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Abstract

In this Note, we study some properties of the div-curl-grad operators and elliptic
problems in the half-space. We consider data in weighted Sobolev spaces and
in L1.
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1. Introduction

The purpose of this Note is to give some estimates for div-curl-grad operators
and elliptic problems with L1-data in the half-space. We know that if f ∈
Ln(Rn

+), there exists u ∈
◦

W 1,n
0 (Rn

+) such that divu = f holds, but does

u ∈
◦

W 1,n
0 (Rn

+) ∩ L∞(Rn
+) hold? This is indeed true. In section 2, we give

new estimates for L1-vector fields, which improve estimates for the solutions of
elliptic systems in Rn

+ with data in L1.
In this Note, we use bold type characters to denote vector distributions or
spaces of vector distributions with n components and C > 0 usually denotes
a generic constant (the value of which may change from line to line). For any
q ∈ N, Pq (respectively, P∆

q ) stands for the space of polynomials (respectively
harmonic polynomials) of degree ≤ q. If q is strictly negative integer, we set
by convention Pq = {0}. Let Ω be an open subset in the n-dimensional real
Euclidean space. A typical point in Rn is denoted by x = (x1, ..., xn) and its
norm is given by r = |x | = (x2

1 + ... + x2
n)

1
2 . We define the weight function

ρ(x ) = 1 + r. For each p ∈ R and 1 < p < ∞, the conjugate exponent p′ is

given by the relation
1
p

+
1
p′

= 1. We now define the weighted Sobolev space

W 1,p
0 (Ω) = {u ∈ D′(Ω),

u

w1
∈ Lp(Ω), ∇u ∈ Lp(Ω)}, where w1 = 1 + r if p 6= n
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and w1 = (1+ r) ln(2+ r) if p = n. This space is a reflexive Banach space when
endowed with the norm:

||u||W 1,p
0 (Ω) = (|| u

w1
||pLp(Ω) + ||∇u ||pLp(Ω))

1/p.

We also introduce the space W 2,p
0 (Ω) = {u ∈ D′(Ω),

u

w2
∈ Lp(Ω),

∇u
w1

∈

Lp(Ω), D2u ∈ Lp(Ω)}, where w2 = (1 + r)2 if p /∈ { n
n−1 , n} and w2 = (1 +

r)2 ln(2 + r) in the remaining case. This space is a reflexive Banach space
endowed with its natural norm given by

||u||W 2,p
0 (Ω) = (|| u

w2
||pLp(Ω) + ||∇u

w1
||pLp(Ω) + ||D2u||pLp(Ω))

1/p.

We note that the logarithmic weight only appears if p = n or p = n
n−1 and all

the local properties of W 1,p
0 (Ω) (respectively, W 2,p

0 (Ω)) coincide with those of
the corresponding classical Sobolev space W 1,p(Ω) (respectively, W 2,p(Ω)). For

m = 1 or m = 2, we set
◦
W

m, p
0 (Ω) = D(Ω)

W m, p
0 (Ω)

and we denote the dual

space of
◦
W

m, p
0 (Ω) by W−m,p′

0 (Ω), which is the space of distributions. When

Ω = Rn, we have Wm,p
0 (Rn) =

◦
W

m, p
0 (Rn) (see [2] for more details).

2. The div-grad-curl operators and elliptic systems

First of all, we set B+
a = {x ∈ Rn

+; |x | < a} with a > 0. In this section, we
consider the case n ≥ 2. We introduce the following theorem.

Theorem 2.1. Let f ∈ Ln(Rn
+). Then there exists u ∈

◦
W 1,n

0 (Rn
+) ∩ L∞(Rn

+)
such that divu = f . Moreover, we have the following estimate

||u ||L∞(Rn
+) + ||u ||W1,n

0 (Rn
+) ≤ C || f ||Ln(Rn

+). (1)

Proof. Let (fk)k∈N ⊂ D(Rn
+) converges towards f ∈ Ln(Rn

+) and B+
rk
⊂ Rn

+

such that supp fk ⊂ B+
rk

. We set g(x ) = rk f(rk x ). Thanks to Theorem 3
[4], there exists v ∈ W1,n

0 (B+
1 ) ∩ L∞(B+

1 ) satisfying div v = g in B+
1 and the

following estimate

|| v ||L∞(B+
1 ) + ||∇v ||Ln(B+

1 ) ≤ C || g ||Ln(B+
1 ).

We now set uk(x ) = v(
x

rk
) with x ∈ B+

rk
. It is easy to show that uk ∈

W1,n
0 (B+

rk
)∩L∞(B+

rk
) satisfies divuk = fk and we have the following estimate

||uk ||L∞(B+
rk

) + ||∇uk ||Ln(B+
rk

) ≤ C || fk ||Ln(B+
rk

) ≤ C || fk ||Ln(Rn
+)

where C depends only on n. By extending uk in Rn
+ by zero outside B+

rk
and

denoting ũk its extended function, we have || ũk ||L∞(Rn
+) = ||uk ||L∞(B+

rk
) and
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|| ũk ||W1,n
0 (Rn

+) = ||uk ||W1,n
0 (B+

rk
). Then (ũk)k is bounded in

◦
W 1,n

0 (Rn
+) ∩

L∞(Rn
+) and we can deduce that there exists a subsequence, again denoted by

(ũk)k such that ũk ⇀ u in
◦

W 1,n
0 (Rn

+) and ũk
∗
⇀ u in L∞(Rn

+). Hence, we
have divu = f and the estimate (1). �

The conclusion of Theorem 2.1 is equivalent to the estimate

∀u ∈ Ln/(n−1)(Rn
+), ||u ||Ln/(n−1)(Rn

+) ≤ Cn ||∇u ||L1(Rn
+)+W

−1,n/(n−1)
0 (Rn

+)
.

(2)
Indeed, let us consider the following unbounded operator

A = −∇ : Ln/(n−1)(Rn
+) → L1(Rn

+) + W−1,n/(n−1)
0 (Rn

+).

Then the domain D(A) is dense in Ln/(n−1)(Rn
+) and A is closed. Because the

adjoint operator

A∗ = div : W1,n
0 (Rn

+) ∩ L∞(Rn
+) → Ln(Rn

+)

is surjective, we deduce the estimate (2).
It follows from (2) and that range A is closed in L1(Rn

+)+W−1,n/(n−1)
0 (Rn

+).
Then (Ker A∗)⊥ = Im A and as consequence we obtain the following ver-
sion of De Rham’s Theorem: for any f belonging to the space L1(Rn

+) +
W−1,n/(n−1)

0 (Rn
+) and satisfying the following compatibility condition

∀v ∈ W1,n
0 (Rn

+) ∩ L∞(Rn
+), with div v = 0, < f , v > = 0, (3)

then there exists a unique π ∈ Ln/(n−1)(Rn
+) such that f = ∇π.

The following theorem, given without proof, is proved by J. Bourgain - H.
Brézis [5] (see also [6]) in the case where Rn

+ is replaced by a bounded smooth
domain Ω.

Theorem 2.2. i) Let ϕ ∈ W1,n
0 (Rn

+). Then there exists ψ = (ψ1, . . . , ψn) ∈
W1,n

0 (Rn
+) ∩ L∞(Rn

+) and η ∈ W 2,n
0 (Rn

+) such that ψn = 0 on Γ = Rn−1 × {0}
satisfying

ϕ = ψ +∇η
and the following estimate holds

||ψ ||L∞(Rn
+) + ||ψ ||W1,n

0 (Rn
+) + || η ||W 2,n

0 (Rn
+) ≤ C ||ϕ ||W1,n

0 (Rn
+). (4)

ii) If ϕ ∈
◦

W 1,n
0 (Rn

+), then the same result holds with ψ ∈
◦

W 1, n
0 (Rn

+)∩L∞(Rn
+)

and η ∈
◦
W

2,n
0 (Rn

+) and the corresponding estimate.

Define the space X(Rn
+) = { v ∈ L1(Rn

+); div v ∈ W
−2,n/(n−1)
0 (Rn

+) }. Let

f ∈ X(Rn
+). Thanks to Theorem 2.2, the linear operator F : ϕ 7−→

∫
Rn

+

f ·ϕ dx

satisfies
∀ϕ ∈ D(Rn

+), | < F ,ϕ > | ≤ C || f ||X||ϕ ||W1,n
0
.
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As D(Rn
+) is dense in

◦
W 1,n

0 (Rn
+) and by applying Hahn-Banach Theorem,

we can uniquely extend F by an element F̃ ∈ W−1,n/(n−1)
0 (Rn

+) satisfying
|| F̃ ||

W
−1,n/(n−1)
0 (Rn

+)
≤ C || f ||X(Rn

+). Besides, the following linear operator

f −→ F̃ from X(Rn
+) into W−1,n/(n−1)

0 (Rn
+) is continuous and injective. There-

fore, X(Rn
+) can be identified to a subspace of W−1,n/(n−1)

0 (Rn) with contin-
uous and dense embedding. Thanks to [3], we can then deduce that for any
f ∈ X(Rn

+), the following problem

−∆u = f in Rn
+ and u = 0 on Γ, (5)

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+) satisfying the following estimate
||u ||

W
1,n/(n−1)
0 (Rn

+)
≤ C || f ||X(Rn

+).

The first statement of the following corollary is the equivalent of Theorem 2.1
for the curl operator and the second statement gives a Helmholtz decomposition.

Corollary 2.3. i) Let f ∈ L3(R3
+) such that div f = 0 in R3

+ and f3 = 0 on

Γ. Then there exists ψ ∈
◦

W 1,3
0 (R3

+) ∩ L∞(R3
+) such that f = curlψ and we

have the following estimate

||ψ ||W1,3
0 (R3

+) + ||ψ ||L∞(R3
+) ≤ C || f ||L3(R3

+). (6)

ii) Let f ∈ L3(R3
+). Then there exist ϕ ∈

◦
W 1,3

0 (R3
+) ∩ L∞(R3

+) and π ∈
W 1,3

0 (R3
+) unique up to an additive constant and satisfying

f = curlϕ+∇π. (7)

Moreover, we have the following estimate

||ϕ ||W1,3
0 (R3

+) + ||ϕ ||L∞(R3
+) + ||∇π||L3(R3

+) ≤ C || f ||L3(R3
+). (8)

In the following proposition, we improve the estimate given by Corollary 1.4
of Van Schaftingen [8].

Proposition 2.4. Let f ∈ L1(R3
+) such that div f = 0. Then we have the

following estimate

∀ϕ ∈
◦

W 1,3
0 (R3

+), | < f,ϕ > | ≤ C || f ||L1(R3
+)||curlϕ||L3(R3

+). (9)

Proof. First remark that from the hypothesis, we deduce f ∈ W−1,3/2
0 (R3

+).

Let ϕ ∈
◦

W 1,3
0 (R3

+). Then we have curlϕ ∈ L3(R3
+). Thanks to Corollary 2.3,

there exists ψ ∈
◦

W 1,3
0 (R3

+) ∩ L∞(R3
+) such that curlψ = curlϕ with the

following estimate

||ψ ||W1,3
0 (R3

+) + ||ψ ||L∞(R3
+) ≤ C || curlϕ ||L3(R3

+). (10)
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Besides, there exists η ∈W 2,3
0 (R3

+) such that ϕ = ψ+∇η in R3
+. Then we have

< f ,ϕ >
W

−1,3/2
0 (R3

+)×
◦
W

1,3
0 (R3

+)
=

∫
R3

+

f ·ψ+ < f ,∇η >
W

−1,3/2
0 (R3

+)×
◦
W

1,3
0 (R3

+)

=
∫

R3
+

f ·ψ.

Therefore, the estimate (9) is deduced from the estimate (10). �

Here is a variant of Theorem 2.2.

Theorem 2.5. Let ϕ ∈
◦

W 1,3
0 (R3

+). Then there exist ψ ∈
◦

W 1,3
0 (R3

+)∩L∞(R3
+)

and η ∈
◦

W 2,3
0 (R3

+) such that

ϕ = ψ + curlη with div ∆2η = 0 in R3
+.

However, we have the following estimate

||ψ||W1,3
0 (R3

+) + ||ψ||L∞(R3
+) + ||η||W2,3

0 (R3
+) ≤ C ||ϕ||W1,3

0 (R3
+).

Proof. From the hypothesis, we have divϕ ∈ L3(R3
+). Thanks to Theorem

2.1, there exists ψ in
◦

W 1,3
0 (R3

+) ∩ L∞(R3
+) such that divψ = divϕ and we

have the following estimate

||ψ ||L∞(R3
+) + ||ψ ||W1,3

0 (R3
+) ≤ C ||divϕ ||L3(R3

+).

We set f = ϕ−ψ, then f ∈
◦

W 1,3
0 (R3

+) and div f = 0. We extend f to R3 as
follows

f̃ (x ′, x3) =

{
f (x ′, x3) if x3 > 0,
(f1(x ′,−x3), f2(x ′,−x3),−f3(x ′,−x3)) if x3 < 0.

Then we have f̃ ∈ W1,3
0 (R3) and div f̃ = 0 in R3. Thanks to [2], there exists

y ∈ W2,3
0 (R3) such that −∆y = curl f̃ in R3. As div y ∈ W 1,3

0 (R3) and is
harmonic, then div y = a where a is a constant. Thus, we have curl (curly −
f̃ ) = 0. Therfore, we deduce −∆(curly) = curl curl f̃ = −∆ f̃ , it means
that f̃ − curly ∈ W1,3

0 (R3) and again, f̃ − curly = b where b is a constant
vector in R3. Thanks to Lemma 3.1 [7], there exists a polynomial s ∈ P1

such that curl s = b and div s = −a. The function z := y + s belongs to
W2,3

0 (R3) and f̃ = curl z in R3 with div z = 0 in R3. Let w be the vector
field defined on R3

− by w(x ′, x3) = (−z1(x ′, x3),−z2(x ′, x3), z3(x ′, x3)) with
x3 < 0. It is easy to show curlw = curl z in R3

−. Then we have

w = z + ∇θ in R3
− (11)

with θ ∈ D′(R3
−). As ∇θ belongs to W1,3

0 (R3
−), we can show θ ∈ W 2,3

0 (R3
−).

Let θ0 ∈ W 2,3
0 (R3

+) (cf. [3]) such that ∆ θ0 = 0 in R3
+ and θ0 = θ on Γ. We
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set ζ = z − 1
2∇θ0. Then we have curl ζ = f and div ζ = 0 in R3

+. Remark
now that from (11), we deduce 2z ′ = ∇′θ = ∇′θ0 on Γ, i.e., ζ′ = 0 on
Γ. Let χ ∈ W 3,3

0 (R3
+) be a solution of the system: ∆2χ = 0 in R3

+, χ =

0 and
∂χ

∂x3
= ζ3 on Γ. We set h = ζ −∇χ. Then h ∈ W2,3

0 (R3
+) such that

f = curlh and div ∆h = 0 in R3
+, h = 0 on Γ. We know that there

exists µ ∈ W 3,3
0 (R3

+) satisfying ∆3µ = 0 in R3
+,

∂µ

∂x3
= 0 and

∂2µ

∂x2
3

=
∂h3

∂x3
on

Γ. We set η = h − ∇µ. Then η ∈ W2,3
0 (R3

+), curlη = f in R3
+ and η = 0

on Γ. It is easy to show that
∂η

∂x3
= 0 on Γ and then η ∈

◦
W 2,3

0 (R3
+). The

proof is finished. �

We introduce the following proposition.

Proposition 2.6. Let f ∈ L1(R3
+) such that div f = 0 in R3

+. Then there exists
a unique ϕ ∈ L3/2(R3

+) such that curl ϕ = f, divϕ = 0 in R3
+ and ϕ3 = 0 on

Γ satisfying the following estimate

||ϕ ||L3/2(R3
+) ≤ C || f ||L1(R3

+).

Proof. It is easy to show the uniqueness of ϕ. We now try to prove the
existence of ϕ. We know that f ∈ W−1,3/2

0 (R3
+). Then, there exists a unique

z ∈
◦

W
1,3/2
0 (R3

+) satisfying −∆z = f , with div z = 0 in R3
+. The function

ϕ = curl z is the required function. �

A variant of this result can be obtained. If f ∈ L1(R3
+) such that div f = 0

in R3
+ and f3 = 0 on Γ, then we can prove the existence of a unique ϕ ∈

L3/2(R3
+) such that f = curlϕ with divϕ = 0 in R3

+ and ϕ′ = 0 on Γ.
More generally, we can prove the following result.

Theorem 2.7. i) Let f ∈ L1(R3
+) + W−1,3/2

0 (R3
+) such that div f = 0. Then

there exists a unique ϕ ∈ L3/2(R3
+) such that curl ϕ = f with divϕ = 0 in R3

+

and ϕ3 = 0 on Γ satisfying the following estimate

||ϕ ||L3/2(R3
+) ≤ C|| f ||

L1(R3
+)+W

−1,3/2
0 (R3

+)
.

ii) Let f ∈ X(R3
+). Then there exists a unique ϕ ∈ L3/2(R3

+) such that divϕ = 0
with ϕ3 = 0 on Γ and a unique π ∈ L3/2(R3

+) satisfying f = curlϕ +∇π with
the corresponding estimate.

Combining the above results with [1] and [3], we can solve the follow elliptical
systems.

Theorem 2.8. i) Let g′ ∈ L1(Γ) and gn ∈ W
−1+ 1

n , n
n−1

0 (Γ) satisfying the com-

patibility condition
∫
Γ
g′ = 0 and < gn, 1 >= 0 . If div′g′ ∈ W

−2+ 1
n , n

n−1
0 (Γ),

then the system
−∆u = 0 in Rn

+ and u = g on Γ (12)

6



has a unique very weak solution u ∈ Ln/(n−1)(Rn
+).

ii) Let f ∈ L1(Rn
+), g′ ∈ L1(Γ) and gn ∈ W

−1+ 1
n , n

n−1
0 (Γ) satisfying the compat-

ibility condition
∫

Rn
+
f′ +

∫
Γ
g′ = 0 and

∫
Rn

+
fn+ < gn, 1 >= 0 . If

[ f, g′ ] = sup
ξ∈W 2,n

0 (Rn
+), ξ 6=0

|
∫

Rn
+
f · ∇ξ +

∫
Γ
g′ · ∇′ξ |

|| ξ ||W 2,n
0 (Rn

+)

< ∞

then the system

−∆u = f in Rn
+ and

∂u

∂xn
= g on Γ (13)

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+).

iii) Let f ∈ L1(Rn
+) such that div f ∈ [W 2,n

0 (Rn
+)∩

◦
W

1,n
−1 (Rn

+)]′ and
∫

Rn
+

fn = 0.

Then f ∈ W−1,n/(n−1)
0 (Rn

+) and the system

−∆u = f in Rn
+; u′ = 0 and

∂un

∂xn
= 0 on Γ (14)

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+).

iv) Let f ∈ L1(Rn
+) such that

∫
Rn

+

f ′ = 0. If

[ f ] = sup
ξ∈D(Rn

+), ∂ξ
∂xn

=0 on Γ

|
∫

Rn
+
f · ∇ξ |

|| ξ ||W 2,n
0 (Rn

+)

< ∞

holds, then the system

−∆u = f in Rn
+, un = 0 and

∂u′

∂xn
= 0 on Γ

has a unique solution u ∈ W1,n/(n−1)
0 (Rn

+).

Proof. We will prove only the first point i).

Step 1: The proof will be started by showing g ′ ∈ W
−1+ 1

n , n
n−1

0 (Γ). Let µ ∈
D(Γ) and ϕ ∈ W1,n

0 (Rn
+) such that ϕ = µ on Γ. Thanks to Theorem 2.2,

there exist ψ ∈ W1,n
0 (Rn

+) ∩ L∞(Rn
+) and η ∈ W 2,n

0 (Rn
+) such that ψn = 0 on

Γ satisfying ϕ = ψ +∇η and the estimate

||ψ||L∞(Rn
+) + ||ψ||W1,n

0 (Rn
+) + ||η||W 2,n

0 (Rn
+) ≤ C||ϕ||W1,n

0 (Rn
+). (15)

Then

< g ,µ >D′(Γ)×D(Γ) =
∫

Γ

g ′ ·ψ′− < div′g ′, η >
W
−2+ 1

n
, n

n−1
0 (Γ)×W

2− 1
n

,n

0 (Γ)

+ < gn, ϕn >
W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)

7



and

| < g ,µ >D′(Γ)×D(Γ) | ≤ ||g ′||L1(Γ)||ψ′||L∞(Rn
+) + ||div′g ′||

W
−2+ 1

n
, n

n−1
0 (Γ)

×

× ||η||W 2,n
0 (Rn

+) + ||gn||
W
−1+ 1

n
, n

n−1
0 (Γ)

||ϕn||
W

1− 1
n

,n

0 (Γ)
.

Thanks to the density of D(Γ) in W1− 1
n ,n

0 (Γ) and (15), we can deduce g ′ ∈
W

−1+ 1
n , n

n−1
0 (Γ).

Step 2: The system (13) is equivalent to the following one: Find u belonging

Ln/(n−1)(Rn
+) such that for all v ∈ W2,n

0 (Rn
+)∩

◦
W 1,n

−1 (Rn
+),∫

Rn
+

u ·∆v = − < g ,
∂v

∂n
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
.

But for all F ∈ Ln(Rn
+), there exists v ∈ W2,n

0 (Rn
+)∩

◦
W 1,n

−1 (Rn
+), unique up to

an element of xnRn, such that −∆v = F in Rn
+, v = 0 on Γ and the following

estimate holds
||v ||W2,n

0 (Rn
+)/xnRn ≤ C||F ||Ln(Rn

+).

Then, we have for all a ∈ Rn,

| < g ,
∂v

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
|

= | < g ,
∂(v + axn)

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
|

≤ C||g ||
W

−1+ 1
n

, n
n−1

0 (Γ)
||v + axn||W2,n

0 (Rn
+).

Consequently, taking the infinum, we have

| < g ,
∂v

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)
| ≤ C||g ||

W
−1+ 1

n
, n

n−1
0 (Γ)

||F ||Ln(Rn
+).

Then, the linear operator

T : F −→ < g ,
∂v

∂xn
>

W
−1+ 1

n
, n

n−1
0 (Γ)×W

1− 1
n

,n

0 (Γ)

is continuous on Ln(Rn
+) and thanks to the Riesz reprensentation theorem, there

exists a unique u ∈ Ln/(n−1)(Rn
+) such that T (F ) =

∫
Rn

+

u · F , i.e., u is the

solution of (13). �
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