0 but v ≡ Λ ∈ M n (C)
h (0),+ z 0 (λ) = h (0) z 0 (λ) + R 2 \D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 Λχ(z)dRez dImz,
where χ ∈ C 2 (R 2 , R), χ ≡ 1 on D, suppχ is compact, and the constant c 3 depending also on χ.

Let (3.15) W z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z)dRe zdIm z,
where z 0 ∈ D, λ ∈ C and w is some M n (C)-valued function on D. (One can see that [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]). For w ∈ C 1 z ( D) the following estimate holds:

W z 0 = h (0) z 0 for w = v.) Lemma 3.3 ([
(3.16) |W z 0 (λ)| ≤ c 4 (D) log (3|λ|) |λ| w C 1 z ( D) , z 0 ∈ D, |λ| ≥ 1. Lemma 3.4. For v ∈ C 1 z ( D) and for g z 0 ,λ v op C 1 z ( D) ≤ δ < 1 we have that µ z 0 (•, λ) -µ (k) z 0 (•, λ) C 1 z ( D) ≤ δ k+1 1 -δ , (3.17) 
|h z 0 (λ) -h (k) z 0 (λ)| ≤ c 5 (D, n) log(3|λ|) |λ| δ k+1 1 -δ v C 1 z ( D) , (3.18) 
where z 0 ∈ D, λ ∈ C, |λ| ≥ 1, k ∈ N ∪ {0}.
The proof of Lemma 3.4 in the scalar case can be found in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]: the generalization to the matrix-valued case is straightforward.

Lemma 3.5. The function g z 0 (z, ζ, λ) satisfies the following properties:

g z 0 (z, ζ, λ) is continuous for z, ζ ∈ D, z = ζ, z 0 ∈ D, (3.19) 
|g z 0 (z, ζ, λ)| ≤ c 6 (D)| log |z -ζ||, z, ζ ∈ D, z 0 ∈ D, (3.20) 
where λ ∈ C.

These properties follow from the definition (1.6) and from classical estimates (see [START_REF] Vekua | Generalized Analytic Functions[END_REF]). Lemma 3.6. Under the assumptions of Proposition 1.2, the Schwartz kernel (Φ -Φ 0 )(z, ζ) of the operator Φ -Φ 0 satisfies the following properties:

(Φ -Φ 0 )(z, ζ) is continuous for z, ζ ∈ ∂D, z = ζ, (3.21) |(Φ -Φ 0 )(z, ζ)| ≤ c 7 (D, v, n)| log |z -ζ||, z, ζ ∈ ∂D. (3.22)
For a proof of this Lemma in the scalar case we refer to [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF][START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]: the generalization to the matrix-valued case is straightforward. We begin with a matrix version of Alessandrini's identity (see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] for the scalar case):

(4.1) ∂D u 0 (z)(Φ -Φ 0 )u(z)|dz| = D u 0 (z)v(z)u(z)dRez dImz
for any sufficiently regular M n (C)-valued function u (resp. u 0 ) such that ∆u 0 = 0 (resp. (-∆ + v)u = 0) in D. This follows from Stokes's theorem, exactly as in the scalar case.

The general matrix version of Alessandrini's identity (that will not be used) (4.2) 

∂D u 1 (z)(Φ 2 -Φ 1 )u 2 (z)|dz| = D u 1 (z)(v 2 (z) -v 1 (z))u 2 (z)dRez dImz for u 1 , u 2 ∈ C 2 ( D, M n (C)) such that (-∆ + v j )u j = 0 in D,
v(z 0 ) - 2 π |λ|h z 0 (λ) ≤ c 3 (D, n) log(3|λ|) |λ| v C 2 ( D) + c 5 (D, n) log(3|λ|) |λ| 1/2 v 2 C 1 z ( D) ≤ c 8 (D, n) log(3|λ|) |λ| 1/2 ( v C 2 ( D) + v 2 C 1 z ( D) ), for λ such that 2n c 2 (D) |λ| 1 2 v C 1 z ( D) ≤ 1 2 , |λ| ≥ 1,
which implies (1.12a). In order to prove (1.12b) we will need the following lemma:

Lemma 4.1. Let g z 0 ,λ u be defined by (3.7), where u ∈ C 1 z ( D), z 0 , λ ∈ C. Then the following estimate holds:

g z 0 ,λ u C( D) ≤ η(D) log(3|λ|) |λ| 3 4 u C 1 z ( D) , |λ| ≥ 1. (4.4)
Proof of Lemma 4.1. As in the proof of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]Lemma 3.1], we can write g z 0 ,λ = 1 4 T Tz 0 ,λ , for z 0 , λ ∈ C, where

T u(z) = - 1 π D u(ζ) ζ -z dReζ dImζ, Tz 0 ,λ u(z) = - e -λ(z-z 0 ) 2 + λ(z-z 0 ) 2 π D e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 ζ - z u(ζ)dReζ dImζ,
for z ∈ D and u a test function. We have that (see [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]):

T w ∈ C 1 z ( D), (4.5) T w C 1 z ( D) ≤ η 1 (D) w C( D) , where w ∈ C(D), (4.6) Tz 0 ,λ u ∈ C( D), (4.7) Tz 0 ,λ u C( D) ≤ η 2 (D) |λ| 1 2 u C 1 z ( D) , |λ| ≥ 1, (4.8) Tz 0 ,λ u C( D) ≤ log(3|λ|)(1 + |z -z 0 |)η 3 (D) |λ||z -z 0 | 2 u C 1 z ( D) , |λ| ≥ 1, (4.9) 
where u ∈ C 1 z ( D), z 0 , λ ∈ C. Let z 0 ∈ D, 0 < δ < 1 2 and B z 0 ,δ = {z ∈ C : |zz 0 | < δ}. We have

|4πg z 0 ,λ u(z)| = D Tz 0 ,λ u(ζ) ζ -z dReζ dImζ (4.10) ≤ B z 0 ,δ ∩D | Tz 0 ,λ u(ζ)| |ζ -z| dReζ dImζ + D\B z 0 ,δ | Tz 0 ,λ u(ζ)| |ζ -z| dReζ dImζ ≤ 2πδ η 2 (D) |λ| 1 2 u C 1 z ( D) + log(3|λ|)η 4 (D) |λ|δ u C 1 z ( D) ,
where we used the following estimate:

D\B z 0 ,δ 1 |ζ -z||ζ -z 0 | 2 dReζ dImζ = B z,δ ∩(D\B z 0 ,δ ) 1 |ζ -z||ζ -z 0 | 2 dReζ dImζ + D\(B z,δ ∪B z 0 ,δ ) 1 |ζ -z||ζ -z 0 | 2 dReζ dImζ ≤ 2π δ + D\(B z,δ ∪B z 0 ,δ ) 1 |ζ -z| 3 + 1 |ζ -z 0 | 3 dReζ dImζ ≤ η 5 (D) δ .
Putting δ = 1 2 |λ| -1 4 in (4.10) we obtain the result. Thus Lemma 4.1 is proved.

We now come back to the proof of (1.12b). Proceeding from (4.3) and Lemma 3.2 we obtain:

v(z 0 ) - 2 π |λ|h z 0 (λ) ≤ c 3 (D, n) log(3|λ|) |λ| v C 2 ( D) + 2 π |λ||h z 0 (λ) -h (0) z 0 (λ)|, (4.11) 
for |λ| ≥ 1. In addition, from the definitions of h (k) , µ (k) , Lemmata 3.1 and 3.4, we have

|h z 0 (λ) -h (0) z 0 (λ)| ≤ D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)g z 0 ,λ v(z)dRez dImz + O log(3|λ|) |λ| 2 n 2 v 3 C 1 z ( D) , for λ such that 2n c 2 (D) |λ| 1/2 v C 1 z ( D) ≤ 1 2 , |λ| ≥ 1.
Repeating the proof of [17, Lemma 3.3] and using also Lemma 4.1, we have, for 0 < ε ≤ 1, D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)g z 0 ,λ v(z)dRez dImz (4.12)

≤ D∩Bz 0 ,ε v(z)g z 0 ,λ v(z) C( D) dRez dImz + 1 4|λ| ∂(D\Bz 0 ,ε) v(z)g z 0 ,λ v(z) C( D) |z -z0 | |dz| + 1 2|λ| D\Bz 0 ,ε ∂ ∂ z v(z)g z 0 ,λ v(z) z -z0 dRez dImz ≤ σ 1 (D, n) v C( D) v C 1 z ( D) ε 2 log(3|λ|) |λ| 3/4 + σ 2 (D, n) v C( D) v C 1 z ( D) log(3ε -1 ) log(3|λ|) |λ| 1+3/4 + 1 8|λ| D\Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z) Tz 0 ,λ v(z) z -z0 dRez dImz , |λ| ≥ 1,
where we also used integration by parts and the fact that ∂ ∂ z g λ,z 0 u(z) = The proofs of the other formulas of Theorem 1.1 are based on identity (4.1). As µ z 0 (z, λ) = e -λ(z-z 0 ) 2 ψ z 0 (z, λ), we can write the generalized scattering amplitude as h z 0 (λ) = D e -λ(z-z 0 ) 2 v(z)ψ z 0 (z, λ)dRez dImz. Now identity (4.1) with u 0 (z) = e -λ(z-z 0 ) 2 I and u(z) = ψ z 0 (z, λ) reads ∂D e -λ(z-z 0 ) 2 (Φ -Φ 0 )ψ z 0 (z, λ)|dz| = D e -λ(z-z 0 ) 2 v(z)ψ z 0 (z, λ)dRez dImz which gives formula (1.9).

Since µ z 0 is a solution of equation (1.5), ψ z 0 (z, λ) satisfies the equation 
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 1 Introduction Let D be an open bounded domain in R 2 with with C 2 boundary and let v ∈ C 1 ( D, M n (C)), where M n (C) is the set of the n × n complex-valued matrices. The Dirichlet-to-Neumann map associated to v is the operator Φ : C 1 (∂D, M n (C)) → L p (∂D, M n (C)), p < ∞ defined by: (1.1) Φ(f ) = ∂ψ ∂ν ∂D where f ∈ C 1 (∂D, M n (C)), ν is the outer normal of ∂D and ψ is the H 1 ( D, M n (C))-solution of the Dirichlet problem (1.2) -∆ψ + v(x)ψ = 0 on D, ψ| ∂D = f ; here we assume that (1.3) 0 is not a Dirichlet eigenvalue for the operator -∆ + v in D.

Theorem 1 . 1 .

 11 Let D ⊂ R 2 be an open bounded domain with C 2 boundary and let v ∈ C 1 ( D, M n (C)) be a matrix-valued potential which satisfies(1.3) 

  sup z∈ D |u| and |u| = max 1≤i,j≤n |u i,j |; we define also C 1 z ( D) = {u : u, ∂u ∂z ∈ C( D, M n (C))} with an analogous norm.

  on some open neighborhood of ∂D in D, then estimate (3.13) holds with h (0) z 0 (λ) replaced by(3.14) 

4 .

 4 Proofs of Theorem 1.1, Propositions 1.2, 1.3 and Corollary 1.4

works if u 1 and v 1 3 )

 13 commute each other (but does not work in general). Proof of Theorem 1.1. Let us begin with the proof of formulas (1.8) and (1.12): we have indeed v(z 0 ) -2 π |λ|h z 0 (λ) ≤ v(z 0 ) -The first term in the right side goes to zero as |λ| → ∞ by Lemma 3.2, while the other by Lemmata 3.1 and 3.4. In addition, for v ∈ C 2 ( D, M n (C)) with v C 2 ( D) < N 2 and ∂v ∂ν | ∂D = 0, using (3.10), (3.11), (3.13) and (3.18) we obtain, from (4.3):

1 4/4 v 2 C 1 z

 121 Tz 0 ,λ u(z). The last term in (4.12) can be estimated independently on ε byσ 3 (D, n) log(3|λ|) |λ| 1+3/4 v C( D) v C 1 z ( D) (4.13)using the same argument as in the proof of Lemma 4.1 (see estimate (4.10)). Now putting ε = |λ| -1/2 in (4.12) we obtain|λ||h z 0 (λ)h (0) z 0 (λ)| ≤ σ 4 (D, n) (log(3|λ|)) 2 |λ| 3( D) ( v C 1 z ( D) + 1),for |λ| > ρ 2 (D, N 1 , n), which, together with (4.11), gives us (1.12b).

(4. 14 ) 1 .

 141 ψ z 0 (z, λ) = e λ(z-z 0 ) 2 I + D G z 0 (z, ζ, λ)v(ζ)ψ z 0 (ζ, λ)dReζ dImζ, for z 0 , z ∈ D, λ ∈ C, |λ| > ρ 1 (D, N 1 , n). Thus again by identity (4.1), with u 0 = G z 0 (z, ζ, λ)I and u(z) = ψ z 0 (ζ, λ), by (3.2) and (4.14) we obtain, for z ∈ ∂D,∂D G z 0 (z, ζ, λ)(Φ -Φ 0 )ψ z 0 (ζ, λ)|dζ| = D G z 0 (z, ζ, λ)v(ζ)ψ z 0 (ζ, λ)dReζ dImζ = ψ z 0 (z, λ)e λ(z-z 0 ) 2 I.This finish the proof of Theorem 1.Proof of Proposition 1.2. By (1.11) we have that G z 0 (z, ζ, λ) satisfies the same properties as g z 0 (z, ζ, λ) in Lemma 3.5, with the difference that the constant in(3.20) depends also on λ. This observation, along with Lemma 3.6, implies that the operator A(λ) defined asA(λ)u(z) = ∂D G z 0 (z, ζ, λ)(Φ -Φ 0 )u(ζ)|dζ|, z ∈ ∂D,for a test function u, is compact on the space of continuous functions on ∂D. Thus equation (1.10) is a Fredholm linear integral equation of the second kind in the space of continuous functions on ∂D.

  suppχ is compact, and with the constants a, b depending also on χ. The aforementioned matrix Λ, for example, can be related with a diagonal matrix composed by the eigenvalues {λ i } 1≤i≤n arising in section 2. Corollary 1.4. Let D ⊂ R 2 be an open bounded domain with C 2 boundary, let v 1 , v 2 ∈ C 1 ( D, M n (C)) be two matrix-valued potentials which satisfy (1.3) and Φ 1 , Φ 2 the corresponding Dirichlet-to-Neumann operators. If Φ 1 = Φ 2 then v 1 = v 2 .

	Theorem 1.1 and Propositions 1.2, 1.3 yield the following corollary:
	Theorem 1.1, Propositions 1.2, 1.3 and Corollary 1.4 are proved in section
	4.
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Proof of Proposition 1.3. First we have that equations (1.5) and (1.10) are well defined (i.e. Fredholm linear integral equations of the second type) on the spaces of continuous functions on D and ∂D respectively. This follows from (3.9) for the first equation and from Proposition 1.2 for the second one. Now if (1.5) admits a solution µ z 0 (z, λ) ∈ C( D), then by (3.8) and (1.5) one readily obtains µ z 0 (z, λ) ∈ C 1 z ( D). This solution is unique by Lemma 3.1 for |λ| > ρ 1 (D, N 1 , n) and by the same arguments as in the proof of Theorem 1.1 one has that ψ z 0 (z, λ)| z∈∂D satisfies equation (1.10).

Conversely, suppose that ψ z 0 (z, λ) ∈ C(∂D) satisfies equation (1.10): we have to show that ψ z 0 (z, λ), defined on D as the solution of the Dirichlet problem (-∆ + v)ψ z 0 (z, λ) = 0 with boundary values given by a solution of equation (1.10), satisfies (4.14).

By identity (4.1), ψ z 0 (z, λ) satisfies already equation (4.14) with z ∈ ∂D. Now, the function 

where we called ψ j z 0 (z, λ) the Bukhgeim analogues of the Faddeev solutions corresponding to v j , for j = 1, 2). Thus we also have equality between the corresponding generalized scattering amplitudes,

If v j | ∂D = 0, for j = 1, 2, and D is such that (1.14) holds, then by Remark 3 we can apply Theorem 1.1 and argue as above.

The general case follows from stability estimates which will be published in another paper, following the scheme of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF].