
HAL Id: hal-00549175
https://hal.science/hal-00549175

Submitted on 21 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust IP and UDP-lite header recovery for packetized
multimedia transmission
Michel Kieffer, François Mériaux

To cite this version:
Michel Kieffer, François Mériaux. Robust IP and UDP-lite header recovery for packetized multimedia
transmission. Int. Conf. on Acousticas, Speech, and Signal Processing, Mar 2010, Dallas, Texas,
United States. pp.2358-2361, �10.1109/ICASSP.2010.5496115�. �hal-00549175�

https://hal.science/hal-00549175
https://hal.archives-ouvertes.fr

ROBUST IP AND UDP-LITE HEADER RECOVERY
FOR PACKETIZED MULTIMEDIA TRANSMISSION

François Mériaux1,2, Michel Kieffer2

1Département EEA Ecole Normale Supérieure de Cachan
2L2S - CNRS - SUPELEC - Univ Paris-Sud

ABSTRACT

Recently, Joint Source-Channel Decoding (JSCD) techniques
have been proposed to improve the reception of multimedia
contents transmitted over error-prone channels. These tech-
niques take advantage of the redundancy left by the source
coder and of bit reliability measures (soft information) pro-
vided by channel decoders to correct transmission errors. To
be put at work, protocol stacks have to be made permeable to
transmission errors in order to allow soft information to reach
the upper protocol layers. For that purpose, headers have to
be reliably estimated at each protocol layer. First results have
been obtained for lower protocol layers (PHY and MAC) pro-
tected by CRCs. The aim of this paper is to extend these re-
sults to upper protocol layers (IP and UDP-lite) protected by
checksums. As for CRCs, trellis-based decoding techniques
may be employed for data protected by checksums. Neverthe-
less, specific tools have been proposed in this paper to reach
a complexity-efficiency trade-off1.

Index Terms— Codes, Communication systems, Trans-
port protocols, Redundancy, MAP estimation.

1. INTRODUCTION

The delivery of multimedia contents over a bandlimited net-
work requires the use of compression schemes to reduce the
amount of data to transmit. Nevertheless, compressed data
are highly sensitive to transmission errors: a single bit cor-
rupted during its transmission may have heavy consequences
on the full encoded content. To avoid such issue, contents
which have to be transmitted through a network are packe-
tized and protected with various error-correction and detec-
tion mechanisms. The basic protection is channel coding [1],
which adds redundancy to the information as it is sent over the
physical channel. Another protection mechanism is included
in the network architecture and its different layers protocols.
For some of those layers, an error-detection code is added to
the message to protect the header of the packet. These error-
detection codes can be CRCs or checksums [1, 4]. At the
receiver, these codes are used to decide whether the message

1This work has been partly supported by the ANR DITEMOI project.

is corrupted and if it is, the sender is asked to send again the
packet, if possible.

Nevertheless, there are many live applications where pack-
ets cannot be sent again: broadcasting, voice over IP, etc. For
the last few years, Joint Source-Channel Decoding techniques
[3] have been proposed to deal with corrupted packets by cor-
recting them using various sources of redundancy present in
the whole coding and transmission chain. These techniques
improve the decoding but as they treat the corrupted packets
at the application layer, they require the network to be perme-
able to such erroneous packets. The current network architec-
ture does not allow packets with corrupted headers to reach
the application layer because of the error-detection codes.

In [?], a mechanism is proposed to allow the lower protocol
layers (PHY and MAC) to be permeable to corrupted packets
by using the CRCs in conjunction with inter- and intra-layer
redundancy to correct the erroneous headers.

The main contribution of this paper is to extend the ideas
in [?] to the IP and UDP-lite protocol layers. The headers of
these layers are protected by checksums. As for CRCs, trellis-
based decoding techniques [6] may be employed for data
protected by checksums. Nevertheless, we propose specific
tools have been proposed in this paper to reach a complexity-
efficiency trade-off.

The paper is organized as follow. We first explain the
header correction mechanism, then we introduce an efficient
way to reduce its complexity. Finally, we present the simula-
tion context and the results of our method.

2. ROBUST RECOVERY HEADERS AT THE
HIGHER LAYERS USING THE CHECKSUMS

2.1. MAP estimator for robust header recovery

By keeping the same formalism than in [?], consider a packet
forwarded from a layer L to layer L + 1. This packet is com-
posed of a payload and a header and in this header, some fields
are protected by a checksum. We note r the vector contain-
ing the protected fields. Mny of these fields are unknown but
as there are many sources of redundancy inter and intra-layer,
some of them can ben known or predictable. We respectively
note those vectors u, k and p and we have r = [k,p,u].

We also define the checksum vector c = Cn(r), with Cn

being the n-bit checksum evaluation function and we con-
sider R, the implicit information at the receiver which en-
ables us to limit the search range of unknown fields. The
soft information coming from L are regrouped in the vector
y = [yk,yp,yu,yc], yk,yp,yu and yc respectively being the
noisy values of the known, predictable, unknown and check-
sum fields.

Since the fields k and p are known or exactly predictable,
the only remaining field to be estimated is u. This problem
can be solved with a MAP estimator

ûMAP = arg max
u

P (u ∣ k,p,R,yu,yc) (1)

After some derivations detailed in [?], one gets

ûMAP = arg max
u

P (yu ∣ u)P (yc ∣ Cn(k,p,u))P (u ∣ R)

(2)

2.2. Practical evaluation of the MAP estimator

In (2), the first term P (yu ∣ u) represents the likelihood of
the sequence u when having the soft information yu. The
second term P (yc ∣ C(k,p,u)) represents the likelihood of
the checksum of the sequence r = [k,p,u]. The last term
P (u ∣ R) may limits the range of possible values for u.

If we consider l(u), the length in bits of the unknown vec-
tor u, 2l(u) possible combinations for u have to be consid-
ered. But, as l(u) can be quite long, we cannot afford such
a calculation complexity. That is why we use a trellis struc-
ture similar to the one described in [6] to compute P (yu ∣ u).
In our case, the rows of the trellis correspond to the different
possible checksum values and each column of the trellis cor-
responds to one bit of the unknown sequence. Each bit of the
unknown sequence offers two new possible checksum values
to the existing ways. At the end of the trellis, we have the
likelihood metrics of 2l(c) different possible sequences and
their associated checksums.

To compute P (yc ∣ C(k,p,u)), we just have to compare
those checksums with yc by the mean of a likelihood metric.

3. COMPLEXITY REDUCTION

Both IP and UDP checksums are coded over 16 bits, which
means we have to work with a 216 rows trellis. But such a
trellis requires a huge amount of calculation and we need to
reduce its complexity. The solution proposed in [?] cannot
be applied in our case as we cannot divide the checksum into
several independent pieces.

3.1. From a 2n-bit checksum to a n-bit checksum

As detailed in [2], for a given sequence it is possible to obtain
its n-bit checksum from its 2n-bit checksum. Let us consider
K 2n-bit words W k, k ∈ [1,K]. One can divide each W k

word into two n-bit words such as the first one is made of the
n most significant bits from Wk and the second one is made
of the n least significant bits from W k. We respectively note
those words Wm

k and W l
k and Wk = Wm

k × 2n + W l
k. One

can write

Cn(C2n(W1, ...,WK)) = Cn(Wm
1 ,W l

1, ...,W
m
K ,W l

K) (3)

Practically, once we have the 2n-bit checksum c2n of a given
sequence, we just do the 1’s complement sum of of the n most
significant bits of c2n with the n least significant bits of c2n
to obtain the n-bit checksum cn of the same sequence. This
property enables us to work with a n-bit checksum rather than
a 2n-bit one so the complexity of the sequence estimation is
highly reduced. But the counterpart is that a n-bit checksum
is a worse protection than a 2n-bit one. The results of errors
correction with this method are not as good as with the 2n-bits
checksum, but we will see this in detail in section 4.2.

3.2. Computing the likelihood of the n-bit checksum

When a data packet with 2n-bit checksum arrives at the re-
ceiver, we cannot directly compute the n-bit checksum cn
associated to the sequence since we do not know the exact
values of the 2n-bit checksum c2n. Instead, we know the
probability for each bit of c2n to be a 1 or a 0, that is what
is called the likelihood of c2n and it is known due to the soft
information. So what we can do is to calculate the likelihood
ratio of cn. The problem is : knowing the likelihood ratio of
a 2n-bit checksum computed over a given sequence, what is
the likelihood ratio of the n-bit checksum computed over the
same sequence?

To answer this question, we have to take a closer look at
the relations between the bits of cn and the bits of c2n and for
this, we introduce the following notations

∙ P i, the probability for the itℎ bit of c2n to be a 1, i ∈
[0, 2n− 1]. Reciprocally, we note P i, the probability for
the itℎ bit of c2n to be a 0.

∙ pi, i ∈ [0, n− 1], the probability for the itℎ bit of cn to
be a 1 and pi the probability for the same bit to be a 0.

∙ qi, i ∈ [0, n− 1], the probability to have a carry at the
itℎ position of the 1’s complement sum between the two
mid-parts of c2n. Reciprocally, qi is the probability not
to have a carry at the same position.

Considering the i-th bit of cn, we have two possibilities de-
pending on whether there is a carry. If there is a carry, the bit
is a 1 if both i-th and i+n-th bits of c2n are 1 or both bits are
0. In the other case, if there is no carry from the precedent
step, the i-th bit of cn is a 1 if one of the i-th and i+n-th bits
of c2n is a 1 and the other is a 0. This gives us the following

equations⎧⎨⎩
p0 = qn−1.(P 0Pn + P0Pn) + q̄n−1(P0Pn + P 0Pn)

pi = qi−1(P iP i+n + PiPi+n)

+q̄i−1(PiP i+n + P iPi+n),∀i ∈ [1, n− 1]
(4)

In (4), the P i (and thus the P i) terms are known since they
are contained in the soft information, but the qi and qi remain
unknown for the moment. To determine the value of the i-th
carry, we have to consider two possibilities: either both i-th
and i+n-th bits of c2n are 1, or one of those bits is a 1 and
the other a 0. In the first case, there is always a carry. In
the second case, the i-th carry is only a 1 if the i-1-th carry
is a 1 too. This enables us to write the following system of
equations{
q0 = qn−1(P0Pn + P 0Pn) + P0Pn

qj = qj−1(PjP j+n + P jPj+n) + PjPj+n,∀j ∈ [1, n− 1]

(5)
The system (5) is made of n equations and has n unknown
parameters qi, i ∈ [0, n− 1]. It can be written as

Aq = b (6)

with ⎧⎨⎩

q = (q0, q1, ..., qn−1)t

b = (P0.Pn, P1.Pn+1, ..., Pn−1.P2n−1)t

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋅ ⋅ ⋅ 0 −k0

−k1 1
. 0

0 −k2
.

...
...

. 0

0 ⋅ ⋅ ⋅ 0 −kn−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

kj = PjP j+n + P jPj+n,∀j ∈ [0, n− 1]

from which q is easily obtained as

q = A−1b (7)

Once q is known, we can use the values qi, i ∈ [0, n− 1] in
(4) in order to obtain pi, i ∈ [0, n− 1].

3.3. A simplified trellis

Once the likelihood of the n-bit checksum is known, we have
to estimate the unknown sequence. As in Section 2.2, we
use a trellis structure to do that. The only difference is that
the trellis now has 2n rows instead of 22n. The number of
calculations we have to make with the trellis is almost reduced
by a factor 2n, the complexity is highly reduced. The only
calculations we add with this process is the solving of (6) and
have a complexity in n3, which remains negligible compared
to the factor 2n.

4. SIMULATION AND RESULTS

4.1. Context

Our simulation consists in sending packets through an AWGN
channel and applying our algorithm to the packets with erro-
neous headers at the reception. We assume that a soft pro-
tocol stack is used at the lower layers, so that we deal with
soft information at the IP and UDP-lite layers. The transpar-
ent network architecture presented in [5] gives some insights
on the way to transmit soft information between protocol lay-
ers. Moreover, the UDP-lite layer is set to only protect the
header and in both IP and UDP-lite headers, some fields may
be known or predictable. Here are the assumptions we made
for those fields

∙ In UDP-lite, the Length field is considered as known
since we know the way we use UDP-lite. The Terminal
Port field is unknown but one can assume that a limited
number of ports are used at the same time. In our case,
it can only take 8 different values.

∙ In IP, The Version field is known since we assume we
use IPv4. The Header Size field is considered as known.
The Type of Service field is also assumed to be known.
The Length field is considered as predictable as it can be
obtained from the MAC layer. The first bit of the Flags
field is reserved and set to 0, so it is known. The Protocol
field is known as UDP is known to be the upper layer.

The remaining fields are all considered as unknown.

4.2. Results

At the receiver, we compare the HER (Header Error Rate) of
the received packets for different values of the SNR. We com-
pare three different decoders: the standard one which decodes
the bits of the header sequence according to their likelihood
ratio, our header-correcter decoder based on the redundancy
included in the 16-bit checksum and the same decoder with
reduced complexity as we explain in Section 3.2.

4.2.1. IP header correction

Figure 1 shows this comparison for the IP header. As ex-
pected, both proposed decoders show better results than the
standard one. The one which bases its header correction on
the 16-bit checksum always have the fewer HER, whereas the
one with reduced complexity is always between the two other
decoders in term of results. We explain this by the fact that
when we work with the reduced complexity version, we turn
the likelihood ratio of the real 16-bit checksum into a likeli-
hood ratio of a corresponding 8-bit checksum. But this oper-
ation is not reversible, when we do this, we lose redundancy
about the unknown sequence.

If we have a closer look at the uncorrected error patterns
that remain after we tried to correct them, we clearly notice

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

H
ea

de
r

E
rr

or
 R

at
e

(H
E

R
)

IP decoder 8bit−checksum correction
IP standard decoder
IP decoder 16bit−checksum correction

Fig. 1. HER vs SNR for the standard, 16-bit header correcter
and 8-bit header correcter decoders of the IP layer.

−1 0 1 2 3 4 5 6 7 8 9
10

−3

10
−2

10
−1

10
0

SNR (Db)

H
ea

de
r

E
rr

or
 R

at
e

(H
E

R
)

UDP−lite standard decoder
UDP−lite 16−bit checksum correction

Fig. 2. HER vs SNR for the standard and 16-bit header cor-
recter decoders of the UDP-lite layer

that there is no single bit error in the corrected sequence. This
due to the checksum property of always detecting single bit
error. The most common type of error appears when two
bits separated by 15 (or 7 for the reduced complexity ver-
sion) bits are both wrong but when added to each other, they
do not change the checksum value. This kind of error is not
detectable by our algorithm.

4.2.2. UDP-lite header correction

Figure 2 compares the performance of the standard decoder
and the basic header-correcter decoder for the UDP-lite layer.
Once again, our decoder has better results than the standard
one and if we compare it with the same decoder at the IP
layer, we notice that the results are even better. For a HER
of 10−2, our UDP decoder needs 3.33 dB whereas the IP
decoder needs 4.75 dB. We explain this observation by two
facts. First, the length of the unknown sequence in the UDP-
lite header is smaller that the unknown sequence of the IP
header. It is 32 bits instead of 39, there are fewer chances for
errors to occur. Second, in the UDP-lite header, the Termi-
nal Port field can only take a given number of values which
correspond to the opened ports of the Terminal, which highly
reduces the possible values for this field.

5. CONCLUSION AND PERSPECTIVE

By using the redundancy present in the checksum, the solu-
tion we propose enables us to make the upper protocol layers
permeable to corrupted packets.

Currently, the main drawback of this method is its calcula-
tion complexity. If it is longer to estimate the correct header
of a corrupted packet rather than waiting for it to be correctly
sent, our contribution is useless. The solution we propose is
fine as it highly reduces the number of calculations needed
for the method but it is not as efficient in term of errors cor-
rection. To continue this project, the main purpose is to keep
on working about complexity reduction. Instead of replacing
the 16-bit checksum by the corresponding 8-bit checksum, it
would be interesting to keep the 16-bit checksum and try to
estimate the unknown sequence with two trellis of 28 rows,
one corresponding to the 8 most significant bits of the 16-bit
checksum and the other corresponding to 8 least significant
bits. Of course, they would not be independent trellis, they
should share information about their respective carries. This
way, we would still have a reduced complexity but our se-
quence estimation should be better.

6. REFERENCES

[1] R. E. Blahut. Theory and Practice of Error Control
Codes. Addison-Wesley, Reading, MA, 1984.

[2] R. T. Braden, D. A. Borman, and C. Partridge. RFC 1071:
Computing the Internet checksum, September 1988. Up-
dated by RFC1141.

[3] Duhamel and Kieffer. Joint Source-channel Decoding:
A Cross-layer Perspective With Applications in Video
Broadcasting. 2009.

[4] J. F. Kurose and K. W. Ross. Computer Networking:
A Top-Down Approach Featuring the Internet. Addison
Wesley, Boston, third edition, 2005.

[5] C. Lamy-Bergot J. Huusko M. G. Martini, M. Mazzoti
and P. Amon. Content adaptive network aware joint op-
timization of wireless video transmission. IEEE Commu-
nications Magazine, 45(1):8490, 2007.

[6] J. K. Wolf. Efficient maximum-likelihood decoding of
linear block codes using a trellis. IEEE Trans. Inform.
Theory, 24(1):76–80, 1978.

